mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2025-01-09 08:10:05 +00:00
6587d3f8a3
* Looked through code for instances where code would benefit from early exit * Added a corresponding WhileEach* method and updated the code
852 lines
30 KiB
C++
852 lines
30 KiB
C++
// Copyright (c) 2017 The Khronos Group Inc.
|
|
// Copyright (c) 2017 Valve Corporation
|
|
// Copyright (c) 2017 LunarG Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "mem_pass.h"
|
|
|
|
#include "basic_block.h"
|
|
#include "cfa.h"
|
|
#include "ir_context.h"
|
|
#include "iterator.h"
|
|
|
|
namespace spvtools {
|
|
namespace opt {
|
|
|
|
namespace {
|
|
|
|
const uint32_t kCopyObjectOperandInIdx = 0;
|
|
const uint32_t kLoadPtrIdInIdx = 0;
|
|
const uint32_t kLoopMergeMergeBlockIdInIdx = 0;
|
|
const uint32_t kStorePtrIdInIdx = 0;
|
|
const uint32_t kStoreValIdInIdx = 1;
|
|
const uint32_t kTypePointerStorageClassInIdx = 0;
|
|
const uint32_t kTypePointerTypeIdInIdx = 1;
|
|
const uint32_t kVariableInitIdInIdx = 1;
|
|
|
|
} // namespace
|
|
|
|
bool MemPass::IsBaseTargetType(const ir::Instruction* typeInst) const {
|
|
switch (typeInst->opcode()) {
|
|
case SpvOpTypeInt:
|
|
case SpvOpTypeFloat:
|
|
case SpvOpTypeBool:
|
|
case SpvOpTypeVector:
|
|
case SpvOpTypeMatrix:
|
|
case SpvOpTypeImage:
|
|
case SpvOpTypeSampler:
|
|
case SpvOpTypeSampledImage:
|
|
case SpvOpTypePointer:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MemPass::IsTargetType(const ir::Instruction* typeInst) const {
|
|
if (IsBaseTargetType(typeInst)) return true;
|
|
if (typeInst->opcode() == SpvOpTypeArray) {
|
|
if (!IsTargetType(
|
|
get_def_use_mgr()->GetDef(typeInst->GetSingleWordOperand(1)))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
if (typeInst->opcode() != SpvOpTypeStruct) return false;
|
|
// All struct members must be math type
|
|
return typeInst->WhileEachInId([this](const uint32_t* tid) {
|
|
ir::Instruction* compTypeInst = get_def_use_mgr()->GetDef(*tid);
|
|
if (!IsTargetType(compTypeInst)) return false;
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool MemPass::IsNonPtrAccessChain(const SpvOp opcode) const {
|
|
return opcode == SpvOpAccessChain || opcode == SpvOpInBoundsAccessChain;
|
|
}
|
|
|
|
bool MemPass::IsPtr(uint32_t ptrId) {
|
|
uint32_t varId = ptrId;
|
|
ir::Instruction* ptrInst = get_def_use_mgr()->GetDef(varId);
|
|
while (ptrInst->opcode() == SpvOpCopyObject) {
|
|
varId = ptrInst->GetSingleWordInOperand(kCopyObjectOperandInIdx);
|
|
ptrInst = get_def_use_mgr()->GetDef(varId);
|
|
}
|
|
const SpvOp op = ptrInst->opcode();
|
|
if (op == SpvOpVariable || IsNonPtrAccessChain(op)) return true;
|
|
if (op != SpvOpFunctionParameter) return false;
|
|
const uint32_t varTypeId = ptrInst->type_id();
|
|
const ir::Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
|
|
return varTypeInst->opcode() == SpvOpTypePointer;
|
|
}
|
|
|
|
ir::Instruction* MemPass::GetPtr(uint32_t ptrId, uint32_t* varId) {
|
|
*varId = ptrId;
|
|
ir::Instruction* ptrInst = get_def_use_mgr()->GetDef(*varId);
|
|
ir::Instruction* varInst;
|
|
|
|
if (ptrInst->opcode() != SpvOpVariable &&
|
|
ptrInst->opcode() != SpvOpFunctionParameter) {
|
|
varInst = ptrInst->GetBaseAddress();
|
|
} else {
|
|
varInst = ptrInst;
|
|
}
|
|
if (varInst->opcode() == SpvOpVariable) {
|
|
*varId = varInst->result_id();
|
|
} else {
|
|
*varId = 0;
|
|
}
|
|
|
|
while (ptrInst->opcode() == SpvOpCopyObject) {
|
|
uint32_t temp = ptrInst->GetSingleWordInOperand(0);
|
|
