mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2025-01-14 18:30:19 +00:00
d6306537dc
Fixes #3177.
352 lines
15 KiB
C++
352 lines
15 KiB
C++
// Copyright (c) 2020 Google LLC
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "source/fuzz/fuzzer_pass_add_equation_instructions.h"
|
|
|
|
#include <vector>
|
|
|
|
#include "source/fuzz/fuzzer_util.h"
|
|
#include "source/fuzz/transformation_equation_instruction.h"
|
|
|
|
namespace spvtools {
|
|
namespace fuzz {
|
|
|
|
FuzzerPassAddEquationInstructions::FuzzerPassAddEquationInstructions(
|
|
opt::IRContext* ir_context, TransformationContext* transformation_context,
|
|
FuzzerContext* fuzzer_context,
|
|
protobufs::TransformationSequence* transformations)
|
|
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
|
|
transformations) {}
|
|
|
|
FuzzerPassAddEquationInstructions::~FuzzerPassAddEquationInstructions() =
|
|
default;
|
|
|
|
void FuzzerPassAddEquationInstructions::Apply() {
|
|
ForEachInstructionWithInstructionDescriptor(
|
|
[this](opt::Function* function, opt::BasicBlock* block,
|
|
opt::BasicBlock::iterator inst_it,
|
|
const protobufs::InstructionDescriptor& instruction_descriptor) {
|
|
if (!GetFuzzerContext()->ChoosePercentage(
|
|
GetFuzzerContext()->GetChanceOfAddingEquationInstruction())) {
|
|
return;
|
|
}
|
|
|
|
// Check that it is OK to add an equation instruction before the given
|
|
// instruction in principle - e.g. check that this does not lead to
|
|
// inserting before an OpVariable or OpPhi instruction. We use OpIAdd
|
|
// as an example opcode for this check, to be representative of *some*
|
|
// opcode that defines an equation, even though we may choose a
|
|
// different opcode below.
|
|
if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(SpvOpIAdd, inst_it)) {
|
|
return;
|
|
}
|
|
|
|
// Get all available instructions with result ids and types that are not
|
|
// OpUndef.
|
|
std::vector<opt::Instruction*> available_instructions =
|
|
FindAvailableInstructions(
|
|
function, block, inst_it,
|
|
[this](opt::IRContext*, opt::Instruction* instruction) -> bool {
|
|
return instruction->result_id() && instruction->type_id() &&
|
|
instruction->opcode() != SpvOpUndef &&
|
|
!GetTransformationContext()
|
|
->GetFactManager()
|
|
->IdIsIrrelevant(instruction->result_id());
|
|
});
|
|
|
|
// Try the opcodes for which we know how to make ids at random until
|
|
// something works.
|
|
std::vector<SpvOp> candidate_opcodes = {
|
|
SpvOpIAdd, SpvOpISub, SpvOpLogicalNot, SpvOpSNegate,
|
|
SpvOpConvertUToF, SpvOpConvertSToF, SpvOpBitcast};
|
|
do {
|
|
auto opcode =
|
|
GetFuzzerContext()->RemoveAtRandomIndex(&candidate_opcodes);
|
|
switch (opcode) {
|
|
case SpvOpConvertSToF:
|
|
case SpvOpConvertUToF: {
|
|
auto candidate_instructions =
|
|
GetIntegerInstructions(available_instructions);
|
|
|
|
if (candidate_instructions.empty()) {
|
|
break;
|
|
}
|
|
|
|
const auto* operand =
|
|
candidate_instructions[GetFuzzerContext()->RandomIndex(
|
|
candidate_instructions)];
|
|
|
|
const auto* type =
|
|
GetIRContext()->get_type_mgr()->GetType(operand->type_id());
|
|
assert(type && "Operand has invalid type");
|
|
|
|
// Make sure a result type exists in the module.
|
|
if (const auto* vector = type->AsVector()) {
|
|
FindOrCreateVectorType(
|
|
FindOrCreateFloatType(
|
|
vector->element_type()->AsInteger()->width()),
|
|
vector->element_count());
|
|
} else {
|
|
FindOrCreateFloatType(type->AsInteger()->width());
|
|
}
|
|
|
|
ApplyTransformation(TransformationEquationInstruction(
|
|
GetFuzzerContext()->GetFreshId(), opcode,
|
|
{operand->result_id()}, instruction_descriptor));
|
|
return;
|
|
}
|
|
case SpvOpBitcast: {
|
|
std::vector<const opt::Instruction*> candidate_instructions;
|
|
for (const auto* inst : available_instructions) {
|
|
const auto* type =
|
|
GetIRContext()->get_type_mgr()->GetType(inst->type_id());
|
|
assert(type && "Instruction has invalid type");
|
|
if ((type->AsVector() &&
|
|
(type->AsVector()->element_type()->AsInteger() ||
|
|
type->AsVector()->element_type()->AsFloat())) ||
|
|
type->AsInteger() || type->AsFloat()) {
|
|
// We support OpBitcast for only scalars or vectors of
|
|
// numerical type.
