SPIRV-Tools/source/opt/loop_fusion.cpp
Stephen McGroarty 1c2cbaf569 Add GetContinueBlock to loop class.
Previously, the loop class used the terms latch and continue block
interchangeably. This patch splits the two and corrects and tests some
uses of the old uses of GetLatchBlock.
2018-05-03 14:30:41 -04:00

733 lines
24 KiB
C++

// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opt/loop_fusion.h"
#include <algorithm>
#include <vector>
#include "opt/ir_context.h"
#include "opt/loop_dependence.h"
#include "opt/loop_descriptor.h"
namespace spvtools {
namespace opt {
namespace {
// Append all the loops nested in |loop| to |loops|.
void CollectChildren(ir::Loop* loop, std::vector<const ir::Loop*>* loops) {
for (auto child : *loop) {
loops->push_back(child);
if (child->NumImmediateChildren() != 0) {
CollectChildren(child, loops);
}
}
}
// Return the set of locations accessed by |stores| and |loads|.
std::set<ir::Instruction*> GetLocationsAccessed(
const std::map<ir::Instruction*, std::vector<ir::Instruction*>>& stores,
const std::map<ir::Instruction*, std::vector<ir::Instruction*>>& loads) {
std::set<ir::Instruction*> locations{};
for (const auto& kv : stores) {
locations.insert(std::get<0>(kv));
}
for (const auto& kv : loads) {
locations.insert(std::get<0>(kv));
}
return locations;
}
// Append all dependences from |sources| to |destinations| to |dependences|.
void GetDependences(std::vector<DistanceVector>* dependences,
LoopDependenceAnalysis* analysis,
const std::vector<ir::Instruction*>& sources,
const std::vector<ir::Instruction*>& destinations,
size_t num_entries) {
for (auto source : sources) {
for (auto destination : destinations) {
DistanceVector dist(num_entries);
if (!analysis->GetDependence(source, destination, &dist)) {
dependences->push_back(dist);
}
}
}
}
// Apped all instructions in |block| to |instructions|.
void AddInstructionsInBlock(std::vector<ir::Instruction*>* instructions,
ir::BasicBlock* block) {
for (auto& inst : *block) {
instructions->push_back(&inst);
}
instructions->push_back(block->GetLabelInst());
}
} // namespace
bool LoopFusion::UsedInContinueOrConditionBlock(
ir::Instruction* phi_instruction, ir::Loop* loop) {
auto condition_block = loop->FindConditionBlock()->id();
auto continue_block = loop->GetContinueBlock()->id();
auto not_used = context_->get_def_use_mgr()->WhileEachUser(
phi_instruction,
[this, condition_block, continue_block](ir::Instruction* instruction) {
auto block_id = context_->get_instr_block(instruction)->id();
return block_id != condition_block && block_id != continue_block;
});
return !not_used;
}
void LoopFusion::RemoveIfNotUsedContinueOrConditionBlock(
std::vector<ir::Instruction*>* instructions, ir::Loop* loop) {
instructions->erase(
std::remove_if(std::begin(*instructions), std::end(*instructions),
[this, loop](ir::Instruction* instruction) {
return !UsedInContinueOrConditionBlock(instruction,
loop);
}),
std::end(*instructions));
}
bool LoopFusion::AreCompatible() {
// Check that the loops are in the same function.
if (loop_0_->GetHeaderBlock()->GetParent() !=
loop_1_->GetHeaderBlock()->GetParent()) {
return false;
}
// Check that both loops have pre-header blocks.
if (!loop_0_->GetPreHeaderBlock() || !loop_1_->GetPreHeaderBlock()) {
return false;
}
// Check there are no breaks.
if (context_->cfg()->preds(loop_0_->GetMergeBlock()->id()).size() != 1 ||
context_->cfg()->preds(loop_1_->GetMergeBlock()->id()).size() != 1) {
return false;
}
// Check there are no continues.
if (context_->cfg()->preds(loop_0_->GetContinueBlock()->id()).size() != 1 ||
context_->cfg()->preds(loop_1_->GetContinueBlock()->id()).size() != 1) {
return false;
}
// |GetInductionVariables| returns all OpPhi in the header. Check that both
// loops have exactly one that is used in the continue and condition blocks.
