SPIRV-Tools/source/util/ilist.h
Steven Perron b3daa93b46 Change merge return pass to handle structured cfg.
We are seeing shaders that have multiple returns in a functions.  These
functions must get inlined for legalization purposes; however, the
inliner does not know how to inline functions that have multiple
returns.

The solution we will go with it to improve the merge return pass to
handle structured control flow.

Note that the merge return pass will assume the cfg has been cleanedup
by dead branch elimination.

Fixes #857.
2018-03-19 13:49:04 -04:00

366 lines
11 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPT_ILIST_H_
#define LIBSPIRV_OPT_ILIST_H_
#include <cassert>
#include <memory>
#include <type_traits>
#include <vector>
#include "ilist_node.h"
namespace spvtools {
namespace utils {
// An IntrusiveList is a generic implementation of a doubly-linked list. The
// intended convention for using this container is:
//
// class Node : public IntrusiveNodeBase<Node> {
// // Note that "Node", the class being defined is the template.
// // Must have a default constructor accessible to List.
// // Add whatever data is needed in the node
// };
//
// using List = IntrusiveList<Node>;
//
// You can also inherit from IntrusiveList instead of a typedef if you want to
// add more functionality.
//
// The condition on the template for IntrusiveNodeBase is there to add some type
// checking to the container. The compiler will still allow inserting elements
// of type IntrusiveNodeBase<Node>, but that would be an error. This assumption
// allows NextNode and PreviousNode to return pointers to Node, and casting will
// not be required by the user.
template <class NodeType>
class IntrusiveList {
public:
static_assert(
std::is_base_of<IntrusiveNodeBase<NodeType>, NodeType>::value,
"The type from the node must be derived from IntrusiveNodeBase, with "
"itself in the template.");
// Creates an empty list.
inline IntrusiveList();
// Moves the contents of the given list to the list being constructed.
IntrusiveList(IntrusiveList&&);
// Destorys the list. Note that the elements of the list will not be deleted,
// but they will be removed from the list.
virtual ~IntrusiveList();
// Moves all of the elements in the list on the RHS to the list on the LHS.
IntrusiveList& operator=(IntrusiveList&&);
// Basetype for iterators so an IntrusiveList can be traversed like STL
// containers.
template <class T>
class iterator_template {
public:
iterator_template(const iterator_template& i) : node_(i.node_) {}
iterator_template& operator++() {
node_ = node_->next_node_;
return *this;
}
iterator_template& operator--() {
node_ = node_->previous_node_;
return *this;
}
iterator_template& operator=(const iterator_template& i) {
node_ = i.node_;
return *this;
}
T& operator*() const { return *node_; }
T* operator->() const { return node_; }
friend inline bool operator==(const iterator_template& lhs,
const iterator_template& rhs) {
return lhs.node_ == rhs.node_;
}
friend inline bool operator!=(const iterator_template& lhs,
const iterator_template& rhs) {
return !(lhs == rhs);
}
// Moves the nodes in |list| to the list that |this| points to. The
// positions of the nodes will be immediately before the element pointed to
// by the iterator. The return value will be an iterator pointing to the
// first of the newly inserted elements.
iterator_template MoveBefore(IntrusiveList* list) {
if (list->empty()) return *this;
NodeType* first_node = list->sentinel_.next_node_;
NodeType* last_node = list->sentinel_.previous_node_;
this->node_->previous_node_->next_node_ = first_node;
first_node->previous_node_ = this->node_->previous_node_;
last_node->next_node_ = this->node_;
this->node_->previous_node_ = last_node;
list->sentinel_.next_node_ = &list->sentinel_;
list->sentinel_.previous_node_ = &list->sentinel_;
return iterator(first_node);
}
// Define standard iterator types needs so this class can be
// used with <algorithms>.
using iterator_category = std::bidirectional_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using size_type = size_t;
protected:
iterator_template() = delete;
inline iterator_template(T* node) { node_ = node; }
T* node_;
friend IntrusiveList;
};
using iterator = iterator_template<NodeType>;
using const_iterator = iterator_template<const NodeType>;
// Various types of iterators for the start (begin) and one past the end (end)
// of the list.
//
// Decrementing |end()| iterator will give and iterator pointing to the last
// element in the list, if one exists.
//
// Incrementing |end()| iterator will give |begin()|.
//
// Decrementing |begin()| will give |end()|.
//
// TODO: Not marking these functions as noexcept because Visual Studio 2013
// does not support it. When we no longer care about that compiler, we should
// mark these as noexcept.
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;
// Appends |node| to the end of the list. If |node| is already in a list, it
// will be removed from that list first.
void push_back(NodeType* node);
// Returns true if the list is empty.
bool empty() const;
// Makes the current list empty.
inline void clear();
