SPIRV-Tools/source/opt/constants.cpp
alan-baker 3726b500b1
Treat access chain indexes as signed in SROA (#2776)
Fixes #2768

* In scalar replacement, interpret access chain indexes as signed counts
* Use Constant::GetSignExtendedValue and Constant::GetZeroExtendedValue
where appropriate
* new tests
2019-07-31 15:39:33 -04:00

416 lines
14 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/constants.h"
#include <unordered_map>
#include <vector>
#include "source/opt/ir_context.h"
namespace spvtools {
namespace opt {
namespace analysis {
float Constant::GetFloat() const {
assert(type()->AsFloat() != nullptr && type()->AsFloat()->width() == 32);
if (const FloatConstant* fc = AsFloatConstant()) {
return fc->GetFloatValue();
} else {
assert(AsNullConstant() && "Must be a floating point constant.");
return 0.0f;
}
}
double Constant::GetDouble() const {
assert(type()->AsFloat() != nullptr && type()->AsFloat()->width() == 64);
if (const FloatConstant* fc = AsFloatConstant()) {
return fc->GetDoubleValue();
} else {
assert(AsNullConstant() && "Must be a floating point constant.");
return 0.0;
}
}
double Constant::GetValueAsDouble() const {
assert(type()->AsFloat() != nullptr);
if (type()->AsFloat()->width() == 32) {
return GetFloat();
} else {
assert(type()->AsFloat()->width() == 64);
return GetDouble();
}
}
uint32_t Constant::GetU32() const {
assert(type()->AsInteger() != nullptr);
assert(type()->AsInteger()->width() == 32);
if (const IntConstant* ic = AsIntConstant()) {
return ic->GetU32BitValue();
} else {
assert(AsNullConstant() && "Must be an integer constant.");
return 0u;
}
}
uint64_t Constant::GetU64() const {
assert(type()->AsInteger() != nullptr);
assert(type()->AsInteger()->width() == 64);
if (const IntConstant* ic = AsIntConstant()) {
return ic->GetU64BitValue();
} else {
assert(AsNullConstant() && "Must be an integer constant.");
return 0u;
}
}
int32_t Constant::GetS32() const {
assert(type()->AsInteger() != nullptr);
assert(type()->AsInteger()->width() == 32);
if (const IntConstant* ic = AsIntConstant()) {
return ic->GetS32BitValue();
} else {
assert(AsNullConstant() && "Must be an integer constant.");
return 0;
}
}
int64_t Constant::GetS64() const {
assert(type()->AsInteger() != nullptr);
assert(type()->AsInteger()->width() == 64);
if (const IntConstant* ic = AsIntConstant()) {
return ic->GetS64BitValue();
} else {
assert(AsNullConstant() && "Must be an integer constant.");
return 0;
}
}
uint64_t Constant::GetZeroExtendedValue() const {
const auto* int_type = type()->AsInteger();
assert(int_type != nullptr);
const auto width = int_type->width();
assert(width <= 64);
uint64_t value = 0;
if (const IntConstant* ic = AsIntConstant()) {
if (width <= 32) {
value = ic->GetU32BitValue();
} else {
value = ic->GetU64BitValue();
}
} else {
assert(AsNullConstant() && "Must be an integer constant.");
}
return value;
}
int64_t Constant::GetSignExtendedValue() const {
const auto* int_type = type()->AsInteger();
assert(int_type != nullptr);
const auto width = int_type->width();
assert(width <= 64);
int64_t value = 0;
if (const IntConstant* ic = AsIntConstant()) {
if (width <= 32) {
// Let the C++ compiler do the sign extension.
value = int64_t(ic->GetS32BitValue());
} else {
value = ic->GetS64BitValue();
}
} else {
assert(AsNullConstant() && "Must be an integer constant.");
}
return value;
}
ConstantManager::ConstantManager(IRContext* ctx) : ctx_(ctx) {
// Populate the constant table with values from constant declarations in the
// module. The values of each OpConstant declaration is the identity
// assignment (i.e., each constant is its own value).