|
|
candidate_instructions.push_back(inst);
|
|
}
|
|
}
|
|
|
|
if (!candidate_instructions.empty()) {
|
|
const auto* operand_inst =
|
|
candidate_instructions[GetFuzzerContext()->RandomIndex(
|
|
candidate_instructions)];
|
|
const auto* operand_type =
|
|
GetIRContext()->get_type_mgr()->GetType(
|
|
operand_inst->type_id());
|
|
assert(operand_type && "Operand instruction has invalid type");
|
|
|
|
// Make sure a result type exists in the module.
|
|
//
|
|
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3539):
|
|
// The only constraint on the types of OpBitcast's parameters
|
|
// is that they must have the same number of bits. Consider
|
|
// improving the code below to support this in full.
|
|
if (const auto* vector = operand_type->AsVector()) {
|
|
uint32_t element_type_id;
|
|
if (const auto* int_type =
|
|
vector->element_type()->AsInteger()) {
|
|
element_type_id = FindOrCreateFloatType(int_type->width());
|
|
} else {
|
|
assert(vector->element_type()->AsFloat() &&
|
|
"Vector must have numerical elements");
|
|
element_type_id = FindOrCreateIntegerType(
|
|
vector->element_type()->AsFloat()->width(),
|
|
GetFuzzerContext()->ChooseEven());
|
|
}
|
|
|
|
FindOrCreateVectorType(element_type_id,
|
|
vector->element_count());
|
|
} else if (const auto* int_type = operand_type->AsInteger()) {
|
|
FindOrCreateFloatType(int_type->width());
|
|
} else {
|
|
assert(operand_type->AsFloat() &&
|
|
"Operand is not a scalar of numerical type");
|
|
FindOrCreateIntegerType(operand_type->AsFloat()->width(),
|
|
GetFuzzerContext()->ChooseEven());
|
|
}
|
|
|
|
ApplyTransformation(TransformationEquationInstruction(
|
|
GetFuzzerContext()->GetFreshId(), opcode,
|
|
{operand_inst->result_id()}, instruction_descriptor));
|
|
return;
|
|
}
|
|
} break;
|
|
case SpvOpIAdd:
|
|
case SpvOpISub: {
|
|
// Instructions of integer (scalar or vector) result type are
|
|
// suitable for these opcodes.
|
|
auto integer_instructions =
|
|
GetIntegerInstructions(available_instructions);
|
|
if (!integer_instructions.empty()) {
|
|
// There is at least one such instruction, so pick one at random
|
|
// for the LHS of an equation.
|
|
auto lhs = integer_instructions.at(
|
|
GetFuzzerContext()->RandomIndex(integer_instructions));
|
|
|
|
// For the RHS, we can use any instruction with an integer
|
|
// scalar/vector result type of the same number of components
|
|
// and the same bit-width for the underlying integer type.
|
|
|
|
// Work out the element count and bit-width.
|
|
auto lhs_type =
|
|
GetIRContext()->get_type_mgr()->GetType(lhs->type_id());
|
|
uint32_t lhs_element_count;
|
|
uint32_t lhs_bit_width;
|
|
if (lhs_type->AsVector()) {
|
|
lhs_element_count = lhs_type->AsVector()->element_count();
|
|
lhs_bit_width = lhs_type->AsVector()
|
|
->element_type()
|
|
->AsInteger()
|
|
->width();
|
|
} else {
|
|
lhs_element_count = 1;
|
|
lhs_bit_width = lhs_type->AsInteger()->width();
|
|
}
|
|
|
|
// Get all the instructions that match on element count and
|
|
// bit-width.
|
|
auto candidate_rhs_instructions = RestrictToElementBitWidth(
|
|
RestrictToVectorWidth(integer_instructions,
|
|
lhs_element_count),
|
|
lhs_bit_width);
|
|
|
|
// Choose a RHS instruction at random; there is guaranteed to
|
|
// be at least one choice as the LHS will be available.
|
|
auto rhs = candidate_rhs_instructions.at(
|
|
GetFuzzerContext()->RandomIndex(
|
|
candidate_rhs_instructions));
|
|
|
|
// Add the equation instruction.