// Returns references to the first or last element in the list. It is an
// error to call these functions on an empty list.
NodeType& front();
NodeType& back();
const NodeType& front() const;
const NodeType& back() const;
// Transfers [|first|, |last|) from |other| into the list at |where|.
//
// If |other| is |this|, no change is made.
void Splice(iterator where, IntrusiveList<NodeType>* other, iterator first,
iterator last);
protected:
// Doing a deep copy of the list does not make sense if the list does not own
// the data. It is not clear who will own the newly created data. Making
// copies illegal for that reason.
IntrusiveList(const IntrusiveList&) = delete;
IntrusiveList& operator=(const IntrusiveList&) = delete;
// This function will assert if it finds the list containing |node| is not in
// a valid state.
static void Check(NodeType* node);
// A special node used to represent both the start and end of the list,
// without being part of the list.
NodeType sentinel_;
};
// Implementation of IntrusiveList
template <class NodeType>
inline IntrusiveList<NodeType>::IntrusiveList() : sentinel_() {
sentinel_.next_node_ = &sentinel_;
sentinel_.previous_node_ = &sentinel_;
sentinel_.is_sentinel_ = true;
}
template <class NodeType>
IntrusiveList<NodeType>::IntrusiveList(IntrusiveList&& list) : sentinel_() {
sentinel_.next_node_ = &sentinel_;
sentinel_.previous_node_ = &sentinel_;
sentinel_.is_sentinel_ = true;
list.sentinel_.ReplaceWith(&sentinel_);
}
template <class NodeType>
IntrusiveList<NodeType>::~IntrusiveList() {
clear();
}
template <class NodeType>
IntrusiveList<NodeType>& IntrusiveList<NodeType>::operator=(
IntrusiveList<NodeType>&& list) {
list.sentinel_.ReplaceWith(&sentinel_);
return *this;
}
template <class NodeType>
inline typename IntrusiveList<NodeType>::iterator
IntrusiveList<NodeType>::begin() {
return iterator(sentinel_.next_node_);
}
template <class NodeType>
inline typename IntrusiveList<NodeType>::iterator
IntrusiveList<NodeType>::end() {
return iterator(&sentinel_);
}
template <class NodeType>
inline typename IntrusiveList<NodeType>::const_iterator
IntrusiveList<NodeType>::begin() const {
return const_iterator(sentinel_.next_node_);
}
template <class NodeType>
inline typename IntrusiveList<NodeType>::const_iterator
IntrusiveList<NodeType>::end() const {
return const_iterator(&sentinel_);
}
template <class NodeType>
inline typename IntrusiveList<NodeType>::const_iterator
IntrusiveList<NodeType>::cbegin() const {
return const_iterator(sentinel_.next_node_);
}
template <class NodeType>
inline typename IntrusiveList<NodeType>::const_iterator
IntrusiveList<NodeType>::cend() const {
return const_iterator(&sentinel_);
}
template <class NodeType>
void IntrusiveList<NodeType>::push_back(NodeType* node) {
node->InsertBefore(&sentinel_);
}
template <class NodeType>
bool IntrusiveList<NodeType>::empty() const {
return sentinel_.NextNode() == nullptr;
}
template <class NodeType>
void IntrusiveList<NodeType>::clear() {
while (!empty()) {
front().RemoveFromList();
}
}
template <class NodeType>
NodeType& IntrusiveList<NodeType>::front() {
NodeType* node = sentinel_.NextNode();
assert(node != nullptr && "Can't get the front of an empty list.");
return *node;
}
template <class NodeType>
NodeType& IntrusiveList<NodeType>::back() {
NodeType* node = sentinel_.PreviousNode();
assert(node != nullptr && "Can't get the back of an empty list.");
return *node;
}
template <class NodeType>
const NodeType& IntrusiveList<NodeType>::front() const {
NodeType* node = sentinel_.NextNode();
assert(node != nullptr && "Can't get the front of an empty list.");
return *node;
}
template <class NodeType>
const NodeType& IntrusiveList<NodeType>::back() const {
NodeType* node = sentinel_.PreviousNode();
assert(node != nullptr && "Can't get the back of an empty list.");
return *node;
}
template <class NodeType>
void IntrusiveList<NodeType>::Splice(iterator where,
IntrusiveList<NodeType>* other,
iterator first, iterator last) {
if (first == last) return;
if (other == this) return;
NodeType* first_prev = first.node_->previous_node_;
NodeType* where_next = where.node_->next_node_;
// Attach first.
where.node_->next_node_ = first.node_;
first.node_->previous_node_ = where.node_;
// Attach last.
where_next->previous_node_ = last.node_->previous_node_;
last.node_->previous_node_->next_node_ = where_next;
// Fixup other.
first_prev->next_node_ = last.node_;
last.node_->previous_node_ = first_prev;
}
template <class NodeType>
void IntrusiveList<NodeType>::Check(NodeType* start) {
int sentinel_count = 0;
NodeType* p = start;
do {
assert(p != nullptr);
assert(p->next_node_->previous_node_ == p);
assert(p->previous_node_->next_node_ == p);
if (p->is_sentinel_) sentinel_count++;
p = p->next_node_;
} while (p != start);
assert(sentinel_count == 1 && "List should have exactly 1 sentinel node.");
p = start;
do {
assert(p != nullptr);
assert(p->previous_node_->next_node_ == p);
assert(p->next_node_->previous_node_ == p);
if (p->is_sentinel_) sentinel_count++;
p = p->previous_node_;
} while (p != start);
}
} // namespace utils
} // namespace spvtools
#endif // LIBSPIRV_OPT_ILIST_H_