SPIRV-Tools/test/TextToBinary.cpp
Lei Zhang 755f97f534 Add a callback mechanism for communicating messages to callers.
Every time an event happens in the library that the user should be
aware of, the callback will be invoked.

The existing diagnostic mechanism is hijacked internally by a
callback that creates an diagnostic object each time an event
happens.
2016-09-15 12:35:48 -04:00

270 lines
9.7 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <cstring>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "TestFixture.h"
#include "UnitSPIRV.h"
#include "source/spirv_constant.h"
#include "source/util/bitutils.h"
#include "source/util/hex_float.h"
namespace {
using libspirv::AssemblyContext;
using libspirv::AssemblyGrammar;
using spvtest::AutoText;
using spvtest::Concatenate;
using spvtest::MakeInstruction;
using spvtest::ScopedContext;
using spvtest::TextToBinaryTest;
using testing::Eq;
using testing::IsNull;
using testing::NotNull;
// An mask parsing test case.
struct MaskCase {
spv_operand_type_t which_enum;
uint32_t expected_value;
const char* expression;
};
using GoodMaskParseTest = ::testing::TestWithParam<MaskCase>;
TEST_P(GoodMaskParseTest, GoodMaskExpressions) {
spv_context context = spvContextCreate(SPV_ENV_UNIVERSAL_1_0);
uint32_t value;
EXPECT_EQ(SPV_SUCCESS,
AssemblyGrammar(context).parseMaskOperand(
GetParam().which_enum, GetParam().expression, &value));
EXPECT_EQ(GetParam().expected_value, value);
spvContextDestroy(context);
}
INSTANTIATE_TEST_CASE_P(
ParseMask, GoodMaskParseTest,
::testing::ValuesIn(std::vector<MaskCase>{
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 0, "None"},
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 1, "NotNaN"},
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 2, "NotInf"},
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 3, "NotNaN|NotInf"},
// Mask experssions are symmetric.
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 3, "NotInf|NotNaN"},
// Repeating a value has no effect.
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 3, "NotInf|NotNaN|NotInf"},
// Using 3 operands still works.
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 0x13, "NotInf|NotNaN|Fast"},
{SPV_OPERAND_TYPE_SELECTION_CONTROL, 0, "None"},
{SPV_OPERAND_TYPE_SELECTION_CONTROL, 1, "Flatten"},
{SPV_OPERAND_TYPE_SELECTION_CONTROL, 2, "DontFlatten"},
// Weirdly, you can specify to flatten and don't flatten a selection.
{SPV_OPERAND_TYPE_SELECTION_CONTROL, 3, "Flatten|DontFlatten"},
{SPV_OPERAND_TYPE_LOOP_CONTROL, 0, "None"},
{SPV_OPERAND_TYPE_LOOP_CONTROL, 1, "Unroll"},
{SPV_OPERAND_TYPE_LOOP_CONTROL, 2, "DontUnroll"},
// Weirdly, you can specify to unroll and don't unroll a loop.
{SPV_OPERAND_TYPE_LOOP_CONTROL, 3, "Unroll|DontUnroll"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 0, "None"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 1, "Inline"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 2, "DontInline"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 4, "Pure"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 8, "Const"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 0xd, "Inline|Const|Pure"},
}), );
using BadFPFastMathMaskParseTest = ::testing::TestWithParam<const char*>;
TEST_P(BadFPFastMathMaskParseTest, BadMaskExpressions) {
spv_context context = spvContextCreate(SPV_ENV_UNIVERSAL_1_0);
uint32_t value;
EXPECT_NE(SPV_SUCCESS,
AssemblyGrammar(context).parseMaskOperand(
SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, GetParam(), &value));
spvContextDestroy(context);
}
INSTANTIATE_TEST_CASE_P(ParseMask, BadFPFastMathMaskParseTest,
::testing::ValuesIn(std::vector<const char*>{
nullptr, "", "NotValidEnum", "|", "NotInf|",
"|NotInf", "NotInf||NotNaN",
"Unroll" // A good word, but for the wrong enum
}), );
TEST_F(TextToBinaryTest, InvalidText) {
ASSERT_EQ(SPV_ERROR_INVALID_TEXT,
spvTextToBinary(ScopedContext().context, nullptr, 0, &binary,
&diagnostic));
EXPECT_NE(nullptr, diagnostic);
EXPECT_THAT(diagnostic->error, Eq(std::string("Missing assembly text.")));
}
TEST_F(TextToBinaryTest, InvalidPointer) {
SetText(
"OpEntryPoint Kernel 0 \"\"\nOpExecutionMode 0 LocalSizeHint 1 1 1\n");
ASSERT_EQ(SPV_ERROR_INVALID_POINTER,
spvTextToBinary(ScopedContext().context, text.str, text.length,
nullptr, &diagnostic));
}
TEST_F(TextToBinaryTest, InvalidPrefix) {
EXPECT_EQ(
"Expected <opcode> or <result-id> at the beginning of an instruction, "
"found 'Invalid'.",
CompileFailure("Invalid"));
}
TEST_F(TextToBinaryTest, EmptyAssemblyString) {
// An empty assembly module is valid!
// It should produce a valid module with zero instructions.
