SPIRV-Tools/test/fuzz/shrinker_test.cpp
Alastair Donaldson 9c4481419e
spirv-fuzz: Allow inapplicable transformations to be ignored (#4407)
spirv-fuzz features transformations that should be applicable by
construction. Assertions are used to detect when such transformations
turn out to be inapplicable. Failures of such assertions indicate bugs
in the fuzzer. However, when using the fuzzer at scale (e.g. in
ClusterFuzz) reports of these assertion failures create noise, and
cause the fuzzer to exit early. This change adds an option whereby
inapplicable transformations can be ignored. This reduces noise and
allows fuzzing to continue even when a transformation that should be
applicable but is not has been erroneously created.
2021-07-28 22:59:37 +01:00

383 lines
13 KiB
C++

// Copyright (c) 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/shrinker.h"
#include "gtest/gtest.h"
#include "source/fuzz/fact_manager/fact_manager.h"
#include "source/fuzz/fuzzer_context.h"
#include "source/fuzz/fuzzer_pass_donate_modules.h"
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/pseudo_random_generator.h"
#include "source/fuzz/transformation_context.h"
#include "source/opt/ir_context.h"
#include "source/util/make_unique.h"
#include "test/fuzz/fuzz_test_util.h"
namespace spvtools {
namespace fuzz {
namespace {
TEST(ShrinkerTest, ReduceAddedFunctions) {
const std::string kReferenceModule = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %4 "main"
OpExecutionMode %4 OriginUpperLeft
OpSource ESSL 320
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeInt 32 1
%7 = OpTypePointer Private %6
%8 = OpVariable %7 Private
%9 = OpConstant %6 2
%10 = OpTypePointer Function %6
%4 = OpFunction %2 None %3
%5 = OpLabel
%11 = OpVariable %10 Function
OpStore %8 %9
%12 = OpLoad %6 %8
OpStore %11 %12
OpReturn
OpFunctionEnd
)";
const std::string kDonorModule = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %4 "main"
OpExecutionMode %4 OriginUpperLeft
OpSource ESSL 320
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeInt 32 1
%7 = OpTypePointer Function %6
%8 = OpTypeFunction %6 %7
%12 = OpTypeFunction %2 %7
%17 = OpConstant %6 0
%26 = OpTypeBool
%32 = OpConstant %6 1
%46 = OpTypePointer Private %6
%47 = OpVariable %46 Private
%48 = OpConstant %6 3
%4 = OpFunction %2 None %3
%5 = OpLabel
%49 = OpVariable %7 Function
%50 = OpVariable %7 Function
%51 = OpLoad %6 %49
OpStore %50 %51
%52 = OpFunctionCall %2 %14 %50
OpReturn
OpFunctionEnd
%10 = OpFunction %6 None %8
%9 = OpFunctionParameter %7
%11 = OpLabel
%16 = OpVariable %7 Function
%18 = OpVariable %7 Function
OpStore %16 %17
OpStore %18 %17
OpBranch %19
%19 = OpLabel
OpLoopMerge %21 %22 None
OpBranch %23
%23 = OpLabel
%24 = OpLoad %6 %18
%25 = OpLoad %6 %9
%27 = OpSLessThan %26 %24 %25
OpBranchConditional %27 %20 %21
%20 = OpLabel
%28 = OpLoad %6 %9
%29 = OpLoad %6 %16
%30 = OpIAdd %6 %29 %28
OpStore %16 %30
OpBranch %22
%22 = OpLabel
%31 = OpLoad %6 %18
%33 = OpIAdd %6 %31 %32
OpStore %18 %33
OpBranch %19
%21 = OpLabel
%34 = OpLoad %6 %16
%35 = OpNot %6 %34
OpReturnValue %35
OpFunctionEnd
%14 = OpFunction %2 None %12
%13 = OpFunctionParameter %7
%15 = OpLabel
%37 = OpVariable %7 Function
%38 = OpVariable %7 Function
%39 = OpLoad %6 %13
OpStore %38 %39
%40 = OpFunctionCall %6 %10 %38
OpStore %37 %40
%41 = OpLoad %6 %37
%42 = OpLoad %6 %13
%43 = OpSGreaterThan %26 %41 %42
OpSelectionMerge %45 None
OpBranchConditional %43 %44 %45
%44 = OpLabel
OpStore %47 %48
OpBranch %45
%45 = OpLabel
OpReturn
OpFunctionEnd
)";
// Note: |env| should ideally be declared const. However, due to a known
// issue with older versions of MSVC we would have to mark |env| as being
// captured due to its used in a lambda below, and other compilers would warn
