mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2024-11-30 06:50:06 +00:00
c01f826bc6
Fixes #3371.
1160 lines
51 KiB
C++
1160 lines
51 KiB
C++
// Copyright (c) 2019 Google LLC
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#include "source/fuzz/fuzzer_pass_donate_modules.h"
|
||
|
||
#include <map>
|
||
#include <queue>
|
||
#include <set>
|
||
|
||
#include "source/fuzz/call_graph.h"
|
||
#include "source/fuzz/instruction_message.h"
|
||
#include "source/fuzz/transformation_add_constant_boolean.h"
|
||
#include "source/fuzz/transformation_add_constant_composite.h"
|
||
#include "source/fuzz/transformation_add_constant_null.h"
|
||
#include "source/fuzz/transformation_add_constant_scalar.h"
|
||
#include "source/fuzz/transformation_add_function.h"
|
||
#include "source/fuzz/transformation_add_global_undef.h"
|
||
#include "source/fuzz/transformation_add_global_variable.h"
|
||
#include "source/fuzz/transformation_add_spec_constant_op.h"
|
||
#include "source/fuzz/transformation_add_type_array.h"
|
||
#include "source/fuzz/transformation_add_type_boolean.h"
|
||
#include "source/fuzz/transformation_add_type_float.h"
|
||
#include "source/fuzz/transformation_add_type_function.h"
|
||
#include "source/fuzz/transformation_add_type_int.h"
|
||
#include "source/fuzz/transformation_add_type_matrix.h"
|
||
#include "source/fuzz/transformation_add_type_pointer.h"
|
||
#include "source/fuzz/transformation_add_type_struct.h"
|
||
#include "source/fuzz/transformation_add_type_vector.h"
|
||
|
||
namespace spvtools {
|
||
namespace fuzz {
|
||
|
||
FuzzerPassDonateModules::FuzzerPassDonateModules(
|
||
opt::IRContext* ir_context, TransformationContext* transformation_context,
|
||
FuzzerContext* fuzzer_context,
|
||
protobufs::TransformationSequence* transformations,
|
||
const std::vector<fuzzerutil::ModuleSupplier>& donor_suppliers)
|
||
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
|
||
transformations),
|
||
donor_suppliers_(donor_suppliers) {}
|
||
|
||
FuzzerPassDonateModules::~FuzzerPassDonateModules() = default;
|
||
|
||
void FuzzerPassDonateModules::Apply() {
|
||
// If there are no donor suppliers, this fuzzer pass is a no-op.
|
||
if (donor_suppliers_.empty()) {
|
||
return;
|
||
}
|
||
|
||
// Donate at least one module, and probabilistically decide when to stop
|
||
// donating modules.
|
||
do {
|
||
// Choose a donor supplier at random, and get the module that it provides.
|
||
std::unique_ptr<opt::IRContext> donor_ir_context = donor_suppliers_.at(
|
||
GetFuzzerContext()->RandomIndex(donor_suppliers_))();
|
||
assert(donor_ir_context != nullptr && "Supplying of donor failed");
|
||
assert(fuzzerutil::IsValid(
|
||
donor_ir_context.get(),
|
||
GetTransformationContext()->GetValidatorOptions()) &&
|
||
"The donor module must be valid");
|
||
// Donate the supplied module.
|
||
//
|
||
// Randomly decide whether to make the module livesafe (see
|
||
// FactFunctionIsLivesafe); doing so allows it to be used for live code
|
||
// injection but restricts its behaviour to allow this, and means that its
|
||
// functions cannot be transformed as if they were arbitrary dead code.
|
||
bool make_livesafe = GetFuzzerContext()->ChoosePercentage(
|
||
GetFuzzerContext()->ChanceOfMakingDonorLivesafe());
|
||
DonateSingleModule(donor_ir_context.get(), make_livesafe);
|
||
} while (GetFuzzerContext()->ChoosePercentage(
|
||
GetFuzzerContext()->GetChanceOfDonatingAdditionalModule()));
|
||
}
|
||
|
||
void FuzzerPassDonateModules::DonateSingleModule(
|
||
opt::IRContext* donor_ir_context, bool make_livesafe) {
|
||
// The ids used by the donor module may very well clash with ids defined in
|
||
// the recipient module. Furthermore, some instructions defined in the donor
|
||
// module will be equivalent to instructions defined in the recipient module,
|
||
// and it is not always legal to re-declare equivalent instructions. For
|
||
// example, OpTypeVoid cannot be declared twice.