std::vector<ir::Instruction*> inductions_0{}, inductions_1{};
loop_0_->GetInductionVariables(inductions_0);
RemoveIfNotUsedContinueOrConditionBlock(&inductions_0, loop_0_);
if (inductions_0.size() != 1) {
return false;
}
induction_0_ = inductions_0.front();
loop_1_->GetInductionVariables(inductions_1);
RemoveIfNotUsedContinueOrConditionBlock(&inductions_1, loop_1_);
if (inductions_1.size() != 1) {
return false;
}
induction_1_ = inductions_1.front();
if (!CheckInit()) {
return false;
}
if (!CheckCondition()) {
return false;
}
if (!CheckStep()) {
return false;
}
// Check adjacency, |loop_0_| should come just before |loop_1_|.
// There is always at least one block between loops, even if it's empty.
// We'll check at most 2 preceeding blocks.
auto pre_header_1 = loop_1_->GetPreHeaderBlock();
std::vector<ir::BasicBlock*> block_to_check{};
block_to_check.push_back(pre_header_1);
if (loop_0_->GetMergeBlock() != loop_1_->GetPreHeaderBlock()) {
// Follow CFG for one more block.
auto preds = context_->cfg()->preds(pre_header_1->id());
if (preds.size() == 1) {
auto block = &*containing_function_->FindBlock(preds.front());
if (block == loop_0_->GetMergeBlock()) {
block_to_check.push_back(block);
} else {
return false;
}
} else {
return false;
}
}
// Check that the separating blocks are either empty or only contains a store
// to a local variable that is never read (left behind by
// '--eliminate-local-multi-store'). Also allow OpPhi, since the loop could be
// in LCSSA form.
for (auto block : block_to_check) {
for (auto& inst : *block) {
if (inst.opcode() == SpvOpStore) {
// Get the definition of the target to check it's function scope so
// there are no observable side effects.
auto variable =
context_->get_def_use_mgr()->GetDef(inst.GetSingleWordInOperand(0));
if (variable->opcode() != SpvOpVariable ||
variable->GetSingleWordInOperand(0) != SpvStorageClassFunction) {
return false;
}
// Check the target is never loaded.
auto is_used = false;
context_->get_def_use_mgr()->ForEachUse(
inst.GetSingleWordInOperand(0),
[&is_used](ir::Instruction* use_inst, uint32_t) {
if (use_inst->opcode() == SpvOpLoad) {
is_used = true;
}
});
if (is_used) {
return false;
}
} else if (inst.opcode() == SpvOpPhi) {
if (inst.NumInOperands() != 2) {
return false;
}
} else if (inst.opcode() != SpvOpBranch) {
return false;
}
}
}
return true;
} // namespace opt
bool LoopFusion::ContainsBarriersOrFunctionCalls(ir::Loop* loop) {
for (const auto& block : loop->GetBlocks()) {
for (const auto& inst : *containing_function_->FindBlock(block)) {
auto opcode = inst.opcode();
if (opcode == SpvOpFunctionCall || opcode == SpvOpControlBarrier ||
opcode == SpvOpMemoryBarrier || opcode == SpvOpTypeNamedBarrier ||
opcode == SpvOpNamedBarrierInitialize ||
opcode == SpvOpMemoryNamedBarrier) {
return true;
}
}
}
return false;
}
bool LoopFusion::CheckInit() {
int64_t loop_0_init;
if (!loop_0_->GetInductionInitValue(induction_0_, &loop_0_init)) {
return false;
}
int64_t loop_1_init;
if (!loop_1_->GetInductionInitValue(induction_1_, &loop_1_init)) {
return false;
}
if (loop_0_init != loop_1_init) {
return false;
}
return true;
}
bool LoopFusion::CheckCondition() {
auto condition_0 = loop_0_->GetConditionInst();
auto condition_1 = loop_1_->GetConditionInst();
if (!loop_0_->IsSupportedCondition(condition_0->opcode()) ||
!loop_1_->IsSupportedCondition(condition_1->opcode())) {
return false;
}
if (condition_0->opcode() != condition_1->opcode()) {
return false;
}
for (uint32_t i = 0; i < condition_0->NumInOperandWords(); ++i) {
auto arg_0 = context_->get_def_use_mgr()->GetDef(