ptrInst = get_def_use_mgr()->GetDef(temp);
|
|
}
|
|
|
|
return ptrInst;
|
|
}
|
|
|
|
ir::Instruction* MemPass::GetPtr(ir::Instruction* ip, uint32_t* varId) {
|
|
const SpvOp op = ip->opcode();
|
|
assert(op == SpvOpStore || op == SpvOpLoad);
|
|
const uint32_t ptrId = ip->GetSingleWordInOperand(
|
|
op == SpvOpStore ? kStorePtrIdInIdx : kLoadPtrIdInIdx);
|
|
return GetPtr(ptrId, varId);
|
|
}
|
|
|
|
bool MemPass::HasOnlyNamesAndDecorates(uint32_t id) const {
|
|
return get_def_use_mgr()->WhileEachUser(id, [this](ir::Instruction* user) {
|
|
SpvOp op = user->opcode();
|
|
if (op != SpvOpName && !IsNonTypeDecorate(op)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
}
|
|
|
|
void MemPass::KillAllInsts(ir::BasicBlock* bp, bool killLabel) {
|
|
bp->ForEachInst([this, killLabel](ir::Instruction* ip) {
|
|
if (killLabel || ip->opcode() != SpvOpLabel) {
|
|
context()->KillInst(ip);
|
|
}
|
|
});
|
|
}
|
|
|
|
bool MemPass::HasLoads(uint32_t varId) const {
|
|
return !get_def_use_mgr()->WhileEachUser(varId, [this](
|
|
ir::Instruction* user) {
|
|
SpvOp op = user->opcode();
|
|
// TODO(): The following is slightly conservative. Could be
|
|
// better handling of non-store/name.
|
|
if (IsNonPtrAccessChain(op) || op == SpvOpCopyObject) {
|
|
if (HasLoads(user->result_id())) {
|
|
return false;
|
|
}
|
|
} else if (op != SpvOpStore && op != SpvOpName && !IsNonTypeDecorate(op)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool MemPass::IsLiveVar(uint32_t varId) const {
|
|
const ir::Instruction* varInst = get_def_use_mgr()->GetDef(varId);
|
|
// assume live if not a variable eg. function parameter
|
|
if (varInst->opcode() != SpvOpVariable) return true;
|
|
// non-function scope vars are live
|
|
const uint32_t varTypeId = varInst->type_id();
|
|
const ir::Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
|
|
if (varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) !=
|
|
SpvStorageClassFunction)
|
|
return true;
|
|
// test if variable is loaded from
|
|
return HasLoads(varId);
|
|
}
|
|
|
|
bool MemPass::IsLiveStore(ir::Instruction* storeInst) {
|
|
// get store's variable
|
|
uint32_t varId;
|
|
(void)GetPtr(storeInst, &varId);
|
|
if (varId == 0) {
|
|
// If we do not know which variable we are accessing, assume the store is
|
|
// live.
|
|
return true;
|
|
}
|
|
return IsLiveVar(varId);
|
|
}
|
|
|
|
void MemPass::AddStores(uint32_t ptr_id, std::queue<ir::Instruction*>* insts) {
|
|
get_def_use_mgr()->ForEachUser(ptr_id, [this, insts](ir::Instruction* user) {
|
|
SpvOp op = user->opcode();
|
|
if (IsNonPtrAccessChain(op)) {
|
|
AddStores(user->result_id(), insts);
|
|
} else if (op == SpvOpStore) {
|
|
insts->push(user);
|
|
}
|
|
});
|
|
}
|
|
|
|
void MemPass::DCEInst(ir::Instruction* inst,
|
|
const function<void(ir::Instruction*)>& call_back) {
|
|
std::queue<ir::Instruction*> deadInsts;
|
|
deadInsts.push(inst);
|
|
while (!deadInsts.empty()) {
|
|
ir::Instruction* di = deadInsts.front();
|
|
// Don't delete labels
|
|
if (di->opcode() == SpvOpLabel) {
|
|
deadInsts.pop();
|
|
continue;
|
|
}
|
|
// Remember operands
|
|
std::set<uint32_t> ids;
|
|
di->ForEachInId([&ids](uint32_t* iid) { ids.insert(*iid); });
|
|
uint32_t varId = 0;
|
|
// Remember variable if dead load
|
|
if (di->opcode() == SpvOpLoad) (void)GetPtr(di, &varId);
|
|
if (call_back) {
|
|
call_back(di);
|
|
}
|
|
context()->KillInst(di);
|
|
// For all operands with no remaining uses, add their instruction
|
|
// to the dead instruction queue.