|
||
//
|
||
// To handle this, we maintain a mapping from an id used in the donor module
|
||
// to the corresponding id that will be used by the donated code when it
|
||
// appears in the recipient module.
|
||
//
|
||
// This mapping is populated in two ways:
|
||
// (1) by mapping a donor instruction's result id to the id of some equivalent
|
||
// existing instruction in the recipient (e.g. this has to be done for
|
||
// OpTypeVoid)
|
||
// (2) by mapping a donor instruction's result id to a freshly chosen id that
|
||
// is guaranteed to be different from any id already used by the recipient
|
||
// (or from any id already chosen to handle a previous donor id)
|
||
std::map<uint32_t, uint32_t> original_id_to_donated_id;
|
||
|
||
HandleExternalInstructionImports(donor_ir_context,
|
||
&original_id_to_donated_id);
|
||
HandleTypesAndValues(donor_ir_context, &original_id_to_donated_id);
|
||
HandleFunctions(donor_ir_context, &original_id_to_donated_id, make_livesafe);
|
||
|
||
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3115) Handle some
|
||
// kinds of decoration.
|
||
}
|
||
|
||
SpvStorageClass FuzzerPassDonateModules::AdaptStorageClass(
|
||
SpvStorageClass donor_storage_class) {
|
||
switch (donor_storage_class) {
|
||
case SpvStorageClassFunction:
|
||
case SpvStorageClassPrivate:
|
||
case SpvStorageClassWorkgroup:
|
||
// We leave these alone
|
||
return donor_storage_class;
|
||
case SpvStorageClassInput:
|
||
case SpvStorageClassOutput:
|
||
case SpvStorageClassUniform:
|
||
case SpvStorageClassUniformConstant:
|
||
case SpvStorageClassPushConstant:
|
||
case SpvStorageClassImage:
|
||
case SpvStorageClassStorageBuffer:
|
||
// We change these to Private
|
||
return SpvStorageClassPrivate;
|
||
default:
|
||
// Handle other cases on demand.
|
||
assert(false && "Currently unsupported storage class.");
|
||
return SpvStorageClassMax;
|
||
}
|
||
}
|
||
|
||
void FuzzerPassDonateModules::HandleExternalInstructionImports(
|
||
opt::IRContext* donor_ir_context,
|
||
std::map<uint32_t, uint32_t>* original_id_to_donated_id) {
|
||
// Consider every external instruction set import in the donor module.
|
||
for (auto& donor_import : donor_ir_context->module()->ext_inst_imports()) {
|
||
const auto& donor_import_name_words = donor_import.GetInOperand(0).words;
|
||
// Look for an identical import in the recipient module.
|
||
for (auto& existing_import : GetIRContext()->module()->ext_inst_imports()) {
|
||
const auto& existing_import_name_words =
|
||
existing_import.GetInOperand(0).words;
|
||
if (donor_import_name_words == existing_import_name_words) {
|
||
// A matching import has found. Map the result id for the donor import
|
||
// to the id of the existing import, so that when donor instructions
|
||
// rely on the import they will be rewritten to use the existing import.
|
||
original_id_to_donated_id->insert(
|
||
{donor_import.result_id(), existing_import.result_id()});
|
||
break;
|
||
}
|
||
}
|
||
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3116): At present
|
||
// we do not handle donation of instruction imports, i.e. we do not allow
|
||
// the donor to import instruction sets that the recipient did not already
|
||
// import. It might be a good idea to allow this, but it requires some
|
||
// thought.
|
||
assert(original_id_to_donated_id->count(donor_import.result_id()) &&
|
||
"Donation of imports is not yet supported.");
|
||
}
|
||
}
|
||
|
||
void FuzzerPassDonateModules::HandleTypesAndValues(
|
||
opt::IRContext* donor_ir_context,
|
||
std::map<uint32_t, uint32_t>* original_id_to_donated_id) {
|
||
// Consider every type/global/constant/undef in the module.
|
||
for (auto& type_or_value : donor_ir_context->module()->types_values()) {
|
||
HandleTypeOrValue(type_or_value, original_id_to_donated_id);
|
||
}
|
||
}
|
||
|
||
void FuzzerPassDonateModules::HandleTypeOrValue(
|
||
const opt::Instruction& type_or_value,
|
||
std::map<uint32_t, uint32_t>* original_id_to_donated_id) {
|
||
// The type/value instruction generates a result id, and we need to associate
|
||
// the donor's result id with a new result id. That new result id will either
|
||
// be the id of some existing instruction, or a fresh id. This variable
|
||
// captures it.