condition_0->GetSingleWordInOperand(i));
auto arg_1 = context_->get_def_use_mgr()->GetDef(
condition_1->GetSingleWordInOperand(i));
if (arg_0 == induction_0_ && arg_1 == induction_1_) {
continue;
}
if (arg_0 == induction_0_ && arg_1 != induction_1_) {
return false;
}
if (arg_1 == induction_1_ && arg_0 != induction_0_) {
return false;
}
if (arg_0 != arg_1) {
return false;
}
}
return true;
}
bool LoopFusion::CheckStep() {
auto scalar_analysis = context_->GetScalarEvolutionAnalysis();
SENode* induction_node_0 = scalar_analysis->SimplifyExpression(
scalar_analysis->AnalyzeInstruction(induction_0_));
if (!induction_node_0->AsSERecurrentNode()) {
return false;
}
SENode* induction_step_0 =
induction_node_0->AsSERecurrentNode()->GetCoefficient();
if (!induction_step_0->AsSEConstantNode()) {
return false;
}
SENode* induction_node_1 = scalar_analysis->SimplifyExpression(
scalar_analysis->AnalyzeInstruction(induction_1_));
if (!induction_node_1->AsSERecurrentNode()) {
return false;
}
SENode* induction_step_1 =
induction_node_1->AsSERecurrentNode()->GetCoefficient();
if (!induction_step_1->AsSEConstantNode()) {
return false;
}
if (*induction_step_0 != *induction_step_1) {
return false;
}
return true;
}
std::map<ir::Instruction*, std::vector<ir::Instruction*>>
LoopFusion::LocationToMemOps(const std::vector<ir::Instruction*>& mem_ops) {
std::map<ir::Instruction*, std::vector<ir::Instruction*>> location_map{};
for (auto instruction : mem_ops) {
auto access_location = context_->get_def_use_mgr()->GetDef(
instruction->GetSingleWordInOperand(0));
while (access_location->opcode() == SpvOpAccessChain) {
access_location = context_->get_def_use_mgr()->GetDef(
access_location->GetSingleWordInOperand(0));
}
location_map[access_location].push_back(instruction);
}
return location_map;
}
std::pair<std::vector<ir::Instruction*>, std::vector<ir::Instruction*>>
LoopFusion::GetLoadsAndStoresInLoop(ir::Loop* loop) {
std::vector<ir::Instruction*> loads{};
std::vector<ir::Instruction*> stores{};
for (auto block_id : loop->GetBlocks()) {
if (block_id == loop->GetContinueBlock()->id()) {
continue;
}
for (auto& instruction : *containing_function_->FindBlock(block_id)) {
if (instruction.opcode() == SpvOpLoad) {
loads.push_back(&instruction);
} else if (instruction.opcode() == SpvOpStore) {
stores.push_back(&instruction);
}
}
}
return std::make_pair(loads, stores);
}
bool LoopFusion::IsUsedInLoop(ir::Instruction* instruction, ir::Loop* loop) {
auto not_used = context_->get_def_use_mgr()->WhileEachUser(
instruction, [this, loop](ir::Instruction* user) {
auto block_id = context_->get_instr_block(user)->id();
return !loop->IsInsideLoop(block_id);
});
return !not_used;
}
bool LoopFusion::IsLegal() {
assert(AreCompatible() && "Fusion can't be legal, loops are not compatible.");
// Bail out if there are function calls as they could have side-effects that
// cause dependencies or if there are any barriers.
if (ContainsBarriersOrFunctionCalls(loop_0_) ||
ContainsBarriersOrFunctionCalls(loop_1_)) {
return false;
}
std::vector<ir::Instruction*> phi_instructions{};
loop_0_->GetInductionVariables(phi_instructions);
// Check no OpPhi in |loop_0_| is used in |loop_1_|.
for (auto phi_instruction : phi_instructions) {
if (IsUsedInLoop(phi_instruction, loop_1_)) {
return false;
}
}
// Check no LCSSA OpPhi in merge block of |loop_0_| is used in |loop_1_|.
auto phi_used = false;
loop_0_->GetMergeBlock()->ForEachPhiInst(
[this, &phi_used](ir::Instruction* phi_instruction) {
phi_used |= IsUsedInLoop(phi_instruction, loop_1_);
});
if (phi_used) {
return false;
}
// Grab loads & stores from both loops.
