SPIRV-Tools/source/val/validate_instruction.cpp
Steven Perron 19c07731fc
Change handling of unknown extentions in validtor. (#1951)
This commit will change the message for unknown extensions from an error
to a warning.

Code was added to limit the number of warning messages so that consummer
of the messages are not overwhelmed.  This is standard practice in
compilers.

Many other issues were found at while looking into this. They have been
documented in #1950.

Fixes http://crbug.com/875547.
2018-10-03 15:59:40 -04:00

525 lines
20 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Performs validation on instructions that appear inside of a SPIR-V block.
#include "source/val/validate.h"
#include <algorithm>
#include <cassert>
#include <sstream>
#include <string>
#include <vector>
#include "source/binary.h"
#include "source/diagnostic.h"
#include "source/enum_set.h"
#include "source/enum_string_mapping.h"
#include "source/extensions.h"
#include "source/opcode.h"
#include "source/operand.h"
#include "source/spirv_constant.h"
#include "source/spirv_definition.h"
#include "source/spirv_target_env.h"
#include "source/spirv_validator_options.h"
#include "source/util/string_utils.h"
#include "source/val/function.h"
#include "source/val/validation_state.h"
namespace spvtools {
namespace val {
namespace {
std::string ToString(const CapabilitySet& capabilities,
const AssemblyGrammar& grammar) {
std::stringstream ss;
capabilities.ForEach([&grammar, &ss](SpvCapability cap) {
spv_operand_desc desc;
if (SPV_SUCCESS ==
grammar.lookupOperand(SPV_OPERAND_TYPE_CAPABILITY, cap, &desc))
ss << desc->name << " ";
else
ss << cap << " ";
});
return ss.str();
}
// Returns capabilities that enable an opcode. An empty result is interpreted
// as no prohibition of use of the opcode. If the result is non-empty, then
// the opcode may only be used if at least one of the capabilities is specified
// by the module.
CapabilitySet EnablingCapabilitiesForOp(const ValidationState_t& state,
SpvOp opcode) {
// Exceptions for SPV_AMD_shader_ballot
switch (opcode) {
// Normally these would require Group capability
case SpvOpGroupIAddNonUniformAMD:
case SpvOpGroupFAddNonUniformAMD:
case SpvOpGroupFMinNonUniformAMD:
case SpvOpGroupUMinNonUniformAMD:
case SpvOpGroupSMinNonUniformAMD:
case SpvOpGroupFMaxNonUniformAMD:
case SpvOpGroupUMaxNonUniformAMD:
case SpvOpGroupSMaxNonUniformAMD:
if (state.HasExtension(kSPV_AMD_shader_ballot)) return CapabilitySet();
break;
default:
break;
}
// Look it up in the grammar
spv_opcode_desc opcode_desc = {};
if (SPV_SUCCESS == state.grammar().lookupOpcode(opcode, &opcode_desc)) {
return state.grammar().filterCapsAgainstTargetEnv(
opcode_desc->capabilities, opcode_desc->numCapabilities);
}
return CapabilitySet();
}
// Returns SPV_SUCCESS if the given operand is enabled by capabilities declared
// in the module. Otherwise issues an error message and returns
// SPV_ERROR_INVALID_CAPABILITY.
spv_result_t CheckRequiredCapabilities(ValidationState_t& state,
const Instruction* inst,
size_t which_operand,
spv_operand_type_t type,
uint32_t operand) {
// Mere mention of PointSize, ClipDistance, or CullDistance in a Builtin
// decoration does not require the associated capability. The use of such
// a variable value should trigger the capability requirement, but that's
// not implemented yet. This rule is independent of target environment.
