SPIRV-Tools/source/binary.cpp
Kévin Petit e065c482c6
Initial support for SPV_KHR_integer_dot_product (#4327)
* Initial support for SPV_KHR_integer_dot_product

- Adds new operand types for packed-vector-format
- Moves ray tracing enums to the end

- PackedVectorFormat is a new optional operand type, so it requires
  special handling in grammar table generation.

- Add SPV_KHR_integer_dot_product to optimizer whitelists.

- Pass-through validation: valid cases pass validation
  Validation errors are not checked.

- Update SPIRV-Headers

Patch by David Neto <dneto@google.com>
Rebase and minor tweaks by Kevin Petit <kevin.petit@arm.com>

Signed-off-by: David Neto <dneto@google.com>
Signed-off-by: Kevin Petit <kevin.petit@arm.com>
Change-Id: Icb41741cb7f0f1063e5541ce25e5ba6c02266d2c

* format fixes

Change-Id: I35c82ec27bded3d1b62373fa6daec3ffd91105a3
2021-06-23 13:32:24 -04:00

838 lines
35 KiB
C++

// Copyright (c) 2015-2020 The Khronos Group Inc.
// Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights
// reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/binary.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <iterator>
#include <limits>
#include <string>
#include <unordered_map>
#include <vector>
#include "source/assembly_grammar.h"
#include "source/diagnostic.h"
#include "source/ext_inst.h"
#include "source/latest_version_spirv_header.h"
#include "source/opcode.h"
#include "source/operand.h"
#include "source/spirv_constant.h"
#include "source/spirv_endian.h"
spv_result_t spvBinaryHeaderGet(const spv_const_binary binary,
const spv_endianness_t endian,
spv_header_t* pHeader) {
if (!binary->code) return SPV_ERROR_INVALID_BINARY;
if (binary->wordCount < SPV_INDEX_INSTRUCTION)
return SPV_ERROR_INVALID_BINARY;
if (!pHeader) return SPV_ERROR_INVALID_POINTER;
// TODO: Validation checking?
pHeader->magic = spvFixWord(binary->code[SPV_INDEX_MAGIC_NUMBER], endian);
pHeader->version = spvFixWord(binary->code[SPV_INDEX_VERSION_NUMBER], endian);
// Per 2.3.1 version's high and low bytes are 0
if ((pHeader->version & 0x000000ff) || pHeader->version & 0xff000000)
return SPV_ERROR_INVALID_BINARY;
// Minimum version was 1.0 and max version is defined by SPV_VERSION.
if (pHeader->version < SPV_SPIRV_VERSION_WORD(1, 0) ||
pHeader->version > SPV_VERSION)
return SPV_ERROR_INVALID_BINARY;
pHeader->generator =
spvFixWord(binary->code[SPV_INDEX_GENERATOR_NUMBER], endian);
pHeader->bound = spvFixWord(binary->code[SPV_INDEX_BOUND], endian);
pHeader->schema = spvFixWord(binary->code[SPV_INDEX_SCHEMA], endian);
pHeader->instructions = &binary->code[SPV_INDEX_INSTRUCTION];
return SPV_SUCCESS;
}
namespace {
// A SPIR-V binary parser. A parser instance communicates detailed parse
// results via callbacks.
class Parser {
public:
// The user_data value is provided to the callbacks as context.
Parser(const spv_const_context context, void* user_data,
spv_parsed_header_fn_t parsed_header_fn,
spv_parsed_instruction_fn_t parsed_instruction_fn)
: grammar_(context),
consumer_(context->consumer),
user_data_(user_data),
parsed_header_fn_(parsed_header_fn),
parsed_instruction_fn_(parsed_instruction_fn) {}
// Parses the specified binary SPIR-V module, issuing callbacks on a parsed
// header and for each parsed instruction. Returns SPV_SUCCESS on success.
// Otherwise returns an error code and issues a diagnostic.
spv_result_t parse(const uint32_t* words, size_t num_words,
spv_diagnostic* diagnostic);
private:
// All remaining methods work on the current module parse state.