|
|
for (auto id : ids)
|
|
if (HasOnlyNamesAndDecorates(id))
|
|
deadInsts.push(get_def_use_mgr()->GetDef(id));
|
|
// if a load was deleted and it was the variable's
|
|
// last load, add all its stores to dead queue
|
|
if (varId != 0 && !IsLiveVar(varId)) AddStores(varId, &deadInsts);
|
|
deadInsts.pop();
|
|
}
|
|
}
|
|
|
|
MemPass::MemPass() {}
|
|
|
|
bool MemPass::HasOnlySupportedRefs(uint32_t varId) {
|
|
if (supported_ref_vars_.find(varId) != supported_ref_vars_.end()) return true;
|
|
return get_def_use_mgr()->WhileEachUser(varId, [this](ir::Instruction* user) {
|
|
SpvOp op = user->opcode();
|
|
if (op != SpvOpStore && op != SpvOpLoad && op != SpvOpName &&
|
|
!IsNonTypeDecorate(op)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
}
|
|
|
|
void MemPass::InitSSARewrite(ir::Function* func) {
|
|
// Clear collections.
|
|
seen_target_vars_.clear();
|
|
seen_non_target_vars_.clear();
|
|
visitedBlocks_.clear();
|
|
type2undefs_.clear();
|
|
supported_ref_vars_.clear();
|
|
label2ssa_map_.clear();
|
|
phis_to_patch_.clear();
|
|
|
|
// Collect target (and non-) variable sets. Remove variables with
|
|
// non-load/store refs from target variable set
|
|
for (auto& blk : *func) {
|
|
for (auto& inst : blk) {
|
|
switch (inst.opcode()) {
|
|
case SpvOpStore:
|
|
case SpvOpLoad: {
|
|
uint32_t varId;
|
|
(void)GetPtr(&inst, &varId);
|
|
if (!IsTargetVar(varId)) break;
|
|
if (HasOnlySupportedRefs(varId)) break;
|
|
seen_non_target_vars_.insert(varId);
|
|
seen_target_vars_.erase(varId);
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool MemPass::IsLiveAfter(uint32_t var_id, uint32_t label) const {
|
|
// For now, return very conservative result: true. This will result in
|
|
// correct, but possibly usused, phi code to be generated. A subsequent
|
|
// DCE pass should eliminate this code.
|
|
// TODO(greg-lunarg): Return more accurate information
|
|
(void)var_id;
|
|
(void)label;
|
|
return true;
|
|
}
|
|
|
|
void MemPass::SSABlockInitSinglePred(ir::BasicBlock* block_ptr) {
|
|
// Copy map entry from single predecessor
|
|
const uint32_t label = block_ptr->id();
|
|
const uint32_t predLabel = cfg()->preds(label).front();
|
|
assert(visitedBlocks_.find(predLabel) != visitedBlocks_.end());
|
|
label2ssa_map_[label] = label2ssa_map_[predLabel];
|
|
}
|
|
|
|
uint32_t MemPass::Type2Undef(uint32_t type_id) {
|
|
const auto uitr = type2undefs_.find(type_id);
|
|
if (uitr != type2undefs_.end()) return uitr->second;
|
|
const uint32_t undefId = TakeNextId();
|
|
std::unique_ptr<ir::Instruction> undef_inst(
|
|
new ir::Instruction(context(), SpvOpUndef, type_id, undefId, {}));
|
|
get_def_use_mgr()->AnalyzeInstDefUse(&*undef_inst);
|
|
get_module()->AddGlobalValue(std::move(undef_inst));
|
|
type2undefs_[type_id] = undefId;
|
|
return undefId;
|
|
}
|
|
|
|
void MemPass::SSABlockInitLoopHeader(
|
|
std::list<ir::BasicBlock*>::iterator block_itr) {
|
|
const uint32_t label = (*block_itr)->id();
|
|
|
|
// Determine the back-edge label.
|
|
uint32_t backLabel = 0;
|
|
for (uint32_t predLabel : cfg()->preds(label))
|
|
if (visitedBlocks_.find(predLabel) == visitedBlocks_.end()) {
|
|
assert(backLabel == 0);
|
|
backLabel = predLabel;
|
|
break;
|
|
}
|
|
assert(backLabel != 0);
|
|
|
|
// Determine merge block.
|
|
auto mergeInst = (*block_itr)->end();
|
|
--mergeInst;
|
|
--mergeInst;
|
|
uint32_t mergeLabel =
|
|
mergeInst->GetSingleWordInOperand(kLoopMergeMergeBlockIdInIdx);
|
|
|
|
// Collect all live variables and a default value for each across all
|
|
// non-backedge predecesors. Must be ordered map because phis are
|
|
// generated based on order and test results will otherwise vary across
|
|
// platforms.
|
|
std::map<uint32_t, uint32_t> liveVars;
|
|
for (uint32_t predLabel : cfg()->preds(label)) {
|
|
for (auto var_val : label2ssa_map_[predLabel]) {
|
|
uint32_t varId = var_val.first;
|
|
liveVars[varId] = var_val.second;
|
|
}
|
|
}
|
|
// Add all stored variables in loop. Set their default value id to zero.