// See https://github.com/KhronosGroup/SPIRV-Tools/issues/365
if (type == SPV_OPERAND_TYPE_BUILT_IN) {
switch (operand) {
case SpvBuiltInPointSize:
case SpvBuiltInClipDistance:
case SpvBuiltInCullDistance:
return SPV_SUCCESS;
default:
break;
}
} else if (type == SPV_OPERAND_TYPE_FP_ROUNDING_MODE) {
// Allow all FP rounding modes if requested
if (state.features().free_fp_rounding_mode) {
return SPV_SUCCESS;
}
} else if (type == SPV_OPERAND_TYPE_GROUP_OPERATION &&
state.features().group_ops_reduce_and_scans &&
(operand <= uint32_t(SpvGroupOperationExclusiveScan))) {
// Allow certain group operations if requested.
return SPV_SUCCESS;
}
CapabilitySet enabling_capabilities;
spv_operand_desc operand_desc = nullptr;
const auto lookup_result =
state.grammar().lookupOperand(type, operand, &operand_desc);
if (lookup_result == SPV_SUCCESS) {
// Allow FPRoundingMode decoration if requested.
if (type == SPV_OPERAND_TYPE_DECORATION &&
operand_desc->value == SpvDecorationFPRoundingMode) {
if (state.features().free_fp_rounding_mode) return SPV_SUCCESS;
// Vulkan API requires more capabilities on rounding mode.
if (spvIsVulkanEnv(state.context()->target_env)) {
enabling_capabilities.Add(SpvCapabilityStorageUniformBufferBlock16);
enabling_capabilities.Add(SpvCapabilityStorageUniform16);
enabling_capabilities.Add(SpvCapabilityStoragePushConstant16);
enabling_capabilities.Add(SpvCapabilityStorageInputOutput16);
}
} else {
enabling_capabilities = state.grammar().filterCapsAgainstTargetEnv(
operand_desc->capabilities, operand_desc->numCapabilities);
}
if (!state.HasAnyOfCapabilities(enabling_capabilities)) {
return state.diag(SPV_ERROR_INVALID_CAPABILITY, inst)
<< "Operand " << which_operand << " of "
<< spvOpcodeString(inst->opcode())
<< " requires one of these capabilities: "
<< ToString(enabling_capabilities, state.grammar());
}
}
return SPV_SUCCESS;
}
// Returns operand's required extensions.
ExtensionSet RequiredExtensions(const ValidationState_t& state,
spv_operand_type_t type, uint32_t operand) {
spv_operand_desc operand_desc;
if (state.grammar().lookupOperand(type, operand, &operand_desc) ==
SPV_SUCCESS) {
assert(operand_desc);
// If this operand is incorporated into core SPIR-V before or in the current
// target environment, we don't require extensions anymore.
if (spvVersionForTargetEnv(state.grammar().target_env()) >=
operand_desc->minVersion)
return {};
return {operand_desc->numExtensions, operand_desc->extensions};
}
return {};
}
// Returns SPV_ERROR_INVALID_BINARY and emits a diagnostic if the instruction
// is explicitly reserved in the SPIR-V core spec. Otherwise return
// SPV_SUCCESS.
spv_result_t ReservedCheck(ValidationState_t& _, const Instruction* inst) {
const SpvOp opcode = inst->opcode();
switch (opcode) {
// These instructions are enabled by a capability, but should never
// be used anyway.
case SpvOpImageSparseSampleProjImplicitLod:
case SpvOpImageSparseSampleProjExplicitLod:
case SpvOpImageSparseSampleProjDrefImplicitLod:
case SpvOpImageSparseSampleProjDrefExplicitLod: {
spv_opcode_desc inst_desc;
_.grammar().lookupOpcode(opcode, &inst_desc);
return _.diag(SPV_ERROR_INVALID_BINARY, inst)
<< "Invalid Opcode name 'Op" << inst_desc->name << "'";
}
default:
break;
}
return SPV_SUCCESS;
}
// Returns SPV_ERROR_INVALID_BINARY and emits a diagnostic if the instruction
// is invalid because of an execution environment constraint.
spv_result_t EnvironmentCheck(ValidationState_t& _, const Instruction* inst) {
const SpvOp opcode = inst->opcode();
switch (opcode) {
case SpvOpUndef:
if (_.features().bans_op_undef) {
return _.diag(SPV_ERROR_INVALID_BINARY, inst)
<< "OpUndef is disallowed";
}
break;
default:
break;
}
return SPV_SUCCESS;
}
// Returns SPV_ERROR_INVALID_CAPABILITY and emits a diagnostic if the
// instruction is invalid because the required capability isn't declared
// in the module.