|
||
uint32_t new_result_id;
|
||
|
||
// Decide how to handle each kind of instruction on a case-by-case basis.
|
||
//
|
||
// Because the donor module is required to be valid, when we encounter a
|
||
// type comprised of component types (e.g. an aggregate or pointer), we know
|
||
// that its component types will have been considered previously, and that
|
||
// |original_id_to_donated_id| will already contain an entry for them.
|
||
switch (type_or_value.opcode()) {
|
||
case SpvOpTypeImage:
|
||
case SpvOpTypeSampledImage:
|
||
case SpvOpTypeSampler:
|
||
// We do not donate types and variables that relate to images and
|
||
// samplers, so we skip these types and subsequently skip anything that
|
||
// depends on them.
|
||
return;
|
||
case SpvOpTypeVoid: {
|
||
// Void has to exist already in order for us to have an entry point.
|
||
// Get the existing id of void.
|
||
opt::analysis::Void void_type;
|
||
new_result_id = GetIRContext()->get_type_mgr()->GetId(&void_type);
|
||
assert(new_result_id &&
|
||
"The module being transformed will always have 'void' type "
|
||
"declared.");
|
||
} break;
|
||
case SpvOpTypeBool: {
|
||
// Bool cannot be declared multiple times, so use its existing id if
|
||
// present, or add a declaration of Bool with a fresh id if not.
|
||
opt::analysis::Bool bool_type;
|
||
auto bool_type_id = GetIRContext()->get_type_mgr()->GetId(&bool_type);
|
||
if (bool_type_id) {
|
||
new_result_id = bool_type_id;
|
||
} else {
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
ApplyTransformation(TransformationAddTypeBoolean(new_result_id));
|
||
}
|
||
} break;
|
||
case SpvOpTypeInt: {
|
||
// Int cannot be declared multiple times with the same width and
|
||
// signedness, so check whether an existing identical Int type is
|
||
// present and use its id if so. Otherwise add a declaration of the
|
||
// Int type used by the donor, with a fresh id.
|
||
const uint32_t width = type_or_value.GetSingleWordInOperand(0);
|
||
const bool is_signed =
|
||
static_cast<bool>(type_or_value.GetSingleWordInOperand(1));
|
||
opt::analysis::Integer int_type(width, is_signed);
|
||
auto int_type_id = GetIRContext()->get_type_mgr()->GetId(&int_type);
|
||
if (int_type_id) {
|
||
new_result_id = int_type_id;
|
||
} else {
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
ApplyTransformation(
|
||
TransformationAddTypeInt(new_result_id, width, is_signed));
|
||
}
|
||
} break;
|
||
case SpvOpTypeFloat: {
|
||
// Similar to SpvOpTypeInt.
|
||
const uint32_t width = type_or_value.GetSingleWordInOperand(0);
|
||
opt::analysis::Float float_type(width);
|
||
auto float_type_id = GetIRContext()->get_type_mgr()->GetId(&float_type);
|
||
if (float_type_id) {
|
||
new_result_id = float_type_id;
|
||
} else {
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
ApplyTransformation(TransformationAddTypeFloat(new_result_id, width));
|
||
}
|
||
} break;
|
||
case SpvOpTypeVector: {
|
||
// It is not legal to have two Vector type declarations with identical
|
||
// element types and element counts, so check whether an existing
|
||
// identical Vector type is present and use its id if so. Otherwise add
|
||
// a declaration of the Vector type used by the donor, with a fresh id.
|
||
|
||
// When considering the vector's component type id, we look up the id
|
||
// use in the donor to find the id to which this has been remapped.
|
||
uint32_t component_type_id = original_id_to_donated_id->at(
|
||
type_or_value.GetSingleWordInOperand(0));
|
||
auto component_type =
|
||
GetIRContext()->get_type_mgr()->GetType(component_type_id);
|
||
assert(component_type && "The base type should be registered.");
|
||
auto component_count = type_or_value.GetSingleWordInOperand(1);
|
||
opt::analysis::Vector vector_type(component_type, component_count);
|
||
auto vector_type_id = GetIRContext()->get_type_mgr()->GetId(&vector_type);
|
||
if (vector_type_id) {
|
||
new_result_id = vector_type_id;
|
||
} else {
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
ApplyTransformation(TransformationAddTypeVector(
|
||
new_result_id, component_type_id, component_count));
|
||
}
|
||
} break;
|
||
case SpvOpTypeMatrix: {
|
||
// Similar to SpvOpTypeVector.