auto loads_stores_0 = GetLoadsAndStoresInLoop(loop_0_);
auto loads_stores_1 = GetLoadsAndStoresInLoop(loop_1_);
// Build memory location to operation maps.
auto load_locs_0 = LocationToMemOps(std::get<0>(loads_stores_0));
auto store_locs_0 = LocationToMemOps(std::get<1>(loads_stores_0));
auto load_locs_1 = LocationToMemOps(std::get<0>(loads_stores_1));
auto store_locs_1 = LocationToMemOps(std::get<1>(loads_stores_1));
// Get the locations accessed in both loops.
auto locations_0 = GetLocationsAccessed(store_locs_0, load_locs_0);
auto locations_1 = GetLocationsAccessed(store_locs_1, load_locs_1);
std::vector<ir::Instruction*> potential_clashes{};
std::set_intersection(std::begin(locations_0), std::end(locations_0),
std::begin(locations_1), std::end(locations_1),
std::back_inserter(potential_clashes));
// If the loops don't access the same variables, the fusion is legal.
if (potential_clashes.empty()) {
return true;
}
// Find variables that have at least one store.
std::vector<ir::Instruction*> potential_clashes_with_stores{};
for (auto location : potential_clashes) {
if (store_locs_0.find(location) != std::end(store_locs_0) ||
store_locs_1.find(location) != std::end(store_locs_1)) {
potential_clashes_with_stores.push_back(location);
}
}
// If there are only loads to the same variables, the fusion is legal.
if (potential_clashes_with_stores.empty()) {
return true;
}
// Else if loads and at least one store (across loops) to the same variable
// there is a potential dependence and we need to check the dependence
// distance.
// Find all the loops in this loop nest for the dependency analysis.
std::vector<const ir::Loop*> loops{};
// Find the parents.
for (auto current_loop = loop_0_; current_loop != nullptr;
current_loop = current_loop->GetParent()) {
loops.push_back(current_loop);
}
auto this_loop_position = loops.size() - 1;
std::reverse(std::begin(loops), std::end(loops));
// Find the children.
CollectChildren(loop_0_, &loops);
CollectChildren(loop_1_, &loops);
// Check that any dependes created are legal. That means the fused loops do
// not have any dependencies with dependence distance greater than 0 that did
// not exist in the original loops.
LoopDependenceAnalysis analysis(context_, loops);
analysis.GetScalarEvolution()->AddLoopsToPretendAreTheSame(
{loop_0_, loop_1_});
for (auto location : potential_clashes_with_stores) {
// Analyse dependences from |loop_0_| to |loop_1_|.
std::vector<DistanceVector> dependences;
// Read-After-Write.
GetDependences(&dependences, &analysis, store_locs_0[location],
load_locs_1[location], loops.size());
// Write-After-Read.
GetDependences(&dependences, &analysis, load_locs_0[location],
store_locs_1[location], loops.size());
// Write-After-Write.
GetDependences(&dependences, &analysis, store_locs_0[location],
store_locs_1[location], loops.size());
// Check that the induction variables either don't appear in the subscripts
// or the dependence distance is negative.
for (const auto& dependence : dependences) {
const auto& entry = dependence.GetEntries()[this_loop_position];
if ((entry.dependence_information ==
DistanceEntry::DependenceInformation::DISTANCE &&
entry.distance < 1) ||
(entry.dependence_information ==
DistanceEntry::DependenceInformation::IRRELEVANT)) {
continue;
} else {
return false;
}
}
}
return true;
}
void ReplacePhiParentWith(ir::Instruction* inst, uint32_t orig_block,
uint32_t new_block) {
if (inst->GetSingleWordInOperand(1) == orig_block) {
inst->SetInOperand(1, {new_block});
} else {
inst->SetInOperand(3, {new_block});
}
}
void LoopFusion::Fuse() {
assert(AreCompatible() && "Can't fuse, loops aren't compatible");
assert(IsLegal() && "Can't fuse, illegal");
// Save the pointers/ids, won't be found in the middle of doing modifications.
auto header_1 = loop_1_->GetHeaderBlock()->id();
auto condition_1 = loop_1_->FindConditionBlock()->id();
auto continue_1 = loop_1_->GetContinueBlock()->id();
auto continue_0 = loop_0_->GetContinueBlock()->id();
auto condition_block_of_0 = loop_0_->FindConditionBlock();
// Find the blocks whose branches need updating.
