SPIRV-Tools/source/link/linker.cpp
Karol Herbst e99a5c033e
spirv-link: allow linking functions with different pointer arguments (#5534)
* linker: run dedup earlier

Otherwise `linkings_to_do` might end up with stale IDs.

* linker: allow linking functions with different pointer arguments

Since llvm-17 there are no typed pointers and hte SPIRV-LLVM-Translator
doesn't know the function signature of imported functions.

I'm investigating different ways of solving this problem and adding an
option to work around it inside `spirv-link` is one of those.

The code is almost complete, just I'm having troubles constructing the
bitcast to cast the pointer parameters to the final type.

Closes: https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/2153

* test/linker: add tests to test the AllowPtrTypeMismatch feature
2024-07-24 08:38:19 -04:00

930 lines
38 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2017 Pierre Moreau
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "spirv-tools/linker.hpp"
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <memory>
#include <numeric>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "source/assembly_grammar.h"
#include "source/diagnostic.h"
#include "source/opt/build_module.h"
#include "source/opt/compact_ids_pass.h"
#include "source/opt/decoration_manager.h"
#include "source/opt/ir_builder.h"
#include "source/opt/ir_loader.h"
#include "source/opt/pass_manager.h"
#include "source/opt/remove_duplicates_pass.h"
#include "source/opt/remove_unused_interface_variables_pass.h"
#include "source/opt/type_manager.h"
#include "source/spirv_constant.h"
#include "source/spirv_target_env.h"
#include "source/util/make_unique.h"
#include "source/util/string_utils.h"
#include "spirv-tools/libspirv.hpp"
namespace spvtools {
namespace {
using opt::Instruction;
using opt::InstructionBuilder;
using opt::IRContext;
using opt::Module;
using opt::PassManager;
using opt::RemoveDuplicatesPass;
using opt::analysis::DecorationManager;
using opt::analysis::DefUseManager;
using opt::analysis::Function;
using opt::analysis::Type;
using opt::analysis::TypeManager;
// Stores various information about an imported or exported symbol.
struct LinkageSymbolInfo {
spv::Id id; // ID of the symbol
spv::Id type_id; // ID of the type of the symbol
std::string name; // unique name defining the symbol and used for matching
// imports and exports together
std::vector<spv::Id> parameter_ids; // ID of the parameters of the symbol, if
// it is a function
};
struct LinkageEntry {
LinkageSymbolInfo imported_symbol;
LinkageSymbolInfo exported_symbol;
LinkageEntry(const LinkageSymbolInfo& import_info,
const LinkageSymbolInfo& export_info)
: imported_symbol(import_info), exported_symbol(export_info) {}
};
using LinkageTable = std::vector<LinkageEntry>;
// Shifts the IDs used in each binary of |modules| so that they occupy a
// disjoint range from the other binaries, and compute the new ID bound which
// is returned in |max_id_bound|.
//
// Both |modules| and |max_id_bound| should not be null, and |modules| should
// not be empty either. Furthermore |modules| should not contain any null
// pointers.
spv_result_t ShiftIdsInModules(const MessageConsumer& consumer,
std::vector<opt::Module*>* modules,
uint32_t* max_id_bound);
// Generates the header for the linked module and returns it in |header|.
//
// |header| should not be null, |modules| should not be empty and pointers
// should be non-null. |max_id_bound| should be strictly greater than 0.
spv_result_t GenerateHeader(const MessageConsumer& consumer,
const std::vector<opt::Module*>& modules,
uint32_t max_id_bound, opt::ModuleHeader* header,
const LinkerOptions& options);
// Merge all the modules from |in_modules| into a single module owned by
// |linked_context|.
//
// |linked_context| should not be null.
spv_result_t MergeModules(const MessageConsumer& consumer,
const std::vector<Module*>& in_modules,
const AssemblyGrammar& grammar,
IRContext* linked_context);
// Compute all pairs of import and export and return it in |linkings_to_do|.
//
// |linkings_to_do should not be null. Built-in symbols will be ignored.
//
// TODO(pierremoreau): Linkage attributes applied by a group decoration are
// currently not handled. (You could have a group being
// applied to a single ID.)
