SPIRV-Tools/source/opt/inline_pass.cpp
David Neto ceb1d4f2fd Avoid inlining calls to external functions
External functions don't have bodies to inline anyway.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/605
2017-03-31 10:36:58 -04:00

449 lines
17 KiB
C++

// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "inline_pass.h"
// Indices of operands in SPIR-V instructions
static const int kSpvEntryPointFunctionId = 1;
static const int kSpvFunctionCallFunctionId = 2;
static const int kSpvFunctionCallArgumentId = 3;
static const int kSpvReturnValueId = 0;
static const int kSpvTypePointerStorageClass = 1;
static const int kSpvTypePointerTypeId = 2;
namespace spvtools {
namespace opt {
uint32_t InlinePass::FindPointerToType(uint32_t type_id,
SpvStorageClass storage_class) {
ir::Module::inst_iterator type_itr = module_->types_values_begin();
for (; type_itr != module_->types_values_end(); ++type_itr) {
const ir::Instruction* type_inst = &*type_itr;
if (type_inst->opcode() == SpvOpTypePointer &&
type_inst->GetSingleWordOperand(kSpvTypePointerTypeId) == type_id &&
type_inst->GetSingleWordOperand(kSpvTypePointerStorageClass) ==
storage_class)
return type_inst->result_id();
}
return 0;
}
uint32_t InlinePass::AddPointerToType(uint32_t type_id,
SpvStorageClass storage_class) {
uint32_t resultId = TakeNextId();
std::unique_ptr<ir::Instruction> type_inst(new ir::Instruction(
SpvOpTypePointer, 0, resultId,
{{spv_operand_type_t::SPV_OPERAND_TYPE_STORAGE_CLASS,
{uint32_t(storage_class)}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {type_id}}}));
module_->AddType(std::move(type_inst));
return resultId;
}
void InlinePass::AddBranch(uint32_t label_id,
std::unique_ptr<ir::BasicBlock>* block_ptr) {
std::unique_ptr<ir::Instruction> newBranch(new ir::Instruction(
SpvOpBranch, 0, 0,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {label_id}}}));
(*block_ptr)->AddInstruction(std::move(newBranch));
}
void InlinePass::AddStore(uint32_t ptr_id, uint32_t val_id,
std::unique_ptr<ir::BasicBlock>* block_ptr) {
std::unique_ptr<ir::Instruction> newStore(new ir::Instruction(
SpvOpStore, 0, 0, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {ptr_id}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {val_id}}}));
(*block_ptr)->AddInstruction(std::move(newStore));
}
void InlinePass::AddLoad(uint32_t type_id, uint32_t resultId, uint32_t ptr_id,
std::unique_ptr<ir::BasicBlock>* block_ptr) {
std::unique_ptr<ir::Instruction> newLoad(new ir::Instruction(
SpvOpLoad, type_id, resultId,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {ptr_id}}}));
(*block_ptr)->AddInstruction(std::move(newLoad));
}
std::unique_ptr<ir::Instruction> InlinePass::NewLabel(uint32_t label_id) {
std::unique_ptr<ir::Instruction> newLabel(
new ir::Instruction(SpvOpLabel, 0, label_id, {}));
return newLabel;
}
void InlinePass::MapParams(
ir::Function* calleeFn,
ir::UptrVectorIterator<ir::Instruction> call_inst_itr,
std::unordered_map<uint32_t, uint32_t>* callee2caller) {
int param_idx = 0;
calleeFn->ForEachParam(
[&call_inst_itr, &param_idx, &callee2caller](const ir::Instruction* cpi) {
const uint32_t pid = cpi->result_id();
(*callee2caller)[pid] = call_inst_itr->GetSingleWordOperand(
kSpvFunctionCallArgumentId + param_idx);
param_idx++;
});
}
void InlinePass::CloneAndMapLocals(
ir::Function* calleeFn,
std::vector<std::unique_ptr<ir::Instruction>>* new_vars,
std::unordered_map<uint32_t, uint32_t>* callee2caller) {
auto callee_block_itr = calleeFn->begin();
auto callee_var_itr = callee_block_itr->begin();
while (callee_var_itr->opcode() == SpvOp::SpvOpVariable) {
std::unique_ptr<ir::Instruction> var_inst(
new ir::Instruction(*callee_var_itr));
uint32_t newId = TakeNextId();
var_inst->SetResultId(newId);
(*callee2caller)[callee_var_itr->result_id()] = newId;
new_vars->push_back(std::move(var_inst));
callee_var_itr++;
}
}
uint32_t InlinePass::CreateReturnVar(
ir::Function* calleeFn,
std::vector<std::unique_ptr<ir::Instruction>>* new_vars) {
uint32_t returnVarId = 0;
const uint32_t calleeTypeId = calleeFn->type_id();
const ir::Instruction* calleeType =
def_use_mgr_->id_to_defs().find(calleeTypeId)->second;
if (calleeType->opcode() != SpvOpTypeVoid) {
// Find or create ptr to callee return type.