|
||
uint32_t column_type_id = original_id_to_donated_id->at(
|
||
type_or_value.GetSingleWordInOperand(0));
|
||
auto column_type =
|
||
GetIRContext()->get_type_mgr()->GetType(column_type_id);
|
||
assert(column_type && column_type->AsVector() &&
|
||
"The column type should be a registered vector type.");
|
||
auto column_count = type_or_value.GetSingleWordInOperand(1);
|
||
opt::analysis::Matrix matrix_type(column_type, column_count);
|
||
auto matrix_type_id = GetIRContext()->get_type_mgr()->GetId(&matrix_type);
|
||
if (matrix_type_id) {
|
||
new_result_id = matrix_type_id;
|
||
} else {
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
ApplyTransformation(TransformationAddTypeMatrix(
|
||
new_result_id, column_type_id, column_count));
|
||
}
|
||
|
||
} break;
|
||
case SpvOpTypeArray: {
|
||
// It is OK to have multiple structurally identical array types, so
|
||
// we go ahead and add a remapped version of the type declared by the
|
||
// donor.
|
||
uint32_t component_type_id = type_or_value.GetSingleWordInOperand(0);
|
||
if (!original_id_to_donated_id->count(component_type_id)) {
|
||
// We did not donate the component type of this array type, so we
|
||
// cannot donate the array type.
|
||
return;
|
||
}
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
ApplyTransformation(TransformationAddTypeArray(
|
||
new_result_id, original_id_to_donated_id->at(component_type_id),
|
||
original_id_to_donated_id->at(
|
||
type_or_value.GetSingleWordInOperand(1))));
|
||
} break;
|
||
case SpvOpTypeRuntimeArray: {
|
||
// A runtime array is allowed as the final member of an SSBO. During
|
||
// donation we turn runtime arrays into fixed-size arrays. For dead
|
||
// code donations this is OK because the array is never indexed into at
|
||
// runtime, so it does not matter what its size is. For live-safe code,
|
||
// all accesses are made in-bounds, so this is also OK.
|
||
//
|
||
// The special OpArrayLength instruction, which works on runtime arrays,
|
||
// is rewritten to yield the fixed length that is used for the array.
|
||
|
||
uint32_t component_type_id = type_or_value.GetSingleWordInOperand(0);
|
||
if (!original_id_to_donated_id->count(component_type_id)) {
|
||
// We did not donate the component type of this runtime array type, so
|
||
// we cannot donate it as a fixed-size array.
|
||
return;
|
||
}
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
ApplyTransformation(TransformationAddTypeArray(
|
||
new_result_id, original_id_to_donated_id->at(component_type_id),
|
||
FindOrCreateIntegerConstant(
|
||
{GetFuzzerContext()->GetRandomSizeForNewArray()}, 32, false)));
|
||
} break;
|
||
case SpvOpTypeStruct: {
|
||
// Similar to SpvOpTypeArray.
|
||
std::vector<uint32_t> member_type_ids;
|
||
for (uint32_t i = 0; i < type_or_value.NumInOperands(); i++) {
|
||
auto component_type_id = type_or_value.GetSingleWordInOperand(i);
|
||
if (!original_id_to_donated_id->count(component_type_id)) {
|
||
// We did not donate every member type for this struct type, so we
|
||
// cannot donate the struct type.
|
||
return;
|
||
}
|
||
member_type_ids.push_back(
|
||
original_id_to_donated_id->at(component_type_id));
|
||
}
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
ApplyTransformation(
|
||
TransformationAddTypeStruct(new_result_id, member_type_ids));
|
||
} break;
|
||
case SpvOpTypePointer: {
|
||
// Similar to SpvOpTypeArray.
|
||
uint32_t pointee_type_id = type_or_value.GetSingleWordInOperand(1);
|
||
if (!original_id_to_donated_id->count(pointee_type_id)) {
|
||
// We did not donate the pointee type for this pointer type, so we
|
||
// cannot donate the pointer type.