// Like the parse method, but works on the current module parse state.
spv_result_t parseModule();
// Parses an instruction at the current position of the binary. Assumes
// the header has been parsed, the endian has been set, and the word index is
// still in range. Advances the parsing position past the instruction, and
// updates other parsing state for the current module.
// On success, returns SPV_SUCCESS and issues the parsed-instruction callback.
// On failure, returns an error code and issues a diagnostic.
spv_result_t parseInstruction();
// Parses an instruction operand with the given type, for an instruction
// starting at inst_offset words into the SPIR-V binary.
// If the SPIR-V binary is the same endianness as the host, then the
// endian_converted_inst_words parameter is ignored. Otherwise, this method
// appends the words for this operand, converted to host native endianness,
// to the end of endian_converted_inst_words. This method also updates the
// expected_operands parameter, and the scalar members of the inst parameter.
// On success, returns SPV_SUCCESS, advances past the operand, and pushes a
// new entry on to the operands vector. Otherwise returns an error code and
// issues a diagnostic.
spv_result_t parseOperand(size_t inst_offset, spv_parsed_instruction_t* inst,
const spv_operand_type_t type,
std::vector<uint32_t>* endian_converted_inst_words,
std::vector<spv_parsed_operand_t>* operands,
spv_operand_pattern_t* expected_operands);
// Records the numeric type for an operand according to the type information
// associated with the given non-zero type Id. This can fail if the type Id
// is not a type Id, or if the type Id does not reference a scalar numeric
// type. On success, return SPV_SUCCESS and populates the num_words,
// number_kind, and number_bit_width fields of parsed_operand.
spv_result_t setNumericTypeInfoForType(spv_parsed_operand_t* parsed_operand,
uint32_t type_id);
// Records the number type for an instruction at the given offset, if that
// instruction generates a type. For types that aren't scalar numbers,
// record something with number kind SPV_NUMBER_NONE.
void recordNumberType(size_t inst_offset,
const spv_parsed_instruction_t* inst);
// Returns a diagnostic stream object initialized with current position in
// the input stream, and for the given error code. Any data written to the
// returned object will be propagated to the current parse's diagnostic
// object.
spvtools::DiagnosticStream diagnostic(spv_result_t error) {
return spvtools::DiagnosticStream({0, 0, _.instruction_count}, consumer_,
"", error);
}
// Returns a diagnostic stream object with the default parse error code.
spvtools::DiagnosticStream diagnostic() {
// The default failure for parsing is invalid binary.
return diagnostic(SPV_ERROR_INVALID_BINARY);
}
// Issues a diagnostic describing an exhaustion of input condition when
// trying to decode an instruction operand, and returns
// SPV_ERROR_INVALID_BINARY.
spv_result_t exhaustedInputDiagnostic(size_t inst_offset, SpvOp opcode,
spv_operand_type_t type) {
return diagnostic() << "End of input reached while decoding Op"
<< spvOpcodeString(opcode) << " starting at word "
<< inst_offset
<< ((_.word_index < _.num_words) ? ": truncated "
: ": missing ")
<< spvOperandTypeStr(type) << " operand at word offset "
<< _.word_index - inst_offset << ".";
}
// Returns the endian-corrected word at the current position.
uint32_t peek() const { return peekAt(_.word_index); }
// Returns the endian-corrected word at the given position.
uint32_t peekAt(size_t index) const {
assert(index < _.num_words);
return spvFixWord(_.words[index], _.endian);
}
// Data members
const spvtools::AssemblyGrammar grammar_; // SPIR-V syntax utility.
const spvtools::MessageConsumer& consumer_; // Message consumer callback.
void* const user_data_; // Context for the callbacks
const spv_parsed_header_fn_t parsed_header_fn_; // Parsed header callback
const spv_parsed_instruction_fn_t
parsed_instruction_fn_; // Parsed instruction callback
// Describes the format of a typed literal number.
struct NumberType {
spv_number_kind_t type;
uint32_t bit_width;
};
// The state used to parse a single SPIR-V binary module.
struct State {
State(const uint32_t* words_arg, size_t num_words_arg,
spv_diagnostic* diagnostic_arg)
: words(words_arg),
num_words(num_words_arg),
diagnostic(diagnostic_arg),
word_index(0),
instruction_count(0),
endian(),
requires_endian_conversion(false) {
// Temporary storage for parser state within a single instruction.