uint32_t returnVarTypeId =
FindPointerToType(calleeTypeId, SpvStorageClassFunction);
if (returnVarTypeId == 0)
returnVarTypeId = AddPointerToType(calleeTypeId, SpvStorageClassFunction);
// Add return var to new function scope variables.
returnVarId = TakeNextId();
std::unique_ptr<ir::Instruction> var_inst(new ir::Instruction(
SpvOpVariable, returnVarTypeId, returnVarId,
{{spv_operand_type_t::SPV_OPERAND_TYPE_STORAGE_CLASS,
{SpvStorageClassFunction}}}));
new_vars->push_back(std::move(var_inst));
}
return returnVarId;
}
bool InlinePass::IsSameBlockOp(const ir::Instruction* inst) const {
return inst->opcode() == SpvOpSampledImage || inst->opcode() == SpvOpImage;
}
void InlinePass::CloneSameBlockOps(
std::unique_ptr<ir::Instruction>* inst,
std::unordered_map<uint32_t, uint32_t>* postCallSB,
std::unordered_map<uint32_t, ir::Instruction*>* preCallSB,
std::unique_ptr<ir::BasicBlock>* block_ptr) {
(*inst)
->ForEachInId([&postCallSB, &preCallSB, &block_ptr, this](uint32_t* iid) {
const auto mapItr = (*postCallSB).find(*iid);
if (mapItr == (*postCallSB).end()) {
const auto mapItr2 = (*preCallSB).find(*iid);
if (mapItr2 != (*preCallSB).end()) {
// Clone pre-call same-block ops, map result id.
const ir::Instruction* inInst = mapItr2->second;
std::unique_ptr<ir::Instruction> sb_inst(
new ir::Instruction(*inInst));
CloneSameBlockOps(&sb_inst, postCallSB, preCallSB, block_ptr);
const uint32_t rid = sb_inst->result_id();
const uint32_t nid = this->TakeNextId();
sb_inst->SetResultId(nid);
(*postCallSB)[rid] = nid;
*iid = nid;
(*block_ptr)->AddInstruction(std::move(sb_inst));
}
} else {
// Reset same-block op operand.
*iid = mapItr->second;
}
});
}
void InlinePass::GenInlineCode(
std::vector<std::unique_ptr<ir::BasicBlock>>* new_blocks,
std::vector<std::unique_ptr<ir::Instruction>>* new_vars,
ir::UptrVectorIterator<ir::Instruction> call_inst_itr,
ir::UptrVectorIterator<ir::BasicBlock> call_block_itr) {
// Map from all ids in the callee to their equivalent id in the caller
// as callee instructions are copied into caller.
std::unordered_map<uint32_t, uint32_t> callee2caller;
// Pre-call same-block insts
std::unordered_map<uint32_t, ir::Instruction*> preCallSB;
// Post-call same-block op ids
std::unordered_map<uint32_t, uint32_t> postCallSB;
ir::Function* calleeFn = id2function_[call_inst_itr->GetSingleWordOperand(
kSpvFunctionCallFunctionId)];
// Map parameters to actual arguments.
MapParams(calleeFn, call_inst_itr, &callee2caller);
// Define caller local variables for all callee variables and create map to
// them.