|
|
for (auto bi = block_itr; (*bi)->id() != mergeLabel; ++bi) {
|
|
ir::BasicBlock* bp = *bi;
|
|
for (auto ii = bp->begin(); ii != bp->end(); ++ii) {
|
|
if (ii->opcode() != SpvOpStore) {
|
|
continue;
|
|
}
|
|
uint32_t varId;
|
|
(void)GetPtr(&*ii, &varId);
|
|
if (!IsTargetVar(varId)) {
|
|
continue;
|
|
}
|
|
liveVars[varId] = 0;
|
|
}
|
|
}
|
|
// Insert phi for all live variables that require them. All variables
|
|
// defined in loop require a phi. Otherwise all variables
|
|
// with differing predecessor values require a phi.
|
|
auto insertItr = (*block_itr)->begin();
|
|
for (auto var_val : liveVars) {
|
|
const uint32_t varId = var_val.first;
|
|
if (!IsLiveAfter(varId, label)) {
|
|
continue;
|
|
}
|
|
const uint32_t val0Id = var_val.second;
|
|
bool needsPhi = false;
|
|
if (val0Id != 0) {
|
|
for (uint32_t predLabel : cfg()->preds(label)) {
|
|
// Skip back edge predecessor.
|
|
if (predLabel == backLabel) continue;
|
|
const auto var_val_itr = label2ssa_map_[predLabel].find(varId);
|
|
// Missing (undef) values always cause difference with (defined) value
|
|
if (var_val_itr == label2ssa_map_[predLabel].end()) {
|
|
needsPhi = true;
|
|
break;
|
|
}
|
|
if (var_val_itr->second != val0Id) {
|
|
needsPhi = true;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
needsPhi = true;
|
|
}
|
|
|
|
// If val is the same for all predecessors, enter it in map
|
|
if (!needsPhi) {
|
|
label2ssa_map_[label].insert(var_val);
|
|
continue;
|
|
}
|
|
|
|
// Val differs across predecessors. Add phi op to block and
|
|
// add its result id to the map. For back edge predecessor,
|
|
// use the variable id. We will patch this after visiting back
|
|
// edge predecessor. For predecessors that do not define a value,
|
|
// use undef.
|
|
std::vector<ir::Operand> phi_in_operands;
|
|
uint32_t typeId = GetPointeeTypeId(get_def_use_mgr()->GetDef(varId));
|
|
for (uint32_t predLabel : cfg()->preds(label)) {
|
|
uint32_t valId;
|
|
if (predLabel == backLabel) {
|
|
valId = varId;
|
|
} else {
|
|
const auto var_val_itr = label2ssa_map_[predLabel].find(varId);
|
|
if (var_val_itr == label2ssa_map_[predLabel].end())
|
|
valId = Type2Undef(typeId);
|
|
else
|
|
valId = var_val_itr->second;
|
|
}
|
|
phi_in_operands.push_back(
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {valId}});
|
|
phi_in_operands.push_back(
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {predLabel}});
|
|
}
|
|
const uint32_t phiId = TakeNextId();
|
|
std::unique_ptr<ir::Instruction> newPhi(new ir::Instruction(
|
|
context(), SpvOpPhi, typeId, phiId, phi_in_operands));
|
|
// The only phis requiring patching are the ones we create.
|
|
phis_to_patch_.insert(phiId);
|
|
// Only analyze the phi define now; analyze the phi uses after the
|
|
// phi backedge predecessor value is patched.
|
|
get_def_use_mgr()->AnalyzeInstDef(&*newPhi);
|
|
context()->set_instr_block(&*newPhi, *block_itr);
|
|
insertItr = insertItr.InsertBefore(std::move(newPhi));
|
|
++insertItr;
|
|
label2ssa_map_[label].insert({varId, phiId});
|
|
}
|
|
}
|
|
|
|
void MemPass::SSABlockInitMultiPred(ir::BasicBlock* block_ptr) {
|
|
const uint32_t label = block_ptr->id();
|
|
// Collect all live variables and a default value for each across all
|
|
// predecesors. Must be ordered map because phis are generated based on
|
|
// order and test results will otherwise vary across platforms.
|
|
std::map<uint32_t, uint32_t> liveVars;
|
|
for (uint32_t predLabel : cfg()->preds(label)) {
|
|
assert(visitedBlocks_.find(predLabel) != visitedBlocks_.end());
|
|
for (auto var_val : label2ssa_map_[predLabel]) {
|
|
const uint32_t varId = var_val.first;
|
|
liveVars[varId] = var_val.second;
|
|
}
|
|
}
|
|
// For each live variable, look for a difference in values across
|
|
// predecessors that would require a phi and insert one.