// TODO(pierremoreau): What should be the proper behaviour with built-in
// symbols?
spv_result_t GetImportExportPairs(const MessageConsumer& consumer,
const opt::IRContext& linked_context,
const DefUseManager& def_use_manager,
const DecorationManager& decoration_manager,
bool allow_partial_linkage,
LinkageTable* linkings_to_do);
// Checks that for each pair of import and export, the import and export have
// the same type as well as the same decorations.
//
// TODO(pierremoreau): Decorations on functions parameters are currently not
// checked.
spv_result_t CheckImportExportCompatibility(const MessageConsumer& consumer,
const LinkageTable& linkings_to_do,
bool allow_ptr_type_mismatch,
opt::IRContext* context);
// Remove linkage specific instructions, such as prototypes of imported
// functions, declarations of imported variables, import (and export if
// necessary) linkage attributes.
//
// |linked_context| and |decoration_manager| should not be null, and the
// 'RemoveDuplicatePass' should be run first.
//
// TODO(pierremoreau): Linkage attributes applied by a group decoration are
// currently not handled. (You could have a group being
// applied to a single ID.)
spv_result_t RemoveLinkageSpecificInstructions(
const MessageConsumer& consumer, const LinkerOptions& options,
const LinkageTable& linkings_to_do, DecorationManager* decoration_manager,
opt::IRContext* linked_context);
// Verify that the unique ids of each instruction in |linked_context| (i.e. the
// merged module) are truly unique. Does not check the validity of other ids
spv_result_t VerifyIds(const MessageConsumer& consumer,
opt::IRContext* linked_context);
// Verify that the universal limits are not crossed, and warn the user
// otherwise.
//
// TODO(pierremoreau):
// - Verify against the limits of the environment (e.g. Vulkan limits if
// consuming vulkan1.x)
spv_result_t VerifyLimits(const MessageConsumer& consumer,
const opt::IRContext& linked_context);
spv_result_t ShiftIdsInModules(const MessageConsumer& consumer,
std::vector<opt::Module*>* modules,
uint32_t* max_id_bound) {
spv_position_t position = {};
if (modules == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|modules| of ShiftIdsInModules should not be null.";
if (modules->empty())
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|modules| of ShiftIdsInModules should not be empty.";
if (max_id_bound == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|max_id_bound| of ShiftIdsInModules should not be null.";
const size_t id_bound =
std::accumulate(modules->begin(), modules->end(), static_cast<size_t>(1),
[](const size_t& accumulation, opt::Module* module) {
return accumulation + module->IdBound() - 1u;
});
if (id_bound > std::numeric_limits<uint32_t>::max())
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "Too many IDs (" << id_bound
<< "): combining all modules would overflow the 32-bit word of the "
"SPIR-V header.";
*max_id_bound = static_cast<uint32_t>(id_bound);
uint32_t id_offset = modules->front()->IdBound() - 1u;
for (auto module_iter = modules->begin() + 1; module_iter != modules->end();
++module_iter) {
Module* module = *module_iter;
module->ForEachInst([&id_offset](Instruction* insn) {
insn->ForEachId([&id_offset](uint32_t* id) { *id += id_offset; });
});
id_offset += module->IdBound() - 1u;
// Invalidate the DefUseManager
module->context()->InvalidateAnalyses(opt::IRContext::kAnalysisDefUse);
}
return SPV_SUCCESS;
}
spv_result_t GenerateHeader(const MessageConsumer& consumer,
const std::vector<opt::Module*>& modules,
uint32_t max_id_bound, opt::ModuleHeader* header,
const LinkerOptions& options) {
spv_position_t position = {};
if (modules.empty())
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|modules| of GenerateHeader should not be empty.";
if (max_id_bound == 0u)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|max_id_bound| of GenerateHeader should not be null.";
uint32_t linked_version = modules.front()->version();
for (std::size_t i = 1; i < modules.size(); ++i) {
const uint32_t module_version = modules[i]->version();
if (options.GetUseHighestVersion()) {
linked_version = std::max(linked_version, module_version);
} else if (module_version != linked_version) {
return DiagnosticStream({0, 0, 1}, consumer, "", SPV_ERROR_INTERNAL)
<< "Conflicting SPIR-V versions: "
<< SPV_SPIRV_VERSION_MAJOR_PART(linked_version) << "."