for (const auto& inst : ctx_->module()->GetConstants()) {
MapInst(inst);
}
}
Type* ConstantManager::GetType(const Instruction* inst) const {
return context()->get_type_mgr()->GetType(inst->type_id());
}
std::vector<const Constant*> ConstantManager::GetOperandConstants(
Instruction* inst) const {
std::vector<const Constant*> constants;
for (uint32_t i = 0; i < inst->NumInOperands(); i++) {
const Operand* operand = &inst->GetInOperand(i);
if (operand->type != SPV_OPERAND_TYPE_ID) {
constants.push_back(nullptr);
} else {
uint32_t id = operand->words[0];
const analysis::Constant* constant = FindDeclaredConstant(id);
constants.push_back(constant);
}
}
return constants;
}
uint32_t ConstantManager::FindDeclaredConstant(const Constant* c,
uint32_t type_id) const {
c = FindConstant(c);
if (c == nullptr) {
return 0;
}
for (auto range = const_val_to_id_.equal_range(c);
range.first != range.second; ++range.first) {
Instruction* const_def =
context()->get_def_use_mgr()->GetDef(range.first->second);
if (type_id == 0 || const_def->type_id() == type_id) {
return range.first->second;
}
}
return 0;
}
std::vector<const Constant*> ConstantManager::GetConstantsFromIds(
const std::vector<uint32_t>& ids) const {
std::vector<const Constant*> constants;
for (uint32_t id : ids) {
if (const Constant* c = FindDeclaredConstant(id)) {
constants.push_back(c);
} else {
return {};
}
}
return constants;
}
Instruction* ConstantManager::BuildInstructionAndAddToModule(
const Constant* new_const, Module::inst_iterator* pos, uint32_t type_id) {
// TODO(1841): Handle id overflow.
uint32_t new_id = context()->TakeNextId();
if (new_id == 0) {
return nullptr;
}
auto new_inst = CreateInstruction(new_id, new_const, type_id);
if (!new_inst) {
return nullptr;
}
auto* new_inst_ptr = new_inst.get();
*pos = pos->InsertBefore(std::move(new_inst));
++(*pos);
context()->get_def_use_mgr()->AnalyzeInstDefUse(new_inst_ptr);
MapConstantToInst(new_const, new_inst_ptr);
return new_inst_ptr;
}
Instruction* ConstantManager::GetDefiningInstruction(
const Constant* c, uint32_t type_id, Module::inst_iterator* pos) {
uint32_t decl_id = FindDeclaredConstant(c, type_id);
if (decl_id == 0) {
auto iter = context()->types_values_end();
if (pos == nullptr) pos = &iter;
return BuildInstructionAndAddToModule(c, pos, type_id);
} else {
auto def = context()->get_def_use_mgr()->GetDef(decl_id);
assert(def != nullptr);
assert((type_id == 0 || def->type_id() == type_id) &&
"This constant already has an instruction with a different type.");
return def;
}
}
std::unique_ptr<Constant> ConstantManager::CreateConstant(
const Type* type, const std::vector<uint32_t>& literal_words_or_ids) const {
if (literal_words_or_ids.size() == 0) {
// Constant declared with OpConstantNull
return MakeUnique<NullConstant>(type);
} else if (auto* bt = type->AsBool()) {
assert(literal_words_or_ids.size() == 1 &&
"Bool constant should be declared with one operand");
return MakeUnique<BoolConstant>(bt, literal_words_or_ids.front());
} else if (auto* it = type->AsInteger()) {
return MakeUnique<IntConstant>(it, literal_words_or_ids);
} else if (auto* ft = type->AsFloat()) {
return MakeUnique<FloatConstant>(ft, literal_words_or_ids);
} else if (auto* vt = type->AsVector()) {
auto components = GetConstantsFromIds(literal_words_or_ids);
if (components.empty()) return nullptr;
// All components of VectorConstant must be of type Bool, Integer or Float.
if (!std::all_of(components.begin(), components.end(),
[](const Constant* c) {
if (c->type()->AsBool() || c->type()->AsInteger() ||
c->type()->AsFloat()) {
return true;
} else {
return false;
}
}))
return nullptr;
// All components of VectorConstant must be in the same type.
const auto* component_type = components.front()->type();
if (!std::all_of(components.begin(), components.end(),
[&component_type](const Constant* c) {
if (c->type() == component_type) return true;
return false;
}))
return nullptr;
return MakeUnique<VectorConstant>(vt, components);
} else if (auto* mt = type->AsMatrix()) {
auto components = GetConstantsFromIds(literal_words_or_ids);
if (components.empty()) return nullptr;
return MakeUnique<MatrixConstant>(mt, components);
} else if (auto* st = type->AsStruct()) {
auto components = GetConstantsFromIds(literal_words_or_ids);
if (components.empty()) return nullptr;
return MakeUnique<StructConstant>(st, components);
} else if (auto* at = type->AsArray()) {
auto components = GetConstantsFromIds(literal_words_or_ids);
if (components.empty()) return nullptr;
return MakeUnique<ArrayConstant>(at, components);
} else {
return nullptr;
}
}
const Constant* ConstantManager::GetConstantFromInst(const Instruction* inst) {
std::vector<uint32_t> literal_words_or_ids;
// Collect the constant defining literals or component ids.