EXPECT_THAT(CompiledInstructions(""), Eq(std::vector<uint32_t>{}));
}
TEST_F(TextToBinaryTest, StringSpace) {
const std::string code = ("OpSourceExtension \"string with spaces\"\n");
EXPECT_EQ(code, EncodeAndDecodeSuccessfully(code));
}
TEST_F(TextToBinaryTest, UnknownBeginningOfInstruction) {
EXPECT_EQ(
"Expected <opcode> or <result-id> at the beginning of an instruction, "
"found 'Google'.",
CompileFailure(
"\nOpSource OpenCL_C 12\nOpMemoryModel Physical64 OpenCL\nGoogle\n"));
EXPECT_EQ(4u, diagnostic->position.line + 1);
EXPECT_EQ(1u, diagnostic->position.column + 1);
}
TEST_F(TextToBinaryTest, NoEqualSign) {
EXPECT_EQ("Expected '=', found end of stream.",
CompileFailure("\nOpSource OpenCL_C 12\n"
"OpMemoryModel Physical64 OpenCL\n%2\n"));
EXPECT_EQ(5u, diagnostic->position.line + 1);
EXPECT_EQ(1u, diagnostic->position.column + 1);
}
TEST_F(TextToBinaryTest, NoOpCode) {
EXPECT_EQ("Expected opcode, found end of stream.",
CompileFailure("\nOpSource OpenCL_C 12\n"
"OpMemoryModel Physical64 OpenCL\n%2 =\n"));
EXPECT_EQ(5u, diagnostic->position.line + 1);
EXPECT_EQ(1u, diagnostic->position.column + 1);
}
TEST_F(TextToBinaryTest, WrongOpCode) {
EXPECT_EQ("Invalid Opcode prefix 'Wahahaha'.",
CompileFailure("\nOpSource OpenCL_C 12\n"
"OpMemoryModel Physical64 OpenCL\n%2 = Wahahaha\n"));
EXPECT_EQ(4u, diagnostic->position.line + 1);
EXPECT_EQ(6u, diagnostic->position.column + 1);
}
TEST_F(TextToBinaryTest, CRLF) {
const std::string input =
"%i32 = OpTypeInt 32 1\r\n%c = OpConstant %i32 123\r\n";
EXPECT_THAT(CompiledInstructions(input),
Eq(Concatenate({MakeInstruction(SpvOpTypeInt, {1, 32, 1}),
MakeInstruction(SpvOpConstant, {1, 2, 123})})));
}
using TextToBinaryFloatValueTest = spvtest::TextToBinaryTestBase<
::testing::TestWithParam<std::pair<std::string, uint32_t>>>;
TEST_P(TextToBinaryFloatValueTest, Samples) {
const std::string input =
"%1 = OpTypeFloat 32\n%2 = OpConstant %1 " + GetParam().first;
EXPECT_THAT(CompiledInstructions(input),
Eq(Concatenate({MakeInstruction(SpvOpTypeFloat, {1, 32}),
MakeInstruction(SpvOpConstant,
{1, 2, GetParam().second})})));
}
INSTANTIATE_TEST_CASE_P(
FloatValues, TextToBinaryFloatValueTest,
::testing::ValuesIn(std::vector<std::pair<std::string, uint32_t>>{
{"0.0", 0x00000000}, // +0
{"!0x00000001", 0x00000001}, // +denorm
{"!0x00800000", 0x00800000}, // +norm
{"1.5", 0x3fc00000},
{"!0x7f800000", 0x7f800000}, // +inf
{"!0x7f800001", 0x7f800001}, // NaN
{"-0.0", 0x80000000}, // -0
{"!0x80000001", 0x80000001}, // -denorm
{"!0x80800000", 0x80800000}, // -norm
{"-2.5", 0xc0200000},
{"!0xff800000", 0xff800000}, // -inf
{"!0xff800001", 0xff800001}, // NaN
}), );
using TextToBinaryHalfValueTest = spvtest::TextToBinaryTestBase<
::testing::TestWithParam<std::pair<std::string, uint32_t>>>;
TEST_P(TextToBinaryHalfValueTest, Samples) {
const std::string input =
"%1 = OpTypeFloat 16\n%2 = OpConstant %1 " + GetParam().first;
EXPECT_THAT(CompiledInstructions(input),
Eq(Concatenate({MakeInstruction(SpvOpTypeFloat, {1, 16}),
MakeInstruction(SpvOpConstant,
{1, 2, GetParam().second})})));
}
INSTANTIATE_TEST_CASE_P(
HalfValues, TextToBinaryHalfValueTest,
::testing::ValuesIn(std::vector<std::pair<std::string, uint32_t>>{
{"0.0", 0x00000000},
{"1.0", 0x00003c00},
{"1.000844", 0x00003c00}, // Truncate to 1.0
{"1.000977", 0x00003c01}, // Don't have to truncate
{"1.001465", 0x00003c01}, // Truncate to 1.0000977
{"1.5", 0x00003e00},
{"-1.0", 0x0000bc00},
{"2.0", 0x00004000},
{"-2.0", 0x0000c000},
{"0x1p1", 0x00004000},
{"-0x1p1", 0x0000c000},
{"0x1.8p1", 0x00004200},
{"0x1.8p4", 0x00004e00},
{"0x1.801p4", 0x00004e00},
{"0x1.804p4", 0x00004e01},
}), );
TEST(CreateContext, InvalidEnvironment) {
spv_target_env env;
std::memset(&env, 99, sizeof(env));
EXPECT_THAT(spvContextCreate(env), IsNull());
}
TEST(CreateContext, UniversalEnvironment) {
auto c = spvContextCreate(SPV_ENV_UNIVERSAL_1_0);
EXPECT_THAT(c, NotNull());
spvContextDestroy(c);
}
TEST(CreateContext, VulkanEnvironment) {
auto c = spvContextCreate(SPV_ENV_VULKAN_1_0);
EXPECT_THAT(c, NotNull());
spvContextDestroy(c);
}
} // anonymous namespace