<< SPV_SPIRV_VERSION_MINOR_PART(linked_version)
<< " (input modules 1 through " << i << ") vs "
<< SPV_SPIRV_VERSION_MAJOR_PART(module_version) << "."
<< SPV_SPIRV_VERSION_MINOR_PART(module_version)
<< " (input module " << (i + 1) << ").";
}
}
header->magic_number = spv::MagicNumber;
header->version = linked_version;
header->generator = SPV_GENERATOR_WORD(SPV_GENERATOR_KHRONOS_LINKER, 0);
header->bound = max_id_bound;
header->schema = 0u;
return SPV_SUCCESS;
}
spv_result_t MergeModules(const MessageConsumer& consumer,
const std::vector<Module*>& input_modules,
const AssemblyGrammar& grammar,
IRContext* linked_context) {
spv_position_t position = {};
if (linked_context == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|linked_module| of MergeModules should not be null.";
Module* linked_module = linked_context->module();
if (input_modules.empty()) return SPV_SUCCESS;
for (const auto& module : input_modules)
for (const auto& inst : module->capabilities())
linked_module->AddCapability(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->extensions())
linked_module->AddExtension(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->ext_inst_imports())
linked_module->AddExtInstImport(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
const Instruction* linked_memory_model_inst =
input_modules.front()->GetMemoryModel();
if (linked_memory_model_inst == nullptr) {
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Input module 1 is lacking an OpMemoryModel instruction.";
}
const uint32_t linked_addressing_model =
linked_memory_model_inst->GetSingleWordOperand(0u);
const uint32_t linked_memory_model =
linked_memory_model_inst->GetSingleWordOperand(1u);
for (std::size_t i = 1; i < input_modules.size(); ++i) {
const Module* module = input_modules[i];
const Instruction* memory_model_inst = module->GetMemoryModel();
if (memory_model_inst == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Input module " << (i + 1)
<< " is lacking an OpMemoryModel instruction.";
const uint32_t module_addressing_model =
memory_model_inst->GetSingleWordOperand(0u);
if (module_addressing_model != linked_addressing_model) {
spv_operand_desc linked_desc = nullptr, module_desc = nullptr;
grammar.lookupOperand(SPV_OPERAND_TYPE_ADDRESSING_MODEL,
linked_addressing_model, &linked_desc);
grammar.lookupOperand(SPV_OPERAND_TYPE_ADDRESSING_MODEL,
module_addressing_model, &module_desc);
return DiagnosticStream(position, consumer, "", SPV_ERROR_INTERNAL)
<< "Conflicting addressing models: " << linked_desc->name
<< " (input modules 1 through " << i << ") vs "
<< module_desc->name << " (input module " << (i + 1) << ").";
}
const uint32_t module_memory_model =
memory_model_inst->GetSingleWordOperand(1u);
if (module_memory_model != linked_memory_model) {
spv_operand_desc linked_desc = nullptr, module_desc = nullptr;
grammar.lookupOperand(SPV_OPERAND_TYPE_MEMORY_MODEL, linked_memory_model,
&linked_desc);
grammar.lookupOperand(SPV_OPERAND_TYPE_MEMORY_MODEL, module_memory_model,
&module_desc);
return DiagnosticStream(position, consumer, "", SPV_ERROR_INTERNAL)
<< "Conflicting memory models: " << linked_desc->name
<< " (input modules 1 through " << i << ") vs "
<< module_desc->name << " (input module " << (i + 1) << ").";
}
}
linked_module->SetMemoryModel(std::unique_ptr<Instruction>(
linked_memory_model_inst->Clone(linked_context)));
std::vector<std::pair<uint32_t, std::string>> entry_points;
for (const auto& module : input_modules)
for (const auto& inst : module->entry_points()) {
const uint32_t model = inst.GetSingleWordInOperand(0);
const std::string name = inst.GetInOperand(2).AsString();
const auto i = std::find_if(
entry_points.begin(), entry_points.end(),
[model, name](const std::pair<uint32_t, std::string>& v) {
return v.first == model && v.second == name;
});
if (i != entry_points.end()) {
spv_operand_desc desc = nullptr;
grammar.lookupOperand(SPV_OPERAND_TYPE_EXECUTION_MODEL, model, &desc);
return DiagnosticStream(position, consumer, "", SPV_ERROR_INTERNAL)
<< "The entry point \"" << name << "\", with execution model "
<< desc->name << ", was already defined.";
}
linked_module->AddEntryPoint(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
entry_points.emplace_back(model, name);
}
for (const auto& module : input_modules)
for (const auto& inst : module->execution_modes())
linked_module->AddExecutionMode(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->debugs1())
linked_module->AddDebug1Inst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->debugs2())
linked_module->AddDebug2Inst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->debugs3())
linked_module->AddDebug3Inst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
for (const auto& module : input_modules)
for (const auto& inst : module->ext_inst_debuginfo())
linked_module->AddExtInstDebugInfo(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
// If the generated module uses SPIR-V 1.1 or higher, add an
// OpModuleProcessed instruction about the linking step.