// Most instructions require fewer than 25 words or operands.
operands.reserve(25);
endian_converted_words.reserve(25);
expected_operands.reserve(25);
}
State() : State(0, 0, nullptr) {}
const uint32_t* words; // Words in the binary SPIR-V module.
size_t num_words; // Number of words in the module.
spv_diagnostic* diagnostic; // Where diagnostics go.
size_t word_index; // The current position in words.
size_t instruction_count; // The count of processed instructions
spv_endianness_t endian; // The endianness of the binary.
// Is the SPIR-V binary in a different endiannes from the host native
// endianness?
bool requires_endian_conversion;
// Maps a result ID to its type ID. By convention:
// - a result ID that is a type definition maps to itself.
// - a result ID without a type maps to 0. (E.g. for OpLabel)
std::unordered_map<uint32_t, uint32_t> id_to_type_id;
// Maps a type ID to its number type description.
std::unordered_map<uint32_t, NumberType> type_id_to_number_type_info;
// Maps an ExtInstImport id to the extended instruction type.
std::unordered_map<uint32_t, spv_ext_inst_type_t>
import_id_to_ext_inst_type;
// Used by parseOperand
std::vector<spv_parsed_operand_t> operands;
std::vector<uint32_t> endian_converted_words;
spv_operand_pattern_t expected_operands;
} _;
};
spv_result_t Parser::parse(const uint32_t* words, size_t num_words,
spv_diagnostic* diagnostic_arg) {
_ = State(words, num_words, diagnostic_arg);
const spv_result_t result = parseModule();
// Clear the module state. The tables might be big.
_ = State();
return result;
}
spv_result_t Parser::parseModule() {
if (!_.words) return diagnostic() << "Missing module.";
if (_.num_words < SPV_INDEX_INSTRUCTION)
return diagnostic() << "Module has incomplete header: only " << _.num_words
<< " words instead of " << SPV_INDEX_INSTRUCTION;
// Check the magic number and detect the module's endianness.
spv_const_binary_t binary{_.words, _.num_words};
if (spvBinaryEndianness(&binary, &_.endian)) {
return diagnostic() << "Invalid SPIR-V magic number '" << std::hex
<< _.words[0] << "'.";
}
_.requires_endian_conversion = !spvIsHostEndian(_.endian);
// Process the header.
spv_header_t header;
if (spvBinaryHeaderGet(&binary, _.endian, &header)) {
// It turns out there is no way to trigger this error since the only
// failure cases are already handled above, with better messages.
return diagnostic(SPV_ERROR_INTERNAL)
<< "Internal error: unhandled header parse failure";
}
if (parsed_header_fn_) {
if (auto error = parsed_header_fn_(user_data_, _.endian, header.magic,
header.version, header.generator,
header.bound, header.schema)) {
return error;
}
}
// Process the instructions.
_.word_index = SPV_INDEX_INSTRUCTION;
while (_.word_index < _.num_words)
if (auto error = parseInstruction()) return error;
// Running off the end should already have been reported earlier.
assert(_.word_index == _.num_words);
return SPV_SUCCESS;
}
spv_result_t Parser::parseInstruction() {
_.instruction_count++;
// The zero values for all members except for opcode are the
// correct initial values.
spv_parsed_instruction_t inst = {};
const uint32_t first_word = peek();
// If the module's endianness is different from the host native endianness,
// then converted_words contains the the endian-translated words in the
// instruction.