auto first_block_of_1 = &*(++containing_function_->FindBlock(condition_1));
auto last_block_of_1 = &*(--containing_function_->FindBlock(continue_1));
auto last_block_of_0 = &*(--containing_function_->FindBlock(continue_0));
// Update the branch for |last_block_of_loop_0| to go to |first_block_of_1|.
last_block_of_0->ForEachSuccessorLabel(
[first_block_of_1](uint32_t* succ) { *succ = first_block_of_1->id(); });
// Update the branch for the |last_block_of_loop_1| to go to the continue
// block of |loop_0_|.
last_block_of_1->ForEachSuccessorLabel(
[this](uint32_t* succ) { *succ = loop_0_->GetContinueBlock()->id(); });
// Update merge block id in the header of |loop_0_| to the merge block of
// |loop_1_|.
loop_0_->GetHeaderBlock()->ForEachInst([this](ir::Instruction* inst) {
if (inst->opcode() == SpvOpLoopMerge) {
inst->SetInOperand(0, {loop_1_->GetMergeBlock()->id()});
}
});
// Update condition branch target in |loop_0_| to the merge block of
// |loop_1_|.
condition_block_of_0->ForEachInst([this](ir::Instruction* inst) {
if (inst->opcode() == SpvOpBranchConditional) {
auto loop_0_merge_block_id = loop_0_->GetMergeBlock()->id();
if (inst->GetSingleWordInOperand(1) == loop_0_merge_block_id) {
inst->SetInOperand(1, {loop_1_->GetMergeBlock()->id()});
} else {
inst->SetInOperand(2, {loop_1_->GetMergeBlock()->id()});
}
}
});
// Move OpPhi instructions not corresponding to the induction variable from
// the header of |loop_1_| to the header of |loop_0_|.
std::vector<ir::Instruction*> instructions_to_move{};
for (auto& instruction : *loop_1_->GetHeaderBlock()) {
if (instruction.opcode() == SpvOpPhi && &instruction != induction_1_) {
instructions_to_move.push_back(&instruction);
}
}
for (auto& it : instructions_to_move) {
it->RemoveFromList();
it->InsertBefore(induction_0_);
}
// Update the OpPhi parents to the correct blocks in |loop_0_|.
loop_0_->GetHeaderBlock()->ForEachPhiInst([this](ir::Instruction* i) {
ReplacePhiParentWith(i, loop_1_->GetPreHeaderBlock()->id(),
loop_0_->GetPreHeaderBlock()->id());
ReplacePhiParentWith(i, loop_1_->GetContinueBlock()->id(),
loop_0_->GetContinueBlock()->id());
});
// Update instruction to block mapping & DefUseManager.
for (auto& phi_instruction : instructions_to_move) {
context_->set_instr_block(phi_instruction, loop_0_->GetHeaderBlock());
context_->get_def_use_mgr()->AnalyzeInstUse(phi_instruction);
}
// Replace the uses of the induction variable of |loop_1_| with that the
// induction variable of |loop_0_|.
context_->ReplaceAllUsesWith(induction_1_->result_id(),
induction_0_->result_id());
// Replace LCSSA OpPhi in merge block of |loop_0_|.
loop_0_->GetMergeBlock()->ForEachPhiInst(
[this](ir::Instruction* instruction) {
context_->ReplaceAllUsesWith(instruction->result_id(),
instruction->GetSingleWordInOperand(0));
});
// Update LCSSA OpPhi in merge block of |loop_1_|.
loop_1_->GetMergeBlock()->ForEachPhiInst(
[condition_block_of_0](ir::Instruction* instruction) {
instruction->SetInOperand(1, {condition_block_of_0->id()});
});
// Move the continue block of |loop_0_| after the last block of |loop_1_|.
containing_function_->MoveBasicBlockToAfter(continue_0, last_block_of_1);
// Gather all instructions to be killed from |loop_1_| (induction variable
// initialisation, header, condition and continue blocks).
