SPIRV-Tools/test/fuzz/equivalence_relation_test.cpp
Alastair Donaldson 502e982956
spirv-fuzz: Fix to TransformationInlineFunction (#3913)
This fixes a problem where TransformationInlineFunction could lead to
distinct instructions having identical unique ids. It adds a validity
check to detect this problem in general.

Fixes #3911.
2020-10-16 22:58:09 +01:00

156 lines
5.2 KiB
C++

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <set>
#include "source/fuzz/equivalence_relation.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace spvtools {
namespace fuzz {
namespace {
struct UInt32Equals {
bool operator()(const uint32_t* first, const uint32_t* second) const {
return *first == *second;
}
};
struct UInt32Hash {
size_t operator()(const uint32_t* element) const {
return static_cast<size_t>(*element);
}
};
std::vector<uint32_t> ToUIntVector(
const std::vector<const uint32_t*>& pointers) {
std::vector<uint32_t> result;
for (auto pointer : pointers) {
result.push_back(*pointer);
}
return result;
}
TEST(EquivalenceRelationTest, BasicTest) {
EquivalenceRelation<uint32_t, UInt32Hash, UInt32Equals> relation;
ASSERT_TRUE(relation.GetAllKnownValues().empty());
for (uint32_t element = 0; element < 100; element++) {
relation.Register(element);
}
for (uint32_t element = 2; element < 80; element += 2) {
relation.MakeEquivalent(0, element);
relation.MakeEquivalent(element - 1, element + 1);
}
for (uint32_t element = 82; element < 100; element += 2) {
relation.MakeEquivalent(80, element);
relation.MakeEquivalent(element - 1, element + 1);
}
relation.MakeEquivalent(78, 80);
std::vector<uint32_t> class1;
for (uint32_t element = 0; element < 98; element += 2) {
ASSERT_TRUE(relation.IsEquivalent(0, element));
ASSERT_TRUE(relation.IsEquivalent(element, element + 2));
class1.push_back(element);
}
class1.push_back(98);
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(0)),
testing::WhenSorted(class1));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(4)),
testing::WhenSorted(class1));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(40)),
testing::WhenSorted(class1));
std::vector<uint32_t> class2;
for (uint32_t element = 1; element < 79; element += 2) {
ASSERT_TRUE(relation.IsEquivalent(1, element));
ASSERT_TRUE(relation.IsEquivalent(element, element + 2));
class2.push_back(element);
}
class2.push_back(79);
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(1)),
testing::WhenSorted(class2));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(11)),
testing::WhenSorted(class2));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(31)),
testing::WhenSorted(class2));
std::vector<uint32_t> class3;
for (uint32_t element = 81; element < 99; element += 2) {
ASSERT_TRUE(relation.IsEquivalent(81, element));
ASSERT_TRUE(relation.IsEquivalent(element, element + 2));
class3.push_back(element);
}
class3.push_back(99);
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(81)),
testing::WhenSorted(class3));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(91)),
testing::WhenSorted(class3));
ASSERT_THAT(ToUIntVector(relation.GetEquivalenceClass(99)),
testing::WhenSorted(class3));
bool first = true;
std::vector<const uint32_t*> previous_class;
for (auto representative : relation.GetEquivalenceClassRepresentatives()) {
std::vector<const uint32_t*> current_class =
relation.GetEquivalenceClass(*representative);
ASSERT_TRUE(std::find(current_class.begin(), current_class.end(),
representative) != current_class.end());
if (!first) {
ASSERT_TRUE(std::find(previous_class.begin(), previous_class.end(),
representative) == previous_class.end());
}
previous_class = current_class;
first = false;
}
}
TEST(EquivalenceRelationTest, DeterministicEquivalenceClassOrder) {
EquivalenceRelation<uint32_t, UInt32Hash, UInt32Equals> relation1;
EquivalenceRelation<uint32_t, UInt32Hash, UInt32Equals> relation2;
for (uint32_t i = 0; i < 1000; ++i) {
relation1.Register(i);
relation2.Register(i);
}
for (uint32_t i = 0; i < 1000; ++i) {
if (i >= 10) {
relation1.MakeEquivalent(i, i - 10);
relation2.MakeEquivalent(i, i - 10);
}
}
// We constructed the equivalence relations in the same way, so we would like
// them to have identical representatives, and identically-ordered equivalence
// classes per representative.
ASSERT_THAT(ToUIntVector(relation1.GetEquivalenceClassRepresentatives()),
ToUIntVector(relation2.GetEquivalenceClassRepresentatives()));
for (auto representative : relation1.GetEquivalenceClassRepresentatives()) {
ASSERT_THAT(ToUIntVector(relation1.GetEquivalenceClass(*representative)),
ToUIntVector(relation2.GetEquivalenceClass(*representative)));
}
}
} // namespace
} // namespace fuzz
} // namespace spvtools