|
|
ApplyTransformation(TransformationEquationInstruction(
|
|
GetFuzzerContext()->GetFreshId(), opcode,
|
|
{lhs->result_id(), rhs->result_id()},
|
|
instruction_descriptor));
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case SpvOpLogicalNot: {
|
|
// Choose any available instruction of boolean scalar/vector
|
|
// result type and equate its negation with a fresh id.
|
|
auto boolean_instructions =
|
|
GetBooleanInstructions(available_instructions);
|
|
if (!boolean_instructions.empty()) {
|
|
ApplyTransformation(TransformationEquationInstruction(
|
|
GetFuzzerContext()->GetFreshId(), opcode,
|
|
{boolean_instructions
|
|
.at(GetFuzzerContext()->RandomIndex(
|
|
boolean_instructions))
|
|
->result_id()},
|
|
instruction_descriptor));
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case SpvOpSNegate: {
|
|
// Similar to OpLogicalNot, but for signed integer negation.
|
|
auto integer_instructions =
|
|
GetIntegerInstructions(available_instructions);
|
|
if (!integer_instructions.empty()) {
|
|
ApplyTransformation(TransformationEquationInstruction(
|
|
GetFuzzerContext()->GetFreshId(), opcode,
|
|
{integer_instructions
|
|
.at(GetFuzzerContext()->RandomIndex(
|
|
integer_instructions))
|
|
->result_id()},
|
|
instruction_descriptor));
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
assert(false && "Unexpected opcode.");
|
|
break;
|
|
}
|
|
} while (!candidate_opcodes.empty());
|
|
// Reaching here means that we did not manage to apply any
|
|
// transformation at this point of the module.
|
|
});
|
|
}
|
|
|
|
std::vector<opt::Instruction*>
|
|
FuzzerPassAddEquationInstructions::GetIntegerInstructions(
|
|
const std::vector<opt::Instruction*>& instructions) const {
|
|
std::vector<opt::Instruction*> result;
|
|
for (auto& inst : instructions) {
|
|
auto type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
|
|
if (type->AsInteger() ||
|
|
(type->AsVector() && type->AsVector()->element_type()->AsInteger())) {
|
|
result.push_back(inst);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<opt::Instruction*>
|
|
FuzzerPassAddEquationInstructions::GetFloatInstructions(
|
|
const std::vector<opt::Instruction*>& instructions) const {
|
|
std::vector<opt::Instruction*> result;
|
|
for (auto& inst : instructions) {
|
|
auto type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
|
|
if (type->AsFloat() ||
|
|
(type->AsVector() && type->AsVector()->element_type()->AsFloat())) {
|
|
result.push_back(inst);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<opt::Instruction*>
|
|
FuzzerPassAddEquationInstructions::GetBooleanInstructions(
|
|
const std::vector<opt::Instruction*>& instructions) const {
|
|
std::vector<opt::Instruction*> result;
|
|
for (auto& inst : instructions) {
|
|
auto type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
|
|
if (type->AsBool() ||
|
|
(type->AsVector() && type->AsVector()->element_type()->AsBool())) {
|
|
result.push_back(inst);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<opt::Instruction*>
|
|
FuzzerPassAddEquationInstructions::RestrictToVectorWidth(
|
|
const std::vector<opt::Instruction*>& instructions,
|
|
uint32_t vector_width) const {
|
|
std::vector<opt::Instruction*> result;
|
|
for (auto& inst : instructions) {
|
|
auto type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
|
|
// Get the vector width of |inst|, which is 1 if |inst| is a scalar and is
|
|
// otherwise derived from its vector type.
|
|
uint32_t other_vector_width =
|
|
type->AsVector() ? type->AsVector()->element_count() : 1;
|
|
// Keep |inst| if the vector widths match.
|
|
if (vector_width == other_vector_width) {
|
|
result.push_back(inst);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<opt::Instruction*>
|
|
FuzzerPassAddEquationInstructions::RestrictToElementBitWidth(
|
|
const std::vector<opt::Instruction*>& instructions,
|
|
uint32_t bit_width) const {
|
|
std::vector<opt::Instruction*> result;
|
|
for (auto& inst : instructions) {
|
|
const opt::analysis::Type* type =
|
|
GetIRContext()->get_type_mgr()->GetType(inst->type_id());
|
|
if (type->AsVector()) {
|
|
type = type->AsVector()->element_type();
|
|
}
|
|
assert((type->AsInteger() || type->AsFloat()) &&
|
|
"Precondition: all input instructions must "
|
|
"have integer or float scalar or vector type.");
|
|
if ((type->AsInteger() && type->AsInteger()->width() == bit_width) ||
|
|
(type->AsFloat() && type->AsFloat()->width() == bit_width)) {
|
|
result.push_back(inst);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
} // namespace fuzz
|
|
} // namespace spvtools
|