_.endian_converted_words.clear();
_.endian_converted_words.push_back(first_word);
// After a successful parse of the instruction, the inst.operands member
// will point to this vector's storage.
_.operands.clear();
assert(_.word_index < _.num_words);
// Decompose and check the first word.
uint16_t inst_word_count = 0;
spvOpcodeSplit(first_word, &inst_word_count, &inst.opcode);
if (inst_word_count < 1) {
return diagnostic() << "Invalid instruction word count: "
<< inst_word_count;
}
spv_opcode_desc opcode_desc;
if (grammar_.lookupOpcode(static_cast<SpvOp>(inst.opcode), &opcode_desc))
return diagnostic() << "Invalid opcode: " << inst.opcode;
// Advance past the opcode word. But remember the of the start
// of the instruction.
const size_t inst_offset = _.word_index;
_.word_index++;
// Maintains the ordered list of expected operand types.
// For many instructions we only need the {numTypes, operandTypes}
// entries in opcode_desc. However, sometimes we need to modify
// the list as we parse the operands. This occurs when an operand
// has its own logical operands (such as the LocalSize operand for
// ExecutionMode), or for extended instructions that may have their
// own operands depending on the selected extended instruction.
_.expected_operands.clear();
for (auto i = 0; i < opcode_desc->numTypes; i++)
_.expected_operands.push_back(
opcode_desc->operandTypes[opcode_desc->numTypes - i - 1]);
while (_.word_index < inst_offset + inst_word_count) {
const uint16_t inst_word_index = uint16_t(_.word_index - inst_offset);
if (_.expected_operands.empty()) {
return diagnostic() << "Invalid instruction Op" << opcode_desc->name
<< " starting at word " << inst_offset
<< ": expected no more operands after "
<< inst_word_index
<< " words, but stated word count is "
<< inst_word_count << ".";
}
spv_operand_type_t type =
spvTakeFirstMatchableOperand(&_.expected_operands);
if (auto error =
parseOperand(inst_offset, &inst, type, &_.endian_converted_words,
&_.operands, &_.expected_operands)) {
return error;
}
}
if (!_.expected_operands.empty() &&
!spvOperandIsOptional(_.expected_operands.back())) {
return diagnostic() << "End of input reached while decoding Op"
<< opcode_desc->name << " starting at word "
<< inst_offset << ": expected more operands after "
<< inst_word_count << " words.";
}
if ((inst_offset + inst_word_count) != _.word_index) {
return diagnostic() << "Invalid word count: Op" << opcode_desc->name
<< " starting at word " << inst_offset
<< " says it has " << inst_word_count
<< " words, but found " << _.word_index - inst_offset
<< " words instead.";
}
// Check the computed length of the endian-converted words vector against
// the declared number of words in the instruction. If endian conversion
// is required, then they should match. If no endian conversion was
// performed, then the vector only contains the initial opcode/word-count
// word.
assert(!_.requires_endian_conversion ||
(inst_word_count == _.endian_converted_words.size()));
assert(_.requires_endian_conversion ||
(_.endian_converted_words.size() == 1));
recordNumberType(inst_offset, &inst);
if (_.requires_endian_conversion) {
// We must wait until here to set this pointer, because the vector might
// have been be resized while we accumulated its elements.
inst.words = _.endian_converted_words.data();
} else {
// If no conversion is required, then just point to the underlying binary.
// This saves time and space.
inst.words = _.words + inst_offset;
}
inst.num_words = inst_word_count;
// We must wait until here to set this pointer, because the vector might
// have been be resized while we accumulated its elements.
inst.operands = _.operands.data();
inst.num_operands = uint16_t(_.operands.size());
// Issue the callback. The callee should know that all the storage in inst
// is transient, and will disappear immediately afterward.
if (parsed_instruction_fn_) {
if (auto error = parsed_instruction_fn_(user_data_, &inst)) return error;
}
return SPV_SUCCESS;
}
spv_result_t Parser::parseOperand(size_t inst_offset,
spv_parsed_instruction_t* inst,
const spv_operand_type_t type,
std::vector<uint32_t>* words,
std::vector<spv_parsed_operand_t>* operands,
spv_operand_pattern_t* expected_operands) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
// We'll fill in this result as we go along.
spv_parsed_operand_t parsed_operand;
parsed_operand.offset = uint16_t(_.word_index - inst_offset);
// Most operands occupy one word. This might be be adjusted later.
parsed_operand.num_words = 1;
// The type argument is the one used by the grammar to parse the instruction.