CloneAndMapLocals(calleeFn, new_vars, &callee2caller);
// Create return var if needed.
uint32_t returnVarId = CreateReturnVar(calleeFn, new_vars);
// Clone and map callee code. Copy caller block code to beginning of
// first block and end of last block.
bool prevInstWasReturn = false;
uint32_t returnLabelId = 0;
bool multiBlocks = false;
const uint32_t calleeTypeId = calleeFn->type_id();
std::unique_ptr<ir::BasicBlock> new_blk_ptr;
calleeFn->ForEachInst([&new_blocks, &callee2caller, &call_block_itr,
&call_inst_itr, &new_blk_ptr, &prevInstWasReturn,
&returnLabelId, &returnVarId, &calleeTypeId,
&multiBlocks, &postCallSB, &preCallSB, this](
const ir::Instruction* cpi) {
switch (cpi->opcode()) {
case SpvOpFunction:
case SpvOpFunctionParameter:
case SpvOpVariable:
// Already processed
break;
case SpvOpLabel: {
// If previous instruction was early return, insert branch
// instruction to return block.
if (prevInstWasReturn) {
if (returnLabelId == 0) returnLabelId = this->TakeNextId();
AddBranch(returnLabelId, &new_blk_ptr);
prevInstWasReturn = false;
}
// Finish current block (if it exists) and get label for next block.
uint32_t labelId;
bool firstBlock = false;
if (new_blk_ptr != nullptr) {
new_blocks->push_back(std::move(new_blk_ptr));
// If result id is already mapped, use it, otherwise get a new
// one.
const uint32_t rid = cpi->result_id();
const auto mapItr = callee2caller.find(rid);
labelId = (mapItr != callee2caller.end()) ? mapItr->second
: this->TakeNextId();
} else {
// First block needs to use label of original block
// but map callee label in case of phi reference.
labelId = call_block_itr->label_id();
callee2caller[cpi->result_id()] = labelId;
firstBlock = true;
}
// Create first/next block.
new_blk_ptr.reset(new ir::BasicBlock(NewLabel(labelId)));
if (firstBlock) {
// Copy contents of original caller block up to call instruction.
for (auto cii = call_block_itr->begin(); cii != call_inst_itr;
cii++) {
std::unique_ptr<ir::Instruction> cp_inst(new ir::Instruction(*cii));
// Remember same-block ops for possible regeneration.
if (IsSameBlockOp(&*cp_inst)) {
auto* sb_inst_ptr = cp_inst.get();
preCallSB[cp_inst->result_id()] = sb_inst_ptr;
}
new_blk_ptr->AddInstruction(std::move(cp_inst));
}
} else {
multiBlocks = true;
}
} break;
case SpvOpReturnValue: {
// Store return value to return variable.
assert(returnVarId != 0);
uint32_t valId = cpi->GetInOperand(kSpvReturnValueId).words[0];
const auto mapItr = callee2caller.find(valId);
if (mapItr != callee2caller.end()) {
valId = mapItr->second;
}
AddStore(returnVarId, valId, &new_blk_ptr);
// Remember we saw a return; if followed by a label, will need to
// insert branch.
prevInstWasReturn = true;
} break;
case SpvOpReturn: {
// Remember we saw a return; if followed by a label, will need to
// insert branch.
prevInstWasReturn = true;
} break;
case SpvOpFunctionEnd: {
// If there was an early return, create return label/block.
// If previous instruction was return, insert branch instruction
// to return block.
if (returnLabelId != 0) {
if (prevInstWasReturn) AddBranch(returnLabelId, &new_blk_ptr);
new_blocks->push_back(std::move(new_blk_ptr));
new_blk_ptr.reset(new ir::BasicBlock(NewLabel(returnLabelId)));
multiBlocks = true;
}
// Load return value into result id of call, if it exists.
if (returnVarId != 0) {
const uint32_t resId = call_inst_itr->result_id();
assert(resId != 0);
AddLoad(calleeTypeId, resId, returnVarId, &new_blk_ptr);
}
// Copy remaining instructions from caller block.
auto cii = call_inst_itr;
for (cii++; cii != call_block_itr->end(); cii++) {
std::unique_ptr<ir::Instruction> cp_inst(new ir::Instruction(*cii));
// If multiple blocks generated, regenerate any same-block
// instruction that has not been seen in this last block.
if (multiBlocks) {
CloneSameBlockOps(&cp_inst, &postCallSB, &preCallSB, &new_blk_ptr);
// Remember same-block ops in this block.
if (IsSameBlockOp(&*cp_inst)) {
const uint32_t rid = cp_inst->result_id();
postCallSB[rid] = rid;
}
}
new_blk_ptr->AddInstruction(std::move(cp_inst));
}
// Finalize inline code.
new_blocks->push_back(std::move(new_blk_ptr));
} break;
default: {
// Copy callee instruction and remap all input Ids.