|
|
auto insertItr = block_ptr->begin();
|
|
for (auto var_val : liveVars) {
|
|
const uint32_t varId = var_val.first;
|
|
if (!IsLiveAfter(varId, label)) continue;
|
|
const uint32_t val0Id = var_val.second;
|
|
bool differs = false;
|
|
for (uint32_t predLabel : cfg()->preds(label)) {
|
|
const auto var_val_itr = label2ssa_map_[predLabel].find(varId);
|
|
// Missing values cause a difference because we'll need to create an
|
|
// undef for that predecessor.
|
|
if (var_val_itr == label2ssa_map_[predLabel].end()) {
|
|
differs = true;
|
|
break;
|
|
}
|
|
if (var_val_itr->second != val0Id) {
|
|
differs = true;
|
|
break;
|
|
}
|
|
}
|
|
// If val is the same for all predecessors, enter it in map
|
|
if (!differs) {
|
|
label2ssa_map_[label].insert(var_val);
|
|
continue;
|
|
}
|
|
// Val differs across predecessors. Add phi op to block and add its result
|
|
// id to the map.
|
|
std::vector<ir::Operand> phi_in_operands;
|
|
const uint32_t typeId = GetPointeeTypeId(get_def_use_mgr()->GetDef(varId));
|
|
for (uint32_t predLabel : cfg()->preds(label)) {
|
|
const auto var_val_itr = label2ssa_map_[predLabel].find(varId);
|
|
// If variable not defined on this path, use undef
|
|
const uint32_t valId = (var_val_itr != label2ssa_map_[predLabel].end())
|
|
? var_val_itr->second
|
|
: Type2Undef(typeId);
|
|
phi_in_operands.push_back(
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {valId}});
|
|
phi_in_operands.push_back(
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {predLabel}});
|
|
}
|
|
const uint32_t phiId = TakeNextId();
|
|
std::unique_ptr<ir::Instruction> newPhi(new ir::Instruction(
|
|
context(), SpvOpPhi, typeId, phiId, phi_in_operands));
|
|
get_def_use_mgr()->AnalyzeInstDefUse(&*newPhi);
|
|
context()->set_instr_block(&*newPhi, block_ptr);
|
|
insertItr = insertItr.InsertBefore(std::move(newPhi));
|
|
++insertItr;
|
|
label2ssa_map_[label].insert({varId, phiId});
|
|
}
|
|
}
|
|
|
|
void MemPass::SSABlockInit(std::list<ir::BasicBlock*>::iterator block_itr) {
|
|
const size_t numPreds = cfg()->preds((*block_itr)->id()).size();
|
|
if (numPreds == 0) return;
|
|
if (numPreds == 1)
|
|
SSABlockInitSinglePred(*block_itr);
|
|
else if ((*block_itr)->IsLoopHeader())
|
|
SSABlockInitLoopHeader(block_itr);
|
|
else
|
|
SSABlockInitMultiPred(*block_itr);
|
|
}
|
|
|
|
bool MemPass::IsTargetVar(uint32_t varId) {
|
|
if (varId == 0) {
|
|
return false;
|
|
}
|
|
|
|
if (seen_non_target_vars_.find(varId) != seen_non_target_vars_.end())
|
|
return false;
|
|
if (seen_target_vars_.find(varId) != seen_target_vars_.end()) return true;
|
|
const ir::Instruction* varInst = get_def_use_mgr()->GetDef(varId);
|
|
if (varInst->opcode() != SpvOpVariable) return false;
|
|
const uint32_t varTypeId = varInst->type_id();
|
|
const ir::Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
|
|
if (varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) !=
|
|
SpvStorageClassFunction) {
|
|
seen_non_target_vars_.insert(varId);
|
|
return false;
|
|
}
|
|
const uint32_t varPteTypeId =
|
|
varTypeInst->GetSingleWordInOperand(kTypePointerTypeIdInIdx);
|
|
ir::Instruction* varPteTypeInst = get_def_use_mgr()->GetDef(varPteTypeId);
|
|
if (!IsTargetType(varPteTypeInst)) {
|
|
seen_non_target_vars_.insert(varId);
|
|
return false;
|
|
}
|
|
seen_target_vars_.insert(varId);
|
|
return true;
|
|
}
|
|
|
|
void MemPass::PatchPhis(uint32_t header_id, uint32_t back_id) {
|
|
ir::BasicBlock* header = cfg()->block(header_id);
|
|
auto phiItr = header->begin();
|
|
for (; phiItr->opcode() == SpvOpPhi; ++phiItr) {
|
|
// Only patch phis that we created in a loop header.
|
|
// There might be other phis unrelated to our optimizations.