// But it can exposes internal parser details such as whether an operand is
// optional or actually represents a variable-length sequence of operands.
// The resulting type should be adjusted to avoid those internal details.
// In most cases, the resulting operand type is the same as the grammar type.
parsed_operand.type = type;
// Assume non-numeric values. This will be updated for literal numbers.
parsed_operand.number_kind = SPV_NUMBER_NONE;
parsed_operand.number_bit_width = 0;
if (_.word_index >= _.num_words)
return exhaustedInputDiagnostic(inst_offset, opcode, type);
const uint32_t word = peek();
// Do the words in this operand have to be converted to native endianness?
// True for all but literal strings.
bool convert_operand_endianness = true;
switch (type) {
case SPV_OPERAND_TYPE_TYPE_ID:
if (!word)
return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Type Id is 0";
inst->type_id = word;
break;
case SPV_OPERAND_TYPE_RESULT_ID:
if (!word)
return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Result Id is 0";
inst->result_id = word;
// Save the result ID to type ID mapping.
// In the grammar, type ID always appears before result ID.
if (_.id_to_type_id.find(inst->result_id) != _.id_to_type_id.end())
return diagnostic(SPV_ERROR_INVALID_ID)
<< "Id " << inst->result_id << " is defined more than once";
// Record it.
// A regular value maps to its type. Some instructions (e.g. OpLabel)
// have no type Id, and will map to 0. The result Id for a
// type-generating instruction (e.g. OpTypeInt) maps to itself.
_.id_to_type_id[inst->result_id] =
spvOpcodeGeneratesType(opcode) ? inst->result_id : inst->type_id;
break;
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_OPTIONAL_ID:
if (!word) return diagnostic(SPV_ERROR_INVALID_ID) << "Id is 0";
parsed_operand.type = SPV_OPERAND_TYPE_ID;
if (opcode == SpvOpExtInst && parsed_operand.offset == 3) {
// The current word is the extended instruction set Id.
// Set the extended instruction set type for the current instruction.
auto ext_inst_type_iter = _.import_id_to_ext_inst_type.find(word);
if (ext_inst_type_iter == _.import_id_to_ext_inst_type.end()) {
return diagnostic(SPV_ERROR_INVALID_ID)
<< "OpExtInst set Id " << word
<< " does not reference an OpExtInstImport result Id";
}
inst->ext_inst_type = ext_inst_type_iter->second;
}
break;
case SPV_OPERAND_TYPE_SCOPE_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
// Check for trivially invalid values. The operand descriptions already
// have the word "ID" in them.
if (!word) return diagnostic() << spvOperandTypeStr(type) << " is 0";
break;
case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: {
assert(SpvOpExtInst == opcode);
assert(inst->ext_inst_type != SPV_EXT_INST_TYPE_NONE);
spv_ext_inst_desc ext_inst;
if (grammar_.lookupExtInst(inst->ext_inst_type, word, &ext_inst) ==
SPV_SUCCESS) {
// if we know about this ext inst, push the expected operands
spvPushOperandTypes(ext_inst->operandTypes, expected_operands);
} else {
// if we don't know this extended instruction and the set isn't
// non-semantic, we cannot process further
if (!spvExtInstIsNonSemantic(inst->ext_inst_type)) {
return diagnostic()
<< "Invalid extended instruction number: " << word;
} else {
// for non-semantic instruction sets, we know the form of all such
// extended instructions contains a series of IDs as parameters
expected_operands->push_back(SPV_OPERAND_TYPE_VARIABLE_ID);
}
}
} break;
case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: {
assert(SpvOpSpecConstantOp == opcode);
if (grammar_.lookupSpecConstantOpcode(SpvOp(word))) {
return diagnostic()
<< "Invalid " << spvOperandTypeStr(type) << ": " << word;
}
spv_opcode_desc opcode_entry = nullptr;
if (grammar_.lookupOpcode(SpvOp(word), &opcode_entry)) {
return diagnostic(SPV_ERROR_INTERNAL)
<< "OpSpecConstant opcode table out of sync";
}
// OpSpecConstant opcodes must have a type and result. We've already
// processed them, so skip them when preparing to parse the other
// operants for the opcode.