|
||
return;
|
||
}
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
ApplyTransformation(TransformationAddTypePointer(
|
||
new_result_id,
|
||
AdaptStorageClass(static_cast<SpvStorageClass>(
|
||
type_or_value.GetSingleWordInOperand(0))),
|
||
original_id_to_donated_id->at(pointee_type_id)));
|
||
} break;
|
||
case SpvOpTypeFunction: {
|
||
// It is not OK to have multiple function types that use identical ids
|
||
// for their return and parameter types. We thus go through all
|
||
// existing function types to look for a match. We do not use the
|
||
// type manager here because we want to regard two function types that
|
||
// are structurally identical but that differ with respect to the
|
||
// actual ids used for pointer types as different.
|
||
//
|
||
// Example:
|
||
//
|
||
// %1 = OpTypeVoid
|
||
// %2 = OpTypeInt 32 0
|
||
// %3 = OpTypePointer Function %2
|
||
// %4 = OpTypePointer Function %2
|
||
// %5 = OpTypeFunction %1 %3
|
||
// %6 = OpTypeFunction %1 %4
|
||
//
|
||
// We regard %5 and %6 as distinct function types here, even though
|
||
// they both have the form "uint32* -> void"
|
||
|
||
std::vector<uint32_t> return_and_parameter_types;
|
||
for (uint32_t i = 0; i < type_or_value.NumInOperands(); i++) {
|
||
uint32_t return_or_parameter_type =
|
||
type_or_value.GetSingleWordInOperand(i);
|
||
if (!original_id_to_donated_id->count(return_or_parameter_type)) {
|
||
// We did not donate every return/parameter type for this function
|
||
// type, so we cannot donate the function type.
|
||
return;
|
||
}
|
||
return_and_parameter_types.push_back(
|
||
original_id_to_donated_id->at(return_or_parameter_type));
|
||
}
|
||
uint32_t existing_function_id = fuzzerutil::FindFunctionType(
|
||
GetIRContext(), return_and_parameter_types);
|
||
if (existing_function_id) {
|
||
new_result_id = existing_function_id;
|
||
} else {
|
||
// No match was found, so add a remapped version of the function type
|
||
// to the module, with a fresh id.
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
std::vector<uint32_t> argument_type_ids;
|
||
for (uint32_t i = 1; i < type_or_value.NumInOperands(); i++) {
|
||
argument_type_ids.push_back(original_id_to_donated_id->at(
|
||
type_or_value.GetSingleWordInOperand(i)));
|
||
}
|
||
ApplyTransformation(TransformationAddTypeFunction(
|
||
new_result_id,
|
||
original_id_to_donated_id->at(
|
||
type_or_value.GetSingleWordInOperand(0)),
|
||
argument_type_ids));
|
||
}
|
||
} break;
|
||
case SpvOpSpecConstantOp: {
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
auto type_id = original_id_to_donated_id->at(type_or_value.type_id());
|
||
auto opcode = static_cast<SpvOp>(type_or_value.GetSingleWordInOperand(0));
|
||
|
||
// Make sure we take into account |original_id_to_donated_id| when
|
||
// computing operands for OpSpecConstantOp.
|
||
opt::Instruction::OperandList operands;
|
||
for (uint32_t i = 1; i < type_or_value.NumInOperands(); ++i) {
|
||
const auto& operand = type_or_value.GetInOperand(i);
|
||
auto data =
|
||
operand.type == SPV_OPERAND_TYPE_ID
|
||
? opt::Operand::OperandData{original_id_to_donated_id->at(
|
||
operand.words[0])}
|
||
: operand.words;
|
||
|
||
operands.push_back({operand.type, std::move(data)});
|
||
}
|
||
|
||
ApplyTransformation(TransformationAddSpecConstantOp(
|
||
new_result_id, type_id, opcode, std::move(operands)));
|
||
} break;
|
||
case SpvOpSpecConstantTrue:
|
||
case SpvOpSpecConstantFalse:
|
||
case SpvOpConstantTrue:
|
||
case SpvOpConstantFalse: {
|
||
// It is OK to have duplicate definitions of True and False, so add
|
||
// these to the module, using a remapped Bool type.