|
|
if (0 == phis_to_patch_.count(phiItr->result_id())) continue;
|
|
|
|
// Find phi operand index for back edge
|
|
uint32_t cnt = 0;
|
|
uint32_t idx = phiItr->NumInOperands();
|
|
phiItr->ForEachInId([&cnt, &back_id, &idx](uint32_t* iid) {
|
|
if (cnt % 2 == 1 && *iid == back_id) idx = cnt - 1;
|
|
++cnt;
|
|
});
|
|
assert(idx != phiItr->NumInOperands());
|
|
// Replace temporary phi operand with variable's value in backedge block
|
|
// map. Use undef if variable not in map.
|
|
const uint32_t varId = phiItr->GetSingleWordInOperand(idx);
|
|
const auto valItr = label2ssa_map_[back_id].find(varId);
|
|
uint32_t valId =
|
|
(valItr != label2ssa_map_[back_id].end())
|
|
? valItr->second
|
|
: Type2Undef(GetPointeeTypeId(get_def_use_mgr()->GetDef(varId)));
|
|
phiItr->SetInOperand(idx, {valId});
|
|
// Analyze uses now that they are complete
|
|
get_def_use_mgr()->AnalyzeInstUse(&*phiItr);
|
|
}
|
|
}
|
|
|
|
Pass::Status MemPass::InsertPhiInstructions(ir::Function* func) {
|
|
// TODO(dnovillo) the current Phi placement mechanism assumes structured
|
|
// control-flow. This should be generalized
|
|
// (https://github.com/KhronosGroup/SPIRV-Tools/issues/893).
|
|
assert(context()->get_feature_mgr()->HasCapability(SpvCapabilityShader) &&
|
|
"This only works on structured control flow");
|
|
|
|
// Initialize the data structures used to insert Phi instructions.
|
|
InitSSARewrite(func);
|
|
|
|
// Process all blocks in structured order. This is just one way (the
|
|
// simplest?) to make sure all predecessors blocks are processed before
|
|
// a block itself.
|
|
std::list<ir::BasicBlock*> structuredOrder;
|
|
cfg()->ComputeStructuredOrder(func, cfg()->pseudo_entry_block(),
|
|
&structuredOrder);
|
|
for (auto bi = structuredOrder.begin(); bi != structuredOrder.end(); ++bi) {
|
|
// Skip pseudo entry block
|
|
if (cfg()->IsPseudoEntryBlock(*bi)) {
|
|
continue;
|
|
}
|
|
|
|
// Initialize this block's label2ssa_map_ entry using predecessor maps.
|
|
// Then process all stores and loads of targeted variables.
|
|
SSABlockInit(bi);
|
|
ir::BasicBlock* bp = *bi;
|
|
const uint32_t label = bp->id();
|
|
ir::Instruction* inst = &*bp->begin();
|
|
while (inst) {
|
|
ir::Instruction* next_instruction = inst->NextNode();
|
|
switch (inst->opcode()) {
|
|
case SpvOpStore: {
|
|
uint32_t varId;
|
|
(void)GetPtr(inst, &varId);
|
|
if (!IsTargetVar(varId)) break;
|
|
// Register new stored value for the variable
|
|
label2ssa_map_[label][varId] =
|
|
inst->GetSingleWordInOperand(kStoreValIdInIdx);
|
|
} break;
|
|
case SpvOpVariable: {
|
|
// Treat initialized OpVariable like an OpStore
|
|
if (inst->NumInOperands() < 2) break;
|
|
uint32_t varId = inst->result_id();
|
|
if (!IsTargetVar(varId)) break;
|
|
// Register new stored value for the variable
|
|
label2ssa_map_[label][varId] =
|
|
inst->GetSingleWordInOperand(kVariableInitIdInIdx);
|
|
} break;
|
|
case SpvOpLoad: {
|
|
uint32_t varId;
|
|
(void)GetPtr(inst, &varId);
|
|
if (!IsTargetVar(varId)) break;
|
|
uint32_t replId = 0;
|
|
const auto ssaItr = label2ssa_map_.find(label);
|
|
if (ssaItr != label2ssa_map_.end()) {
|
|
const auto valItr = ssaItr->second.find(varId);
|
|
if (valItr != ssaItr->second.end()) replId = valItr->second;
|
|
}
|
|
// If variable is not defined, use undef
|
|
if (replId == 0) {
|
|
replId =
|
|
Type2Undef(GetPointeeTypeId(get_def_use_mgr()->GetDef(varId)));
|
|
}
|
|
// Replace load's id with the last stored value id for variable
|
|
// and delete load. Kill any names or decorates using id before
|
|
// replacing to prevent incorrect replacement in those instructions.