assert(opcode_entry->hasType);
assert(opcode_entry->hasResult);
assert(opcode_entry->numTypes >= 2);
spvPushOperandTypes(opcode_entry->operandTypes + 2, expected_operands);
} break;
case SPV_OPERAND_TYPE_LITERAL_INTEGER:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER:
// These are regular single-word literal integer operands.
// Post-parsing validation should check the range of the parsed value.
parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_INTEGER;
// It turns out they are always unsigned integers!
parsed_operand.number_kind = SPV_NUMBER_UNSIGNED_INT;
parsed_operand.number_bit_width = 32;
break;
case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER:
case SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER:
parsed_operand.type = SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER;
if (opcode == SpvOpSwitch) {
// The literal operands have the same type as the value
// referenced by the selector Id.
const uint32_t selector_id = peekAt(inst_offset + 1);
const auto type_id_iter = _.id_to_type_id.find(selector_id);
if (type_id_iter == _.id_to_type_id.end() ||
type_id_iter->second == 0) {
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
<< " has no type";
}
uint32_t type_id = type_id_iter->second;
if (selector_id == type_id) {
// Recall that by convention, a result ID that is a type definition
// maps to itself.
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
<< " is a type, not a value";
}
if (auto error = setNumericTypeInfoForType(&parsed_operand, type_id))
return error;
if (parsed_operand.number_kind != SPV_NUMBER_UNSIGNED_INT &&
parsed_operand.number_kind != SPV_NUMBER_SIGNED_INT) {
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
<< " is not a scalar integer";
}
} else {
assert(opcode == SpvOpConstant || opcode == SpvOpSpecConstant);
// The literal number type is determined by the type Id for the
// constant.
assert(inst->type_id);
if (auto error =
setNumericTypeInfoForType(&parsed_operand, inst->type_id))
return error;
}
break;
case SPV_OPERAND_TYPE_LITERAL_STRING:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: {
convert_operand_endianness = false;
const char* string =
reinterpret_cast<const char*>(_.words + _.word_index);
// Compute the length of the string, but make sure we don't run off the
// end of the input.
const size_t remaining_input_bytes =
sizeof(uint32_t) * (_.num_words - _.word_index);
const size_t string_num_content_bytes =
spv_strnlen_s(string, remaining_input_bytes);
// If there was no terminating null byte, then that's an end-of-input
// error.
if (string_num_content_bytes == remaining_input_bytes)
return exhaustedInputDiagnostic(inst_offset, opcode, type);
// Account for null in the word length, so add 1 for null, then add 3 to
// make sure we round up. The following is equivalent to:
// (string_num_content_bytes + 1 + 3) / 4
const size_t string_num_words = string_num_content_bytes / 4 + 1;
// Make sure we can record the word count without overflow.
//
// This error can't currently be triggered because of validity
// checks elsewhere.
if (string_num_words > std::numeric_limits<uint16_t>::max()) {
return diagnostic() << "Literal string is longer than "
<< std::numeric_limits<uint16_t>::max()
<< " words: " << string_num_words << " words long";
}
parsed_operand.num_words = uint16_t(string_num_words);
parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_STRING;
if (SpvOpExtInstImport == opcode) {
// Record the extended instruction type for the ID for this import.