// that such capturing is not necessary. Not declaring |env| as const means
// that it needs to be captured to be used in the lambda, and thus all
// compilers are kept happy. See:
// https://developercommunity.visualstudio.com/content/problem/367326/problems-with-capturing-constexpr-in-lambda.html
spv_target_env env = SPV_ENV_UNIVERSAL_1_3;
const auto consumer = fuzzerutil::kSilentMessageConsumer;
SpirvTools tools(env);
std::vector<uint32_t> reference_binary;
ASSERT_TRUE(
tools.Assemble(kReferenceModule, &reference_binary, kFuzzAssembleOption));
spvtools::ValidatorOptions validator_options;
const auto variant_ir_context =
BuildModule(env, consumer, kReferenceModule, kFuzzAssembleOption);
ASSERT_TRUE(fuzzerutil::IsValidAndWellFormed(
variant_ir_context.get(), validator_options, kConsoleMessageConsumer));
const auto donor_ir_context =
BuildModule(env, consumer, kDonorModule, kFuzzAssembleOption);
ASSERT_TRUE(fuzzerutil::IsValidAndWellFormed(
donor_ir_context.get(), validator_options, kConsoleMessageConsumer));
FuzzerContext fuzzer_context(MakeUnique<PseudoRandomGenerator>(0), 100,
false);
TransformationContext transformation_context(
MakeUnique<FactManager>(variant_ir_context.get()), validator_options);
protobufs::TransformationSequence transformations;
FuzzerPassDonateModules pass(variant_ir_context.get(),
&transformation_context, &fuzzer_context,
&transformations, false, {});
pass.DonateSingleModule(donor_ir_context.get(), true);
protobufs::FactSequence no_facts;
Shrinker::InterestingnessFunction interestingness_function =
[consumer, env](const std::vector<uint32_t>& binary,
uint32_t /*unused*/) -> bool {
bool found_op_not = false;
uint32_t op_call_count = 0;
auto temp_ir_context =
BuildModule(env, consumer, binary.data(), binary.size());
for (auto& function : *temp_ir_context->module()) {
for (auto& block : function) {
for (auto& inst : block) {
if (inst.opcode() == SpvOpNot) {
found_op_not = true;
} else if (inst.opcode() == SpvOpFunctionCall) {
op_call_count++;
}
}
}
}
return found_op_not && op_call_count >= 2;
};
auto shrinker_result =
Shrinker(env, consumer, reference_binary, no_facts, transformations,
interestingness_function, 1000, true, validator_options)
.Run();
ASSERT_EQ(Shrinker::ShrinkerResultStatus::kComplete, shrinker_result.status);
// We now check that the module after shrinking looks right.
// The entry point should be identical to what it looked like in the
// reference, while the other functions should be absolutely minimal,
// containing only what is needed to satisfy the interestingness function.
auto ir_context_after_shrinking =
BuildModule(env, consumer, shrinker_result.transformed_binary.data(),
shrinker_result.transformed_binary.size());
bool first_function = true;
for (auto& function : *ir_context_after_shrinking->module()) {
if (first_function) {
first_function = false;
bool first_block = true;
for (auto& block : function) {
ASSERT_TRUE(first_block);
uint32_t counter = 0;
for (auto& inst : block) {
switch (counter) {
case 0:
ASSERT_EQ(SpvOpVariable, inst.opcode());
ASSERT_EQ(11, inst.result_id());
break;
case 1:
ASSERT_EQ(SpvOpStore, inst.opcode());
break;
case 2:
ASSERT_EQ(SpvOpLoad, inst.opcode());
ASSERT_EQ(12, inst.result_id());
break;
case 3:
ASSERT_EQ(SpvOpStore, inst.opcode());
break;
case 4:
ASSERT_EQ(SpvOpReturn, inst.opcode());
break;
default:
FAIL();
}
counter++;
}
}
} else {
bool first_block = true;
for (auto& block : function) {
ASSERT_TRUE(first_block);
first_block = false;
for (auto& inst : block) {
switch (inst.opcode()) {
case SpvOpVariable:
case SpvOpNot:
case SpvOpReturn:
case SpvOpReturnValue:
case SpvOpFunctionCall:
// These are the only instructions we expect to see.