if (linked_module->version() >= SPV_SPIRV_VERSION_WORD(1, 1)) {
const std::string processed_string("Linked by SPIR-V Tools Linker");
std::vector<uint32_t> processed_words =
spvtools::utils::MakeVector(processed_string);
linked_module->AddDebug3Inst(std::unique_ptr<Instruction>(
new Instruction(linked_context, spv::Op::OpModuleProcessed, 0u, 0u,
{{SPV_OPERAND_TYPE_LITERAL_STRING, processed_words}})));
}
for (const auto& module : input_modules)
for (const auto& inst : module->annotations())
linked_module->AddAnnotationInst(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
// TODO(pierremoreau): Since the modules have not been validate, should we
// expect spv::StorageClass::Function variables outside
// functions?
for (const auto& module : input_modules) {
for (const auto& inst : module->types_values()) {
linked_module->AddType(
std::unique_ptr<Instruction>(inst.Clone(linked_context)));
}
}
// Process functions and their basic blocks
for (const auto& module : input_modules) {
for (const auto& func : *module) {
std::unique_ptr<opt::Function> cloned_func(func.Clone(linked_context));
linked_module->AddFunction(std::move(cloned_func));
}
}
return SPV_SUCCESS;
}
spv_result_t GetImportExportPairs(const MessageConsumer& consumer,
const opt::IRContext& linked_context,
const DefUseManager& def_use_manager,
const DecorationManager& decoration_manager,
bool allow_partial_linkage,
LinkageTable* linkings_to_do) {
spv_position_t position = {};
if (linkings_to_do == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|linkings_to_do| of GetImportExportPairs should not be empty.";
std::vector<LinkageSymbolInfo> imports;
std::unordered_map<std::string, std::vector<LinkageSymbolInfo>> exports;
// Figure out the imports and exports
for (const auto& decoration : linked_context.annotations()) {
if (decoration.opcode() != spv::Op::OpDecorate ||
spv::Decoration(decoration.GetSingleWordInOperand(1u)) !=
spv::Decoration::LinkageAttributes)
continue;
const spv::Id id = decoration.GetSingleWordInOperand(0u);
// Ignore if the targeted symbol is a built-in
bool is_built_in = false;
for (const auto& id_decoration :
decoration_manager.GetDecorationsFor(id, false)) {
if (spv::Decoration(id_decoration->GetSingleWordInOperand(1u)) ==
spv::Decoration::BuiltIn) {
is_built_in = true;
break;
}
}
if (is_built_in) {
continue;
}
const uint32_t type = decoration.GetSingleWordInOperand(3u);
LinkageSymbolInfo symbol_info;
symbol_info.name = decoration.GetInOperand(2u).AsString();
symbol_info.id = id;
symbol_info.type_id = 0u;
// Retrieve the type of the current symbol. This information will be used
// when checking that the imported and exported symbols have the same
// types.
const Instruction* def_inst = def_use_manager.GetDef(id);
if (def_inst == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "ID " << id << " is never defined:\n";
if (def_inst->opcode() == spv::Op::OpVariable) {
symbol_info.type_id = def_inst->type_id();
} else if (def_inst->opcode() == spv::Op::OpFunction) {
symbol_info.type_id = def_inst->GetSingleWordInOperand(1u);
// range-based for loop calls begin()/end(), but never cbegin()/cend(),
// which will not work here.