spv_result_t CapabilityCheck(ValidationState_t& _, const Instruction* inst) {
const SpvOp opcode = inst->opcode();
CapabilitySet opcode_caps = EnablingCapabilitiesForOp(_, opcode);
if (!_.HasAnyOfCapabilities(opcode_caps)) {
return _.diag(SPV_ERROR_INVALID_CAPABILITY, inst)
<< "Opcode " << spvOpcodeString(opcode)
<< " requires one of these capabilities: "
<< ToString(opcode_caps, _.grammar());
}
for (size_t i = 0; i < inst->operands().size(); ++i) {
const auto& operand = inst->operand(i);
const auto word = inst->word(operand.offset);
if (spvOperandIsConcreteMask(operand.type)) {
// Check for required capabilities for each bit position of the mask.
for (uint32_t mask_bit = 0x80000000; mask_bit; mask_bit >>= 1) {
if (word & mask_bit) {
spv_result_t status =
CheckRequiredCapabilities(_, inst, i + 1, operand.type, mask_bit);
if (status != SPV_SUCCESS) return status;
}
}
} else if (spvIsIdType(operand.type)) {
// TODO(dneto): Check the value referenced by this Id, if we can compute
// it. For now, just punt, to fix issue 248:
// https://github.com/KhronosGroup/SPIRV-Tools/issues/248
} else {
// Check the operand word as a whole.
spv_result_t status =
CheckRequiredCapabilities(_, inst, i + 1, operand.type, word);
if (status != SPV_SUCCESS) return status;
}
}
return SPV_SUCCESS;
}
// Checks that all extensions required by the given instruction's operands were
// declared in the module.
spv_result_t ExtensionCheck(ValidationState_t& _, const Instruction* inst) {
const SpvOp opcode = inst->opcode();
for (size_t operand_index = 0; operand_index < inst->operands().size();
++operand_index) {
const auto& operand = inst->operand(operand_index);
const uint32_t word = inst->word(operand.offset);
const ExtensionSet required_extensions =
RequiredExtensions(_, operand.type, word);
if (!_.HasAnyOfExtensions(required_extensions)) {
return _.diag(SPV_ERROR_MISSING_EXTENSION, inst)
<< spvtools::utils::CardinalToOrdinal(operand_index + 1)
<< " operand of " << spvOpcodeString(opcode) << ": operand "
<< word << " requires one of these extensions: "
<< ExtensionSetToString(required_extensions);
}
}
return SPV_SUCCESS;
}
// Checks that the instruction can be used in this target environment's base
// version. Assumes that CapabilityCheck has checked direct capability
// dependencies for the opcode.
spv_result_t VersionCheck(ValidationState_t& _, const Instruction* inst) {
const auto opcode = inst->opcode();
spv_opcode_desc inst_desc;
const spv_result_t r = _.grammar().lookupOpcode(opcode, &inst_desc);
assert(r == SPV_SUCCESS);
(void)r;
const auto min_version = inst_desc->minVersion;
if (inst_desc->numCapabilities > 0u) {
// We already checked that the direct capability dependency has been
// satisfied. We don't need to check any further.
return SPV_SUCCESS;
}
ExtensionSet exts(inst_desc->numExtensions, inst_desc->extensions);
if (exts.IsEmpty()) {
// If no extensions can enable this instruction, then emit error messages
// only concerning core SPIR-V versions if errors happen.
if (min_version == ~0u) {
return _.diag(SPV_ERROR_WRONG_VERSION, inst)
<< spvOpcodeString(opcode) << " is reserved for future use.";
}
if (spvVersionForTargetEnv(_.grammar().target_env()) < min_version) {
return _.diag(SPV_ERROR_WRONG_VERSION, inst)
<< spvOpcodeString(opcode) << " requires "
<< spvTargetEnvDescription(
static_cast<spv_target_env>(min_version))
<< " at minimum.";
}
// Otherwise, we only error out when no enabling extensions are registered.