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
auto value = type_or_value.opcode() == SpvOpConstantTrue ||
|
||
type_or_value.opcode() == SpvOpSpecConstantTrue;
|
||
ApplyTransformation(
|
||
TransformationAddConstantBoolean(new_result_id, value));
|
||
} break;
|
||
case SpvOpSpecConstant:
|
||
case SpvOpConstant: {
|
||
// It is OK to have duplicate constant definitions, so add this to the
|
||
// module using a remapped result type.
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
std::vector<uint32_t> data_words;
|
||
type_or_value.ForEachInOperand([&data_words](const uint32_t* in_operand) {
|
||
data_words.push_back(*in_operand);
|
||
});
|
||
ApplyTransformation(TransformationAddConstantScalar(
|
||
new_result_id, original_id_to_donated_id->at(type_or_value.type_id()),
|
||
data_words));
|
||
} break;
|
||
case SpvOpSpecConstantComposite:
|
||
case SpvOpConstantComposite: {
|
||
assert(original_id_to_donated_id->count(type_or_value.type_id()) &&
|
||
"Composite types for which it is possible to create a constant "
|
||
"should have been donated.");
|
||
|
||
// It is OK to have duplicate constant composite definitions, so add
|
||
// this to the module using remapped versions of all consituent ids and
|
||
// the result type.
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
std::vector<uint32_t> constituent_ids;
|
||
type_or_value.ForEachInId([&constituent_ids, &original_id_to_donated_id](
|
||
const uint32_t* constituent_id) {
|
||
assert(original_id_to_donated_id->count(*constituent_id) &&
|
||
"The constants used to construct this composite should "
|
||
"have been donated.");
|
||
constituent_ids.push_back(
|
||
original_id_to_donated_id->at(*constituent_id));
|
||
});
|
||
ApplyTransformation(TransformationAddConstantComposite(
|
||
new_result_id, original_id_to_donated_id->at(type_or_value.type_id()),
|
||
constituent_ids));
|
||
} break;
|
||
case SpvOpConstantNull: {
|
||
if (!original_id_to_donated_id->count(type_or_value.type_id())) {
|
||
// We did not donate the type associated with this null constant, so
|
||
// we cannot donate the null constant.
|
||
return;
|
||
}
|
||
|
||
// It is fine to have multiple OpConstantNull instructions of the same
|
||
// type, so we just add this to the recipient module.
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
ApplyTransformation(TransformationAddConstantNull(
|
||
new_result_id,
|
||
original_id_to_donated_id->at(type_or_value.type_id())));
|
||
} break;
|
||
case SpvOpVariable: {
|
||
if (!original_id_to_donated_id->count(type_or_value.type_id())) {
|
||
// We did not donate the pointer type associated with this variable,
|
||
// so we cannot donate the variable.
|
||
return;
|
||
}
|
||
|
||
// This is a global variable that could have one of various storage
|
||
// classes. However, we change all global variable pointer storage
|
||
// classes (such as Uniform, Input and Output) to private when donating
|
||
// pointer types, with the exception of the Workgroup storage class.
|
||
//
|
||
// Thus this variable's pointer type is guaranteed to have storage class
|
||
// Private or Workgroup.
|
||
//
|
||
// We add a global variable with either Private or Workgroup storage
|
||
// class, using remapped versions of the result type and initializer ids
|
||
// for the global variable in the donor.
|
||
//
|
||
// We regard the added variable as having an irrelevant value. This
|
||
// means that future passes can add stores to the variable in any
|
||
// way they wish, and pass them as pointer parameters to functions
|
||
// without worrying about whether their data might get modified.
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
uint32_t remapped_pointer_type =
|
||
original_id_to_donated_id->at(type_or_value.type_id());
|
||
uint32_t initializer_id;
|
||
SpvStorageClass storage_class =
|
||
static_cast<SpvStorageClass>(type_or_value.GetSingleWordInOperand(
|
||
0)) == SpvStorageClassWorkgroup
|
||
? SpvStorageClassWorkgroup
|
||
: SpvStorageClassPrivate;
|
||
if (type_or_value.NumInOperands() == 1) {
|
||
// The variable did not have an initializer. Initialize it to zero
|
||
// if it has Private storage class (to limit problems associated with
|
||
// uninitialized data), and leave it uninitialized if it has Workgroup
|
||
// storage class (as Workgroup variables cannot have initializers).
|
||
|
||
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3275): we
|
||
// could initialize Workgroup variables at the start of an entry
|
||
// point, and should do so if their uninitialized nature proves
|
||
// problematic.