for (auto func_iter = linked_context.module()->cbegin();
func_iter != linked_context.module()->cend(); ++func_iter) {
if (func_iter->result_id() != id) continue;
func_iter->ForEachParam([&symbol_info](const Instruction* inst) {
symbol_info.parameter_ids.push_back(inst->result_id());
});
}
} else {
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Only global variables and functions can be decorated using"
<< " LinkageAttributes; " << id << " is neither of them.\n";
}
if (spv::LinkageType(type) == spv::LinkageType::Import)
imports.push_back(symbol_info);
else if (spv::LinkageType(type) == spv::LinkageType::Export)
exports[symbol_info.name].push_back(symbol_info);
}
// Find the import/export pairs
for (const auto& import : imports) {
std::vector<LinkageSymbolInfo> possible_exports;
const auto& exp = exports.find(import.name);
if (exp != exports.end()) possible_exports = exp->second;
if (possible_exports.empty() && !allow_partial_linkage)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Unresolved external reference to \"" << import.name << "\".";
else if (possible_exports.size() > 1u)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Too many external references, " << possible_exports.size()
<< ", were found for \"" << import.name << "\".";
if (!possible_exports.empty())
linkings_to_do->emplace_back(import, possible_exports.front());
}
return SPV_SUCCESS;
}
spv_result_t CheckImportExportCompatibility(const MessageConsumer& consumer,
const LinkageTable& linkings_to_do,
bool allow_ptr_type_mismatch,
opt::IRContext* context) {
spv_position_t position = {};
// Ensure the import and export types are the same.
const DecorationManager& decoration_manager = *context->get_decoration_mgr();
const TypeManager& type_manager = *context->get_type_mgr();
for (const auto& linking_entry : linkings_to_do) {
Type* imported_symbol_type =
type_manager.GetType(linking_entry.imported_symbol.type_id);
Type* exported_symbol_type =
type_manager.GetType(linking_entry.exported_symbol.type_id);
if (!(*imported_symbol_type == *exported_symbol_type)) {
Function* imported_symbol_type_func = imported_symbol_type->AsFunction();
Function* exported_symbol_type_func = exported_symbol_type->AsFunction();
if (imported_symbol_type_func && exported_symbol_type_func) {
const auto& imported_params = imported_symbol_type_func->param_types();
const auto& exported_params = exported_symbol_type_func->param_types();
// allow_ptr_type_mismatch allows linking functions where the pointer
// type of arguments doesn't match. Everything else still needs to be
// equal. This is to workaround LLVM-17+ not having typed pointers and
// generated SPIR-Vs not knowing the actual pointer types in some cases.
if (allow_ptr_type_mismatch &&
imported_params.size() == exported_params.size()) {
bool correct = true;
for (size_t i = 0; i < imported_params.size(); i++) {
const auto& imported_param = imported_params[i];
const auto& exported_param = exported_params[i];
if (!imported_param->IsSame(exported_param) &&
(imported_param->kind() != Type::kPointer ||
exported_param->kind() != Type::kPointer)) {
correct = false;
break;
}
}
if (correct) continue;
}
}
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Type mismatch on symbol \""
<< linking_entry.imported_symbol.name
<< "\" between imported variable/function %"
<< linking_entry.imported_symbol.id
<< " and exported variable/function %"
<< linking_entry.exported_symbol.id << ".";
}
}
// Ensure the import and export decorations are similar
for (const auto& linking_entry : linkings_to_do) {
if (!decoration_manager.HaveTheSameDecorations(
linking_entry.imported_symbol.id, linking_entry.exported_symbol.id))
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Decorations mismatch on symbol \""
<< linking_entry.imported_symbol.name
<< "\" between imported variable/function %"
<< linking_entry.imported_symbol.id
<< " and exported variable/function %"
<< linking_entry.exported_symbol.id << ".";
// TODO(pierremoreau): Decorations on function parameters should probably
// match, except for FuncParamAttr if I understand the
// spec correctly.
// TODO(pierremoreau): Decorations on the function return type should
// match, except for FuncParamAttr.
}
return SPV_SUCCESS;
}
spv_result_t RemoveLinkageSpecificInstructions(
const MessageConsumer& consumer, const LinkerOptions& options,
const LinkageTable& linkings_to_do, DecorationManager* decoration_manager,
opt::IRContext* linked_context) {
spv_position_t position = {};
if (decoration_manager == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|decoration_manager| of RemoveLinkageSpecificInstructions "
"should not be empty.";
if (linked_context == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_DATA)
<< "|linked_module| of RemoveLinkageSpecificInstructions should not "
"be empty.";
// TODO(pierremoreau): Remove FuncParamAttr decorations of imported
// functions' return type.