// There is only one string literal argument to OpExtInstImport,
// so it's sufficient to guard this just on the opcode.
const spv_ext_inst_type_t ext_inst_type =
spvExtInstImportTypeGet(string);
if (SPV_EXT_INST_TYPE_NONE == ext_inst_type) {
return diagnostic()
<< "Invalid extended instruction import '" << string << "'";
}
// We must have parsed a valid result ID. It's a condition
// of the grammar, and we only accept non-zero result Ids.
assert(inst->result_id);
_.import_id_to_ext_inst_type[inst->result_id] = ext_inst_type;
}
} break;
case SPV_OPERAND_TYPE_CAPABILITY:
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
case SPV_OPERAND_TYPE_MEMORY_MODEL:
case SPV_OPERAND_TYPE_EXECUTION_MODE:
case SPV_OPERAND_TYPE_STORAGE_CLASS:
case SPV_OPERAND_TYPE_DIMENSIONALITY:
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT:
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
case SPV_OPERAND_TYPE_DECORATION:
case SPV_OPERAND_TYPE_BUILT_IN:
case SPV_OPERAND_TYPE_GROUP_OPERATION:
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO:
case SPV_OPERAND_TYPE_RAY_FLAGS:
case SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION:
case SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE:
case SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE:
case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE:
case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER:
case SPV_OPERAND_TYPE_DEBUG_OPERATION:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY:
case SPV_OPERAND_TYPE_FPDENORM_MODE:
case SPV_OPERAND_TYPE_FPOPERATION_MODE:
case SPV_OPERAND_TYPE_QUANTIZATION_MODES:
case SPV_OPERAND_TYPE_OVERFLOW_MODES:
case SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT:
case SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT: {
// A single word that is a plain enum value.
// Map an optional operand type to its corresponding concrete type.
if (type == SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER)
parsed_operand.type = SPV_OPERAND_TYPE_ACCESS_QUALIFIER;
if (type == SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT)
parsed_operand.type = SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT;
spv_operand_desc entry;
if (grammar_.lookupOperand(type, word, &entry)) {
return diagnostic()
<< "Invalid " << spvOperandTypeStr(parsed_operand.type)
<< " operand: " << word;
}
// Prepare to accept operands to this operand, if needed.
spvPushOperandTypes(entry->operandTypes, expected_operands);
} break;
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
case SPV_OPERAND_TYPE_LOOP_CONTROL:
case SPV_OPERAND_TYPE_IMAGE:
case SPV_OPERAND_TYPE_OPTIONAL_IMAGE:
case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_SELECTION_CONTROL:
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS:
case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS: {
// This operand is a mask.
// Map an optional operand type to its corresponding concrete type.
if (type == SPV_OPERAND_TYPE_OPTIONAL_IMAGE)
parsed_operand.type = SPV_OPERAND_TYPE_IMAGE;
else if (type == SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS)
parsed_operand.type = SPV_OPERAND_TYPE_MEMORY_ACCESS;
// Check validity of set mask bits. Also prepare for operands for those
// masks if they have any. To get operand order correct, scan from
// MSB to LSB since we can only prepend operands to a pattern.
// The only case in the grammar where you have more than one mask bit
// having an operand is for image operands. See SPIR-V 3.14 Image
// Operands.
uint32_t remaining_word = word;
for (uint32_t mask = (1u << 31); remaining_word; mask >>= 1) {
if (remaining_word & mask) {
spv_operand_desc entry;
if (grammar_.lookupOperand(type, mask, &entry)) {
return diagnostic()
<< "Invalid " << spvOperandTypeStr(parsed_operand.type)
<< " operand: " << word << " has invalid mask component "
<< mask;
}
remaining_word ^= mask;
spvPushOperandTypes(entry->operandTypes, expected_operands);
}
}
if (word == 0) {
// An all-zeroes mask *might* also be valid.
spv_operand_desc entry;
if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry)) {
// Prepare for its operands, if any.