std::vector<ir::Instruction*> instr_to_delete{};
AddInstructionsInBlock(&instr_to_delete, loop_1_->GetPreHeaderBlock());
AddInstructionsInBlock(&instr_to_delete, loop_1_->GetHeaderBlock());
AddInstructionsInBlock(&instr_to_delete, loop_1_->FindConditionBlock());
AddInstructionsInBlock(&instr_to_delete, loop_1_->GetContinueBlock());
// There was an additional empty block between the loops, kill that too.
if (loop_0_->GetMergeBlock() != loop_1_->GetPreHeaderBlock()) {
AddInstructionsInBlock(&instr_to_delete, loop_0_->GetMergeBlock());
}
// Update the CFG, so it wouldn't need invalidating.
auto cfg = context_->cfg();
cfg->ForgetBlock(loop_1_->GetPreHeaderBlock());
cfg->ForgetBlock(loop_1_->GetHeaderBlock());
cfg->ForgetBlock(loop_1_->FindConditionBlock());
cfg->ForgetBlock(loop_1_->GetContinueBlock());
if (loop_0_->GetMergeBlock() != loop_1_->GetPreHeaderBlock()) {
cfg->ForgetBlock(loop_0_->GetMergeBlock());
}
cfg->RemoveEdge(last_block_of_0->id(), loop_0_->GetContinueBlock()->id());
cfg->AddEdge(last_block_of_0->id(), first_block_of_1->id());
cfg->AddEdge(last_block_of_1->id(), loop_0_->GetContinueBlock()->id());
cfg->AddEdge(loop_0_->GetContinueBlock()->id(),
loop_1_->GetHeaderBlock()->id());
cfg->AddEdge(condition_block_of_0->id(), loop_1_->GetMergeBlock()->id());
// Update DefUseManager.
auto def_use_mgr = context_->get_def_use_mgr();
// Uses of labels that are in updated branches need analysing.
def_use_mgr->AnalyzeInstUse(last_block_of_0->terminator());
def_use_mgr->AnalyzeInstUse(last_block_of_1->terminator());
def_use_mgr->AnalyzeInstUse(loop_0_->GetHeaderBlock()->GetLoopMergeInst());
def_use_mgr->AnalyzeInstUse(condition_block_of_0->terminator());
// Update the LoopDescriptor, so it wouldn't need invalidating.
auto ld = context_->GetLoopDescriptor(containing_function_);
// Create a copy, so the iterator wouldn't be invalidated.
std::vector<ir::Loop*> loops_to_add_remove{};
for (auto child_loop : *loop_1_) {
loops_to_add_remove.push_back(child_loop);
}
for (auto child_loop : loops_to_add_remove) {
loop_1_->RemoveChildLoop(child_loop);
loop_0_->AddNestedLoop(child_loop);
}
auto loop_1_blocks = loop_1_->GetBlocks();
for (auto block : loop_1_blocks) {
loop_1_->RemoveBasicBlock(block);
if (block != header_1 && block != condition_1 && block != continue_1) {
loop_0_->AddBasicBlock(block);
if ((*ld)[block] == loop_1_) {
ld->SetBasicBlockToLoop(block, loop_0_);
}
}
if ((*ld)[block] == loop_1_) {
ld->ForgetBasicBlock(block);
}
}
loop_1_->RemoveBasicBlock(loop_1_->GetPreHeaderBlock()->id());
ld->ForgetBasicBlock(loop_1_->GetPreHeaderBlock()->id());
if (loop_0_->GetMergeBlock() != loop_1_->GetPreHeaderBlock()) {
loop_0_->RemoveBasicBlock(loop_0_->GetMergeBlock()->id());
ld->ForgetBasicBlock(loop_0_->GetMergeBlock()->id());
}
loop_0_->SetMergeBlock(loop_1_->GetMergeBlock());
loop_1_->ClearBlocks();
ld->RemoveLoop(loop_1_);
// Kill unnessecary instructions and remove all empty blocks.
for (auto inst : instr_to_delete) {
context_->KillInst(inst);
}
containing_function_->RemoveEmptyBlocks();
// Invalidate analyses.
context_->InvalidateAnalysesExceptFor(
ir::IRContext::Analysis::kAnalysisInstrToBlockMapping |
ir::IRContext::Analysis::kAnalysisLoopAnalysis |
ir::IRContext::Analysis::kAnalysisDefUse |
ir::IRContext::Analysis::kAnalysisCFG);
}
} // namespace opt
} // namespace spvtools