// Remove prototypes of imported functions
for (const auto& linking_entry : linkings_to_do) {
for (auto func_iter = linked_context->module()->begin();
func_iter != linked_context->module()->end();) {
if (func_iter->result_id() == linking_entry.imported_symbol.id)
func_iter = func_iter.Erase();
else
++func_iter;
}
}
// Remove declarations of imported variables
for (const auto& linking_entry : linkings_to_do) {
auto next = linked_context->types_values_begin();
for (auto inst = next; inst != linked_context->types_values_end();
inst = next) {
++next;
if (inst->result_id() == linking_entry.imported_symbol.id) {
linked_context->KillInst(&*inst);
}
}
}
// If partial linkage is allowed, we need an efficient way to check whether
// an imported ID had a corresponding export symbol. As uses of the imported
// symbol have already been replaced by the exported symbol, use the exported
// symbol ID.
// TODO(pierremoreau): This will not work if the decoration is applied
// through a group, but the linker does not support that
// either.
std::unordered_set<spv::Id> imports;
if (options.GetAllowPartialLinkage()) {
imports.reserve(linkings_to_do.size());
for (const auto& linking_entry : linkings_to_do)
imports.emplace(linking_entry.exported_symbol.id);
}
// Remove import linkage attributes
auto next = linked_context->annotation_begin();
for (auto inst = next; inst != linked_context->annotation_end();
inst = next) {
++next;
// If this is an import annotation:
// * if we do not allow partial linkage, remove all import annotations;
// * otherwise, remove the annotation only if there was a corresponding
// export.
if (inst->opcode() == spv::Op::OpDecorate &&
spv::Decoration(inst->GetSingleWordOperand(1u)) ==
spv::Decoration::LinkageAttributes &&
spv::LinkageType(inst->GetSingleWordOperand(3u)) ==
spv::LinkageType::Import &&
(!options.GetAllowPartialLinkage() ||
imports.find(inst->GetSingleWordOperand(0u)) != imports.end())) {
linked_context->KillInst(&*inst);
}
}
// Remove export linkage attributes if making an executable
if (!options.GetCreateLibrary()) {
next = linked_context->annotation_begin();
for (auto inst = next; inst != linked_context->annotation_end();
inst = next) {
++next;
if (inst->opcode() == spv::Op::OpDecorate &&
spv::Decoration(inst->GetSingleWordOperand(1u)) ==
spv::Decoration::LinkageAttributes &&
spv::LinkageType(inst->GetSingleWordOperand(3u)) ==
spv::LinkageType::Export) {
linked_context->KillInst(&*inst);
}
}
}
// Remove Linkage capability if making an executable and partial linkage is
// not allowed
if (!options.GetCreateLibrary() && !options.GetAllowPartialLinkage()) {
for (auto& inst : linked_context->capabilities())
if (spv::Capability(inst.GetSingleWordInOperand(0u)) ==
spv::Capability::Linkage) {
linked_context->KillInst(&inst);
// The RemoveDuplicatesPass did remove duplicated capabilities, so we
// now there arent more spv::Capability::Linkage further down.