break;
default:
FAIL();
}
}
}
}
}
}
TEST(ShrinkerTest, HitStepLimitWhenReducingAddedFunctions) {
const std::string kReferenceModule = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %4 "main"
OpExecutionMode %4 OriginUpperLeft
OpSource ESSL 320
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeInt 32 1
%7 = OpTypePointer Private %6
%8 = OpVariable %7 Private
%9 = OpConstant %6 2
%10 = OpTypePointer Function %6
%4 = OpFunction %2 None %3
%5 = OpLabel
%11 = OpVariable %10 Function
OpStore %8 %9
%12 = OpLoad %6 %8
OpStore %11 %12
OpReturn
OpFunctionEnd
)";
const std::string kDonorModule = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %4 "main"
OpExecutionMode %4 OriginUpperLeft
OpSource ESSL 320
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeInt 32 1
%48 = OpConstant %6 3
%4 = OpFunction %2 None %3
%5 = OpLabel
%52 = OpCopyObject %6 %48
%53 = OpCopyObject %6 %52
%54 = OpCopyObject %6 %53
%55 = OpCopyObject %6 %54
%56 = OpCopyObject %6 %55
%57 = OpCopyObject %6 %56
%58 = OpCopyObject %6 %48
%59 = OpCopyObject %6 %58
%60 = OpCopyObject %6 %59
%61 = OpCopyObject %6 %60
%62 = OpCopyObject %6 %61
%63 = OpCopyObject %6 %62
%64 = OpCopyObject %6 %48
OpReturn
OpFunctionEnd
)";
spv_target_env env = SPV_ENV_UNIVERSAL_1_3;
const auto consumer = fuzzerutil::kSilentMessageConsumer;
SpirvTools tools(env);
std::vector<uint32_t> reference_binary;
ASSERT_TRUE(
tools.Assemble(kReferenceModule, &reference_binary, kFuzzAssembleOption));
spvtools::ValidatorOptions validator_options;
const auto variant_ir_context =
BuildModule(env, consumer, kReferenceModule, kFuzzAssembleOption);
ASSERT_TRUE(fuzzerutil::IsValidAndWellFormed(
variant_ir_context.get(), validator_options, kConsoleMessageConsumer));
const auto donor_ir_context =
BuildModule(env, consumer, kDonorModule, kFuzzAssembleOption);
ASSERT_TRUE(fuzzerutil::IsValidAndWellFormed(
donor_ir_context.get(), validator_options, kConsoleMessageConsumer));
FuzzerContext fuzzer_context(MakeUnique<PseudoRandomGenerator>(0), 100,
false);
TransformationContext transformation_context(
MakeUnique<FactManager>(variant_ir_context.get()), validator_options);
protobufs::TransformationSequence transformations;
FuzzerPassDonateModules pass(variant_ir_context.get(),
&transformation_context, &fuzzer_context,
&transformations, false, {});
pass.DonateSingleModule(donor_ir_context.get(), true);
protobufs::FactSequence no_facts;
Shrinker::InterestingnessFunction interestingness_function =
[consumer, env](const std::vector<uint32_t>& binary,
uint32_t /*unused*/) -> bool {
auto temp_ir_context =
BuildModule(env, consumer, binary.data(), binary.size());
uint32_t copy_object_count = 0;
temp_ir_context->module()->ForEachInst(
[&copy_object_count](opt::Instruction* inst) {
if (inst->opcode() == SpvOpCopyObject) {
copy_object_count++;
}
});
return copy_object_count >= 8;
};
auto shrinker_result =
Shrinker(env, consumer, reference_binary, no_facts, transformations,
interestingness_function, 30, true, validator_options)
.Run();
ASSERT_EQ(Shrinker::ShrinkerResultStatus::kStepLimitReached,
shrinker_result.status);
}
} // namespace
} // namespace fuzz
} // namespace spvtools