for (uint32_t i = 0; i < inst->NumInOperands(); i++) {
literal_words_or_ids.insert(literal_words_or_ids.end(),
inst->GetInOperand(i).words.begin(),
inst->GetInOperand(i).words.end());
}
switch (inst->opcode()) {
// OpConstant{True|False} have the value embedded in the opcode. So they
// are not handled by the for-loop above. Here we add the value explicitly.
case SpvOp::SpvOpConstantTrue:
literal_words_or_ids.push_back(true);
break;
case SpvOp::SpvOpConstantFalse:
literal_words_or_ids.push_back(false);
break;
case SpvOp::SpvOpConstantNull:
case SpvOp::SpvOpConstant:
case SpvOp::SpvOpConstantComposite:
case SpvOp::SpvOpSpecConstantComposite:
break;
default:
return nullptr;
}
return GetConstant(GetType(inst), literal_words_or_ids);
}
std::unique_ptr<Instruction> ConstantManager::CreateInstruction(
uint32_t id, const Constant* c, uint32_t type_id) const {
uint32_t type =
(type_id == 0) ? context()->get_type_mgr()->GetId(c->type()) : type_id;
if (c->AsNullConstant()) {
return MakeUnique<Instruction>(context(), SpvOp::SpvOpConstantNull, type,
id, std::initializer_list<Operand>{});
} else if (const BoolConstant* bc = c->AsBoolConstant()) {
return MakeUnique<Instruction>(
context(),
bc->value() ? SpvOp::SpvOpConstantTrue : SpvOp::SpvOpConstantFalse,
type, id, std::initializer_list<Operand>{});
} else if (const IntConstant* ic = c->AsIntConstant()) {
return MakeUnique<Instruction>(
context(), SpvOp::SpvOpConstant, type, id,
std::initializer_list<Operand>{
Operand(spv_operand_type_t::SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER,
ic->words())});
} else if (const FloatConstant* fc = c->AsFloatConstant()) {
return MakeUnique<Instruction>(
context(), SpvOp::SpvOpConstant, type, id,
std::initializer_list<Operand>{
Operand(spv_operand_type_t::SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER,
fc->words())});
} else if (const CompositeConstant* cc = c->AsCompositeConstant()) {
return CreateCompositeInstruction(id, cc, type_id);
} else {
return nullptr;
}
}
std::unique_ptr<Instruction> ConstantManager::CreateCompositeInstruction(
uint32_t result_id, const CompositeConstant* cc, uint32_t type_id) const {
std::vector<Operand> operands;
Instruction* type_inst = context()->get_def_use_mgr()->GetDef(type_id);
uint32_t component_index = 0;
for (const Constant* component_const : cc->GetComponents()) {
uint32_t component_type_id = 0;
if (type_inst && type_inst->opcode() == SpvOpTypeStruct) {
component_type_id = type_inst->GetSingleWordInOperand(component_index);
} else if (type_inst && type_inst->opcode() == SpvOpTypeArray) {
component_type_id = type_inst->GetSingleWordInOperand(0);
}
uint32_t id = FindDeclaredConstant(component_const, component_type_id);
if (id == 0) {
// Cannot get the id of the component constant, while all components
// should have been added to the module prior to the composite constant.
// Cannot create OpConstantComposite instruction in this case.
return nullptr;
}
operands.emplace_back(spv_operand_type_t::SPV_OPERAND_TYPE_ID,
std::initializer_list<uint32_t>{id});
component_index++;
}
uint32_t type =
(type_id == 0) ? context()->get_type_mgr()->GetId(cc->type()) : type_id;
return MakeUnique<Instruction>(context(), SpvOp::SpvOpConstantComposite, type,
result_id, std::move(operands));
}
const Constant* ConstantManager::GetConstant(
const Type* type, const std::vector<uint32_t>& literal_words_or_ids) {
auto cst = CreateConstant(type, literal_words_or_ids);
return cst ? RegisterConstant(std::move(cst)) : nullptr;
}
std::vector<const analysis::Constant*> Constant::GetVectorComponents(
analysis::ConstantManager* const_mgr) const {
std::vector<const analysis::Constant*> components;
const analysis::VectorConstant* a = this->AsVectorConstant();
const analysis::Vector* vector_type = this->type()->AsVector();
assert(vector_type != nullptr);
if (a != nullptr) {
for (uint32_t i = 0; i < vector_type->element_count(); ++i) {
components.push_back(a->GetComponents()[i]);
}
} else {
const analysis::Type* element_type = vector_type->element_type();
const analysis::Constant* element_null_const =
const_mgr->GetConstant(element_type, {});
for (uint32_t i = 0; i < vector_type->element_count(); ++i) {
components.push_back(element_null_const);
}
}
return components;
}
} // namespace analysis
} // namespace opt
} // namespace spvtools