break;
}
}
return SPV_SUCCESS;
}
spv_result_t VerifyIds(const MessageConsumer& consumer,
opt::IRContext* linked_context) {
std::unordered_set<uint32_t> ids;
bool ok = true;
linked_context->module()->ForEachInst(
[&ids, &ok](const opt::Instruction* inst) {
ok &= ids.insert(inst->unique_id()).second;
});
if (!ok) {
consumer(SPV_MSG_INTERNAL_ERROR, "", {}, "Non-unique id in merged module");
return SPV_ERROR_INVALID_ID;
}
return SPV_SUCCESS;
}
spv_result_t VerifyLimits(const MessageConsumer& consumer,
const opt::IRContext& linked_context) {
spv_position_t position = {};
const uint32_t max_id_bound = linked_context.module()->id_bound();
if (max_id_bound >= SPV_LIMIT_RESULT_ID_BOUND)
DiagnosticStream({0u, 0u, 4u}, consumer, "", SPV_WARNING)
<< "The minimum limit of IDs, " << (SPV_LIMIT_RESULT_ID_BOUND - 1)
<< ", was exceeded:"
<< " " << max_id_bound << " is the current ID bound.\n"
<< "The resulting module might not be supported by all "
"implementations.";
size_t num_global_values = 0u;
for (const auto& inst : linked_context.module()->types_values()) {
num_global_values += inst.opcode() == spv::Op::OpVariable;
}
if (num_global_values >= SPV_LIMIT_GLOBAL_VARIABLES_MAX)
DiagnosticStream(position, consumer, "", SPV_WARNING)
<< "The minimum limit of global values, "
<< (SPV_LIMIT_GLOBAL_VARIABLES_MAX - 1) << ", was exceeded;"
<< " " << num_global_values << " global values were found.\n"
<< "The resulting module might not be supported by all "
"implementations.";
return SPV_SUCCESS;
}
spv_result_t FixFunctionCallTypes(opt::IRContext& context,
const LinkageTable& linkings) {
auto mod = context.module();
const auto type_manager = context.get_type_mgr();
const auto def_use_mgr = context.get_def_use_mgr();
for (auto& func : *mod) {
func.ForEachInst([&](Instruction* inst) {
if (inst->opcode() != spv::Op::OpFunctionCall) return;
opt::Operand& target = inst->GetInOperand(0);
// only fix calls to imported functions
auto linking = std::find_if(
linkings.begin(), linkings.end(), [&](const auto& entry) {
return entry.exported_symbol.id == target.AsId();
});
if (linking == linkings.end()) return;
auto builder = InstructionBuilder(&context, inst);
for (uint32_t i = 1; i < inst->NumInOperands(); ++i) {
auto exported_func_param =
def_use_mgr->GetDef(linking->exported_symbol.parameter_ids[i - 1]);
const Type* target_type =
type_manager->GetType(exported_func_param->type_id());
if (target_type->kind() != Type::kPointer) continue;
opt::Operand& arg = inst->GetInOperand(i);
const Type* param_type =
type_manager->GetType(def_use_mgr->GetDef(arg.AsId())->type_id());
// No need to cast if it already matches
if (*param_type == *target_type) continue;
auto new_id = context.TakeNextId();
// cast to the expected pointer type
builder.AddInstruction(MakeUnique<opt::Instruction>(
&context, spv::Op::OpBitcast, exported_func_param->type_id(),
new_id,
opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_ID, {arg.AsId()}}})));
inst->SetInOperand(i, {new_id});
}
});
}
context.InvalidateAnalyses(opt::IRContext::kAnalysisDefUse |
opt::IRContext::kAnalysisInstrToBlockMapping);
return SPV_SUCCESS;
}
} // namespace
spv_result_t Link(const Context& context,
const std::vector<std::vector<uint32_t>>& binaries,
std::vector<uint32_t>* linked_binary,
const LinkerOptions& options) {
std::vector<const uint32_t*> binary_ptrs;
binary_ptrs.reserve(binaries.size());
std::vector<size_t> binary_sizes;
binary_sizes.reserve(binaries.size());
for (const auto& binary : binaries) {
binary_ptrs.push_back(binary.data());
binary_sizes.push_back(binary.size());
}
return Link(context, binary_ptrs.data(), binary_sizes.data(), binaries.size(),
linked_binary, options);
}
spv_result_t Link(const Context& context, const uint32_t* const* binaries,
const size_t* binary_sizes, size_t num_binaries,
std::vector<uint32_t>* linked_binary,
const LinkerOptions& options) {
spv_position_t position = {};
const spv_context& c_context = context.CContext();
const MessageConsumer& consumer = c_context->consumer;
linked_binary->clear();
if (num_binaries == 0u)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "No modules were given.";
std::vector<std::unique_ptr<IRContext>> ir_contexts;
std::vector<Module*> modules;
modules.reserve(num_binaries);
for (size_t i = 0u; i < num_binaries; ++i) {
const uint32_t schema = binaries[i][4u];
if (schema != 0u) {
position.index = 4u;
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Schema is non-zero for module " << i + 1 << ".";
}
std::unique_ptr<IRContext> ir_context = BuildModule(
c_context->target_env, consumer, binaries[i], binary_sizes[i]);
if (ir_context == nullptr)
return DiagnosticStream(position, consumer, "", SPV_ERROR_INVALID_BINARY)
<< "Failed to build module " << i + 1 << " out of " << num_binaries
<< ".";
modules.push_back(ir_context->module());
ir_contexts.push_back(std::move(ir_context));
}
// Phase 1: Shift the IDs used in each binary so that they occupy a disjoint
// range from the other binaries, and compute the new ID bound.