spvPushOperandTypes(entry->operandTypes, expected_operands);
}
}
} break;
default:
return diagnostic() << "Internal error: Unhandled operand type: " << type;
}
assert(spvOperandIsConcrete(parsed_operand.type));
operands->push_back(parsed_operand);
const size_t index_after_operand = _.word_index + parsed_operand.num_words;
// Avoid buffer overrun for the cases where the operand has more than one
// word, and where it isn't a string. (Those other cases have already been
// handled earlier.) For example, this error can occur for a multi-word
// argument to OpConstant, or a multi-word case literal operand for OpSwitch.
if (_.num_words < index_after_operand)
return exhaustedInputDiagnostic(inst_offset, opcode, type);
if (_.requires_endian_conversion) {
// Copy instruction words. Translate to native endianness as needed.
if (convert_operand_endianness) {
const spv_endianness_t endianness = _.endian;
std::transform(_.words + _.word_index, _.words + index_after_operand,
std::back_inserter(*words),
[endianness](const uint32_t raw_word) {
return spvFixWord(raw_word, endianness);
});
} else {
words->insert(words->end(), _.words + _.word_index,
_.words + index_after_operand);
}
}
// Advance past the operand.
_.word_index = index_after_operand;
return SPV_SUCCESS;
}
spv_result_t Parser::setNumericTypeInfoForType(
spv_parsed_operand_t* parsed_operand, uint32_t type_id) {
assert(type_id != 0);
auto type_info_iter = _.type_id_to_number_type_info.find(type_id);
if (type_info_iter == _.type_id_to_number_type_info.end()) {
return diagnostic() << "Type Id " << type_id << " is not a type";
}
const NumberType& info = type_info_iter->second;
if (info.type == SPV_NUMBER_NONE) {
// This is a valid type, but for something other than a scalar number.
return diagnostic() << "Type Id " << type_id
<< " is not a scalar numeric type";
}
parsed_operand->number_kind = info.type;
parsed_operand->number_bit_width = info.bit_width;
// Round up the word count.
parsed_operand->num_words = static_cast<uint16_t>((info.bit_width + 31) / 32);
return SPV_SUCCESS;
}
void Parser::recordNumberType(size_t inst_offset,
const spv_parsed_instruction_t* inst) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
if (spvOpcodeGeneratesType(opcode)) {
NumberType info = {SPV_NUMBER_NONE, 0};
if (SpvOpTypeInt == opcode) {
const bool is_signed = peekAt(inst_offset + 3) != 0;
info.type = is_signed ? SPV_NUMBER_SIGNED_INT : SPV_NUMBER_UNSIGNED_INT;
info.bit_width = peekAt(inst_offset + 2);
} else if (SpvOpTypeFloat == opcode) {
info.type = SPV_NUMBER_FLOATING;
info.bit_width = peekAt(inst_offset + 2);
}
// The *result* Id of a type generating instruction is the type Id.
_.type_id_to_number_type_info[inst->result_id] = info;
}
}
} // anonymous namespace
spv_result_t spvBinaryParse(const spv_const_context context, void* user_data,
const uint32_t* code, const size_t num_words,
spv_parsed_header_fn_t parsed_header,
spv_parsed_instruction_fn_t parsed_instruction,
spv_diagnostic* diagnostic) {
spv_context_t hijack_context = *context;
if (diagnostic) {
*diagnostic = nullptr;
spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, diagnostic);
}
Parser parser(&hijack_context, user_data, parsed_header, parsed_instruction);
return parser.parse(code, num_words, diagnostic);
}
// TODO(dneto): This probably belongs in text.cpp since that's the only place
// that a spv_binary_t value is created.
void spvBinaryDestroy(spv_binary binary) {
if (binary) {
if (binary->code) delete[] binary->code;
delete binary;
}
}
size_t spv_strnlen_s(const char* str, size_t strsz) {
if (!str) return 0;
for (size_t i = 0; i < strsz; i++) {
if (!str[i]) return i;
}
return strsz;
}