|
|
const uint32_t loadId = inst->result_id();
|
|
context()->KillNamesAndDecorates(loadId);
|
|
(void)context()->ReplaceAllUsesWith(loadId, replId);
|
|
context()->KillInst(inst);
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
inst = next_instruction;
|
|
}
|
|
visitedBlocks_.insert(label);
|
|
// Look for successor backedge and patch phis in loop header
|
|
// if found.
|
|
uint32_t header = 0;
|
|
bp->ForEachSuccessorLabel([&header, this](uint32_t succ) {
|
|
if (visitedBlocks_.find(succ) == visitedBlocks_.end()) return;
|
|
assert(header == 0);
|
|
header = succ;
|
|
});
|
|
if (header != 0) PatchPhis(header, label);
|
|
}
|
|
|
|
return Status::SuccessWithChange;
|
|
}
|
|
|
|
// Remove all |phi| operands coming from unreachable blocks (i.e., blocks not in
|
|
// |reachable_blocks|). There are two types of removal that this function can
|
|
// perform:
|
|
//
|
|
// 1- Any operand that comes directly from an unreachable block is completely
|
|
// removed. Since the block is unreachable, the edge between the unreachable
|
|
// block and the block holding |phi| has been removed.
|
|
//
|
|
// 2- Any operand that comes via a live block and was defined at an unreachable
|
|
// block gets its value replaced with an OpUndef value. Since the argument
|
|
// was generated in an unreachable block, it no longer exists, so it cannot
|
|
// be referenced. However, since the value does not reach |phi| directly
|
|
// from the unreachable block, the operand cannot be removed from |phi|.
|
|
// Therefore, we replace the argument value with OpUndef.
|
|
//
|
|
// For example, in the switch() below, assume that we want to remove the
|
|
// argument with value %11 coming from block %41.
|
|
//
|
|
// [ ... ]
|
|
// %41 = OpLabel <--- Unreachable block
|
|
// %11 = OpLoad %int %y
|
|
// [ ... ]
|
|
// OpSelectionMerge %16 None
|
|
// OpSwitch %12 %16 10 %13 13 %14 18 %15
|
|
// %13 = OpLabel
|
|
// OpBranch %16
|
|
// %14 = OpLabel
|
|
// OpStore %outparm %int_14
|
|
// OpBranch %16
|
|
// %15 = OpLabel
|
|
// OpStore %outparm %int_15
|
|
// OpBranch %16
|
|
// %16 = OpLabel
|
|
// %30 = OpPhi %int %11 %41 %int_42 %13 %11 %14 %11 %15
|
|
//
|
|
// Since %41 is now an unreachable block, the first operand of |phi| needs to
|
|
// be removed completely. But the operands (%11 %14) and (%11 %15) cannot be
|
|
// removed because %14 and %15 are reachable blocks. Since %11 no longer exist,
|
|
// in those arguments, we replace all references to %11 with an OpUndef value.
|
|
// This results in |phi| looking like:
|
|
//
|
|
// %50 = OpUndef %int
|
|
// [ ... ]
|
|
// %30 = OpPhi %int %int_42 %13 %50 %14 %50 %15
|
|
void MemPass::RemovePhiOperands(
|
|
ir::Instruction* phi,
|
|
std::unordered_set<ir::BasicBlock*> reachable_blocks) {
|
|
std::vector<ir::Operand> keep_operands;
|
|
uint32_t type_id = 0;
|
|
// The id of an undefined value we've generated.
|
|
uint32_t undef_id = 0;
|
|
|
|
// Traverse all the operands in |phi|. Build the new operand vector by adding
|
|
// all the original operands from |phi| except the unwanted ones.
|
|
for (uint32_t i = 0; i < phi->NumOperands();) {
|
|
if (i < 2) {
|
|
// The first two arguments are always preserved.
|
|
keep_operands.push_back(phi->GetOperand(i));
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
// The remaining Phi arguments come in pairs. Index 'i' contains the
|
|
// variable id, index 'i + 1' is the originating block id.
|
|
assert(i % 2 == 0 && i < phi->NumOperands() - 1 &&
|
|
"malformed Phi arguments");
|
|
|
|
ir::BasicBlock* in_block = cfg()->block(phi->GetSingleWordOperand(i + 1));
|
|
if (reachable_blocks.find(in_block) == reachable_blocks.end()) {
|
|
// If the incoming block is unreachable, remove both operands as this
|
|
// means that the |phi| has lost an incoming edge.
|
|
i += 2;
|
|
continue;
|
|
}
|
|
|
|
// In all other cases, the operand must be kept but may need to be changed.
|
|
uint32_t arg_id = phi->GetSingleWordOperand(i);
|
|
ir::Instruction* arg_def_instr = get_def_use_mgr()->GetDef(arg_id);
|
|
ir::BasicBlock* def_block = context()->get_instr_block(arg_def_instr);
|
|
if (def_block &&
|
|
reachable_blocks.find(def_block) == reachable_blocks.end()) {
|
|
// If the current |phi| argument was defined in an unreachable block, it
|
|
// means that this |phi| argument is no longer defined. Replace it with
|
|
// |undef_id|.