} else if (!_.HasAnyOfExtensions(exts)) {
if (min_version == ~0u) {
return _.diag(SPV_ERROR_MISSING_EXTENSION, inst)
<< spvOpcodeString(opcode)
<< " requires one of the following extensions: "
<< ExtensionSetToString(exts);
}
if (static_cast<uint32_t>(_.grammar().target_env()) < min_version) {
return _.diag(SPV_ERROR_WRONG_VERSION, inst)
<< spvOpcodeString(opcode) << " requires "
<< spvTargetEnvDescription(
static_cast<spv_target_env>(min_version))
<< " at minimum or one of the following extensions: "
<< ExtensionSetToString(exts);
}
}
return SPV_SUCCESS;
}
// Checks that the Resuld <id> is within the valid bound.
spv_result_t LimitCheckIdBound(ValidationState_t& _, const Instruction* inst) {
if (inst->id() >= _.getIdBound()) {
return _.diag(SPV_ERROR_INVALID_BINARY, inst)
<< "Result <id> '" << inst->id()
<< "' must be less than the ID bound '" << _.getIdBound() << "'.";
}
return SPV_SUCCESS;
}
// Checks that the number of OpTypeStruct members is within the limit.
spv_result_t LimitCheckStruct(ValidationState_t& _, const Instruction* inst) {
if (SpvOpTypeStruct != inst->opcode()) {
return SPV_SUCCESS;
}
// Number of members is the number of operands of the instruction minus 1.
// One operand is the result ID.
const uint16_t limit =
static_cast<uint16_t>(_.options()->universal_limits_.max_struct_members);
if (inst->operands().size() - 1 > limit) {
return _.diag(SPV_ERROR_INVALID_BINARY, inst)
<< "Number of OpTypeStruct members (" << inst->operands().size() - 1
<< ") has exceeded the limit (" << limit << ").";
}
// Section 2.17 of SPIRV Spec specifies that the "Structure Nesting Depth"
// must be less than or equal to 255.
// This is interpreted as structures including other structures as members.
// The code does not follow pointers or look into arrays to see if we reach a
// structure downstream.
// The nesting depth of a struct is 1+(largest depth of any member).
// Scalars are at depth 0.
uint32_t max_member_depth = 0;
// Struct members start at word 2 of OpTypeStruct instruction.
for (size_t word_i = 2; word_i < inst->words().size(); ++word_i) {
auto member = inst->word(word_i);
auto memberTypeInstr = _.FindDef(member);
if (memberTypeInstr && SpvOpTypeStruct == memberTypeInstr->opcode()) {
max_member_depth = std::max(
max_member_depth, _.struct_nesting_depth(memberTypeInstr->id()));
}
}
const uint32_t depth_limit = _.options()->universal_limits_.max_struct_depth;
const uint32_t cur_depth = 1 + max_member_depth;
_.set_struct_nesting_depth(inst->id(), cur_depth);
if (cur_depth > depth_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY, inst)
<< "Structure Nesting Depth may not be larger than " << depth_limit
<< ". Found " << cur_depth << ".";
}
return SPV_SUCCESS;
}
// Checks that the number of (literal, label) pairs in OpSwitch is within the
// limit.
spv_result_t LimitCheckSwitch(ValidationState_t& _, const Instruction* inst) {
if (SpvOpSwitch == inst->opcode()) {
// The instruction syntax is as follows:
// OpSwitch <selector ID> <Default ID> literal label literal label ...
// literal,label pairs come after the first 2 operands.
// It is guaranteed at this point that num_operands is an even numner.
size_t num_pairs = (inst->operands().size() - 2) / 2;
const unsigned int num_pairs_limit =
_.options()->universal_limits_.max_switch_branches;
if (num_pairs > num_pairs_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY, inst)
<< "Number of (literal, label) pairs in OpSwitch (" << num_pairs
<< ") exceeds the limit (" << num_pairs_limit << ").";
}
}
return SPV_SUCCESS;
}
// Ensure the number of variables of the given class does not exceed the limit.
spv_result_t LimitCheckNumVars(ValidationState_t& _, const uint32_t var_id,
const SpvStorageClass storage_class) {
if (SpvStorageClassFunction == storage_class) {
_.registerLocalVariable(var_id);
const uint32_t num_local_vars_limit =
_.options()->universal_limits_.max_local_variables;
if (_.num_local_vars() > num_local_vars_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY, nullptr)
<< "Number of local variables ('Function' Storage Class) "
"exceeded the valid limit ("
<< num_local_vars_limit << ").";
}
} else {
_.registerGlobalVariable(var_id);
const uint32_t num_global_vars_limit =
_.options()->universal_limits_.max_global_variables;
if (_.num_global_vars() > num_global_vars_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY, nullptr)
<< "Number of Global Variables (Storage Class other than "
"'Function') exceeded the valid limit ("
<< num_global_vars_limit << ").";
}
}
return SPV_SUCCESS;
}
// Parses OpExtension instruction and logs warnings if unsuccessful.