std::unique_ptr<ir::Instruction> cp_inst(new ir::Instruction(*cpi));
cp_inst->ForEachInId([&callee2caller, &cpi, this](uint32_t* iid) {
const auto mapItr = callee2caller.find(*iid);
if (mapItr != callee2caller.end()) {
*iid = mapItr->second;
} else if (cpi->has_labels()) {
const ir::Instruction* inst =
def_use_mgr_->id_to_defs().find(*iid)->second;
if (inst->opcode() == SpvOpLabel) {
// Forward label reference. Allocate a new label id, map it,
// use it and check for it at each label.
const uint32_t nid = this->TakeNextId();
callee2caller[*iid] = nid;
*iid = nid;
}
}
});
// Map and reset result id.
const uint32_t rid = cp_inst->result_id();
if (rid != 0) {
const uint32_t nid = this->TakeNextId();
callee2caller[rid] = nid;
cp_inst->SetResultId(nid);
}
new_blk_ptr->AddInstruction(std::move(cp_inst));
} break;
}
});
// Update block map given replacement blocks.
for (auto& blk : *new_blocks) {
id2block_[blk->label_id()] = &*blk;
}
}
bool InlinePass::IsInlinableFunctionCall(const ir::Instruction* inst) {
if (inst->opcode() != SpvOp::SpvOpFunctionCall) return false;
const ir::Function* calleeFn =
id2function_[inst->GetSingleWordOperand(kSpvFunctionCallFunctionId)];
// We can only inline a function if it has blocks.
return calleeFn->cbegin() != calleeFn->cend();
}
bool InlinePass::Inline(ir::Function* func) {
bool modified = false;
// Using block iterators here because of block erasures and insertions.
for (auto bi = func->begin(); bi != func->end(); bi++) {
for (auto ii = bi->begin(); ii != bi->end();) {
if (IsInlinableFunctionCall(&*ii)) {
// Inline call.
std::vector<std::unique_ptr<ir::BasicBlock>> newBlocks;
std::vector<std::unique_ptr<ir::Instruction>> newVars;
GenInlineCode(&newBlocks, &newVars, ii, bi);
// Update phi functions in successor blocks if call block
// is replaced with more than one block.
if (newBlocks.size() > 1) {
const auto firstBlk = newBlocks.begin();
const auto lastBlk = newBlocks.end() - 1;
const uint32_t firstId = (*firstBlk)->label_id();
const uint32_t lastId = (*lastBlk)->label_id();
(*lastBlk)->ForEachSuccessorLabel(
[&firstId, &lastId, this](uint32_t succ) {
ir::BasicBlock* sbp = this->id2block_[succ];
sbp->ForEachPhiInst([&firstId, &lastId](ir::Instruction* phi) {
phi->ForEachInId([&firstId, &lastId](uint32_t* id) {
if (*id == firstId) *id = lastId;
});
});
});
}
// Replace old calling block with new block(s).
bi = bi.Erase();
bi = bi.InsertBefore(&newBlocks);
// Insert new function variables.
if (newVars.size() > 0) func->begin()->begin().InsertBefore(&newVars);
// Restart inlining at beginning of calling block.
ii = bi->begin();
modified = true;
} else {
ii++;
}
}
}
return modified;
}
void InlinePass::Initialize(ir::Module* module) {
def_use_mgr_.reset(new analysis::DefUseManager(consumer(), module));
// Initialize next unused Id.
next_id_ = module->id_bound();
// Save module.
module_ = module;
// Initialize function and block maps.
id2function_.clear();
id2block_.clear();
for (auto& fn : *module_) {
id2function_[fn.result_id()] = &fn;
for (auto& blk : fn) {
id2block_[blk.label_id()] = &blk;
}
}
};
Pass::Status InlinePass::ProcessImpl() {
// Do exhaustive inlining on each entry point function in module
bool modified = false;
for (auto& e : module_->entry_points()) {
ir::Function* fn =
id2function_[e.GetSingleWordOperand(kSpvEntryPointFunctionId)];
modified = modified || Inline(fn);
}
FinalizeNextId(module_);
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
InlinePass::InlinePass()
: module_(nullptr), def_use_mgr_(nullptr), next_id_(0) {}
Pass::Status InlinePass::Process(ir::Module* module) {
Initialize(module);
return ProcessImpl();
}
} // namespace opt
} // namespace spvtools