|
|
if (!undef_id) {
|
|
type_id = arg_def_instr->type_id();
|
|
undef_id = Type2Undef(type_id);
|
|
}
|
|
keep_operands.push_back(
|
|
ir::Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {undef_id}));
|
|
} else {
|
|
// Otherwise, the argument comes from a reachable block or from no block
|
|
// at all (meaning that it was defined in the global section of the
|
|
// program). In both cases, keep the argument intact.
|
|
keep_operands.push_back(phi->GetOperand(i));
|
|
}
|
|
|
|
keep_operands.push_back(phi->GetOperand(i + 1));
|
|
|
|
i += 2;
|
|
}
|
|
|
|
context()->ForgetUses(phi);
|
|
phi->ReplaceOperands(keep_operands);
|
|
context()->AnalyzeUses(phi);
|
|
}
|
|
|
|
void MemPass::RemoveBlock(ir::Function::iterator* bi) {
|
|
auto& rm_block = **bi;
|
|
|
|
// Remove instructions from the block.
|
|
rm_block.ForEachInst([&rm_block, this](ir::Instruction* inst) {
|
|
// Note that we do not kill the block label instruction here. The label
|
|
// instruction is needed to identify the block, which is needed by the
|
|
// removal of phi operands.
|
|
if (inst != rm_block.GetLabelInst()) {
|
|
context()->KillInst(inst);
|
|
}
|
|
});
|
|
|
|
// Remove the label instruction last.
|
|
auto label = rm_block.GetLabelInst();
|
|
context()->KillInst(label);
|
|
|
|
*bi = bi->Erase();
|
|
}
|
|
|
|
bool MemPass::RemoveUnreachableBlocks(ir::Function* func) {
|
|
bool modified = false;
|
|
|
|
// Mark reachable all blocks reachable from the function's entry block.
|
|
std::unordered_set<ir::BasicBlock*> reachable_blocks;
|
|
std::unordered_set<ir::BasicBlock*> visited_blocks;
|
|
std::queue<ir::BasicBlock*> worklist;
|
|
reachable_blocks.insert(func->entry().get());
|
|
|
|
// Initially mark the function entry point as reachable.
|
|
worklist.push(func->entry().get());
|
|
|
|
auto mark_reachable = [&reachable_blocks, &visited_blocks, &worklist,
|
|
this](uint32_t label_id) {
|
|
auto successor = cfg()->block(label_id);
|
|
if (visited_blocks.count(successor) == 0) {
|
|
reachable_blocks.insert(successor);
|
|
worklist.push(successor);
|
|
visited_blocks.insert(successor);
|
|
}
|
|
};
|
|
|
|
// Transitively mark all blocks reachable from the entry as reachable.
|
|
while (!worklist.empty()) {
|
|
ir::BasicBlock* block = worklist.front();
|
|
worklist.pop();
|
|
|
|
// All the successors of a live block are also live.
|
|
block->ForEachSuccessorLabel(mark_reachable);
|
|
|
|
// All the Merge and ContinueTarget blocks of a live block are also live.
|
|
block->ForMergeAndContinueLabel(mark_reachable);
|
|
}
|
|
|
|
// Update operands of Phi nodes that reference unreachable blocks.
|
|
for (auto& block : *func) {
|
|
// If the block is about to be removed, don't bother updating its
|
|
// Phi instructions.
|
|
if (reachable_blocks.count(&block) == 0) {
|
|
continue;
|
|
}
|
|
|
|
// If the block is reachable and has Phi instructions, remove all
|
|
// operands from its Phi instructions that reference unreachable blocks.
|
|
// If the block has no Phi instructions, this is a no-op.
|
|
block.ForEachPhiInst([&reachable_blocks, this](ir::Instruction* phi) {
|
|
RemovePhiOperands(phi, reachable_blocks);
|
|
});
|
|
}
|
|
|
|
// Erase unreachable blocks.
|
|
for (auto ebi = func->begin(); ebi != func->end();) {
|
|
if (reachable_blocks.count(&*ebi) == 0) {
|
|
RemoveBlock(&ebi);
|
|
modified = true;
|
|
} else {
|
|
++ebi;
|
|
}
|
|
}
|
|
|
|
return modified;
|
|
}
|
|
|
|
bool MemPass::CFGCleanup(ir::Function* func) {
|
|
bool modified = false;
|
|
modified |= RemoveUnreachableBlocks(func);
|
|
return modified;
|
|
}
|
|
|
|
} // namespace opt
|
|
} // namespace spvtools
|