spv_result_t CheckIfKnownExtension(ValidationState_t& _,
const Instruction* inst) {
const std::string extension_str = GetExtensionString(&(inst->c_inst()));
Extension extension;
if (!GetExtensionFromString(extension_str.c_str(), &extension)) {
return _.diag(SPV_WARNING, inst)
<< "Found unrecognized extension " << extension_str;
}
return SPV_SUCCESS;
}
} // namespace
spv_result_t InstructionPass(ValidationState_t& _, const Instruction* inst) {
const SpvOp opcode = inst->opcode();
if (opcode == SpvOpExtension) {
CheckIfKnownExtension(_, inst);
} else if (opcode == SpvOpCapability) {
_.RegisterCapability(inst->GetOperandAs<SpvCapability>(0));
} else if (opcode == SpvOpMemoryModel) {
if (_.has_memory_model_specified()) {
return _.diag(SPV_ERROR_INVALID_LAYOUT, inst)
<< "OpMemoryModel should only be provided once.";
}
_.set_addressing_model(inst->GetOperandAs<SpvAddressingModel>(0));
_.set_memory_model(inst->GetOperandAs<SpvMemoryModel>(1));
if (_.memory_model() != SpvMemoryModelVulkanKHR &&
_.HasCapability(SpvCapabilityVulkanMemoryModelKHR)) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "VulkanMemoryModelKHR capability must only be specified if the "
"VulkanKHR memory model is used.";
}
} else if (opcode == SpvOpExecutionMode) {
const uint32_t entry_point = inst->word(1);
_.RegisterExecutionModeForEntryPoint(entry_point,
SpvExecutionMode(inst->word(2)));
} else if (opcode == SpvOpVariable) {
const auto storage_class = inst->GetOperandAs<SpvStorageClass>(2);
if (auto error = LimitCheckNumVars(_, inst->id(), storage_class)) {
return error;
}
if (storage_class == SpvStorageClassGeneric)
return _.diag(SPV_ERROR_INVALID_BINARY, inst)
<< "OpVariable storage class cannot be Generic";
if (_.current_layout_section() == kLayoutFunctionDefinitions) {
if (storage_class != SpvStorageClassFunction) {
return _.diag(SPV_ERROR_INVALID_LAYOUT, inst)
<< "Variables must have a function[7] storage class inside"
" of a function";
}
if (_.current_function().IsFirstBlock(
_.current_function().current_block()->id()) == false) {
return _.diag(SPV_ERROR_INVALID_CFG, inst)
<< "Variables can only be defined "
"in the first block of a "
"function";
}
} else {
if (storage_class == SpvStorageClassFunction) {
return _.diag(SPV_ERROR_INVALID_LAYOUT, inst)
<< "Variables can not have a function[7] storage class "
"outside of a function";
}
}
}
// SPIR-V Spec 2.16.3: Validation Rules for Kernel Capabilities: The
// Signedness in OpTypeInt must always be 0.
if (SpvOpTypeInt == inst->opcode() && _.HasCapability(SpvCapabilityKernel) &&
inst->GetOperandAs<uint32_t>(2) != 0u) {
return _.diag(SPV_ERROR_INVALID_BINARY, inst)
<< "The Signedness in OpTypeInt "
"must always be 0 when Kernel "
"capability is used.";
}
if (auto error = ExtensionCheck(_, inst)) return error;
if (auto error = ReservedCheck(_, inst)) return error;
if (auto error = EnvironmentCheck(_, inst)) return error;
if (auto error = CapabilityCheck(_, inst)) return error;
if (auto error = LimitCheckIdBound(_, inst)) return error;
if (auto error = LimitCheckStruct(_, inst)) return error;
if (auto error = LimitCheckSwitch(_, inst)) return error;
if (auto error = VersionCheck(_, inst)) return error;
// All instruction checks have passed.
return SPV_SUCCESS;
}
} // namespace val
} // namespace spvtools