uint32_t max_id_bound = 0u;
spv_result_t res = ShiftIdsInModules(consumer, &modules, &max_id_bound);
if (res != SPV_SUCCESS) return res;
// Phase 2: Generate the header
opt::ModuleHeader header;
res = GenerateHeader(consumer, modules, max_id_bound, &header, options);
if (res != SPV_SUCCESS) return res;
IRContext linked_context(c_context->target_env, consumer);
linked_context.module()->SetHeader(header);
// Phase 3: Merge all the binaries into a single one.
AssemblyGrammar grammar(c_context);
res = MergeModules(consumer, modules, grammar, &linked_context);
if (res != SPV_SUCCESS) return res;
if (options.GetVerifyIds()) {
res = VerifyIds(consumer, &linked_context);
if (res != SPV_SUCCESS) return res;
}
// Phase 4: Remove duplicates
PassManager manager;
manager.SetMessageConsumer(consumer);
manager.AddPass<RemoveDuplicatesPass>();
opt::Pass::Status pass_res = manager.Run(&linked_context);
if (pass_res == opt::Pass::Status::Failure) return SPV_ERROR_INVALID_DATA;
// Phase 5: Find the import/export pairs
LinkageTable linkings_to_do;
res = GetImportExportPairs(consumer, linked_context,
*linked_context.get_def_use_mgr(),
*linked_context.get_decoration_mgr(),
options.GetAllowPartialLinkage(), &linkings_to_do);
if (res != SPV_SUCCESS) return res;
// Phase 6: Ensure the import and export have the same types and decorations.
res = CheckImportExportCompatibility(consumer, linkings_to_do,
options.GetAllowPtrTypeMismatch(),
&linked_context);
if (res != SPV_SUCCESS) return res;
// Phase 7: Remove all names and decorations of import variables/functions
for (const auto& linking_entry : linkings_to_do) {
linked_context.KillNamesAndDecorates(linking_entry.imported_symbol.id);
for (const auto parameter_id :
linking_entry.imported_symbol.parameter_ids) {
linked_context.KillNamesAndDecorates(parameter_id);
}
}
// Phase 8: Rematch import variables/functions to export variables/functions
for (const auto& linking_entry : linkings_to_do) {
linked_context.ReplaceAllUsesWith(linking_entry.imported_symbol.id,
linking_entry.exported_symbol.id);
}
// Phase 9: Remove linkage specific instructions, such as import/export
// attributes, linkage capability, etc. if applicable
res = RemoveLinkageSpecificInstructions(consumer, options, linkings_to_do,
linked_context.get_decoration_mgr(),
&linked_context);
if (res != SPV_SUCCESS) return res;
// Phase 10: Optionally fix function call types
if (options.GetAllowPtrTypeMismatch()) {
res = FixFunctionCallTypes(linked_context, linkings_to_do);
if (res != SPV_SUCCESS) return res;
}
// Phase 11: Compact the IDs used in the module
manager.AddPass<opt::CompactIdsPass>();
pass_res = manager.Run(&linked_context);
if (pass_res == opt::Pass::Status::Failure) return SPV_ERROR_INVALID_DATA;
// Phase 12: Recompute EntryPoint variables
manager.AddPass<opt::RemoveUnusedInterfaceVariablesPass>();
pass_res = manager.Run(&linked_context);
if (pass_res == opt::Pass::Status::Failure) return SPV_ERROR_INVALID_DATA;
// Phase 13: Warn if SPIR-V limits were exceeded
res = VerifyLimits(consumer, linked_context);
if (res != SPV_SUCCESS) return res;
// Phase 14: Output the module
linked_context.module()->ToBinary(linked_binary, true);
return SPV_SUCCESS;
}
} // namespace spvtools