|
||
initializer_id = storage_class == SpvStorageClassWorkgroup
|
||
? 0
|
||
: FindOrCreateZeroConstant(
|
||
fuzzerutil::GetPointeeTypeIdFromPointerType(
|
||
GetIRContext(), remapped_pointer_type));
|
||
} else {
|
||
// The variable already had an initializer; use its remapped id.
|
||
initializer_id = original_id_to_donated_id->at(
|
||
type_or_value.GetSingleWordInOperand(1));
|
||
}
|
||
ApplyTransformation(
|
||
TransformationAddGlobalVariable(new_result_id, remapped_pointer_type,
|
||
storage_class, initializer_id, true));
|
||
} break;
|
||
case SpvOpUndef: {
|
||
if (!original_id_to_donated_id->count(type_or_value.type_id())) {
|
||
// We did not donate the type associated with this undef, so we cannot
|
||
// donate the undef.
|
||
return;
|
||
}
|
||
|
||
// It is fine to have multiple Undef instructions of the same type, so
|
||
// we just add this to the recipient module.
|
||
new_result_id = GetFuzzerContext()->GetFreshId();
|
||
ApplyTransformation(TransformationAddGlobalUndef(
|
||
new_result_id,
|
||
original_id_to_donated_id->at(type_or_value.type_id())));
|
||
} break;
|
||
default: {
|
||
assert(0 && "Unknown type/value.");
|
||
new_result_id = 0;
|
||
} break;
|
||
}
|
||
|
||
// Update the id mapping to associate the instruction's result id with its
|
||
// corresponding id in the recipient.
|
||
original_id_to_donated_id->insert({type_or_value.result_id(), new_result_id});
|
||
}
|
||
|
||
void FuzzerPassDonateModules::HandleFunctions(
|
||
opt::IRContext* donor_ir_context,
|
||
std::map<uint32_t, uint32_t>* original_id_to_donated_id,
|
||
bool make_livesafe) {
|
||
// Get the ids of functions in the donor module, topologically sorted
|
||
// according to the donor's call graph.
|
||
auto topological_order =
|
||
GetFunctionsInCallGraphTopologicalOrder(donor_ir_context);
|
||
|
||
// Donate the functions in reverse topological order. This ensures that a
|
||
// function gets donated before any function that depends on it. This allows
|
||
// donation of the functions to be separated into a number of transformations,
|
||
// each adding one function, such that every prefix of transformations leaves
|
||
// the module valid.
|
||
for (auto function_id = topological_order.rbegin();
|
||
function_id != topological_order.rend(); ++function_id) {
|
||
// Find the function to be donated.
|
||
opt::Function* function_to_donate = nullptr;
|
||
for (auto& function : *donor_ir_context->module()) {
|
||
if (function.result_id() == *function_id) {
|
||
function_to_donate = &function;
|
||
break;
|
||
}
|
||
}
|
||
assert(function_to_donate && "Function to be donated was not found.");
|
||
|
||
if (!original_id_to_donated_id->count(
|
||
function_to_donate->DefInst().GetSingleWordInOperand(1))) {
|
||
// We were not able to donate this function's type, so we cannot donate
|
||
// the function.
|
||
continue;
|
||
}
|
||
|
||
// We will collect up protobuf messages representing the donor function's
|
||
// instructions here, and use them to create an AddFunction transformation.
|
||
std::vector<protobufs::Instruction> donated_instructions;
|
||
|
||
// This set tracks the ids of those instructions for which donation was
|
||
// completely skipped: neither the instruction nor a substitute for it was
|
||
// donated.
|
||
std::set<uint32_t> skipped_instructions;
|
||
|
||
// Consider every instruction of the donor function.
|
||
function_to_donate->ForEachInst(
|
||
[this, &donated_instructions, donor_ir_context,
|
||
&original_id_to_donated_id,
|
||
&skipped_instructions](const opt::Instruction* instruction) {
|
||
if (instruction->opcode() == SpvOpArrayLength) {
|
||
// We treat OpArrayLength specially.
|
||
HandleOpArrayLength(*instruction, original_id_to_donated_id,
|
||
&donated_instructions);
|
||
} else if (!CanDonateInstruction(donor_ir_context, *instruction,
|
||
*original_id_to_donated_id,
|
||
skipped_instructions)) {
|
||
// This is an instruction that we cannot directly donate.
|
||
HandleDifficultInstruction(*instruction, original_id_to_donated_id,
|
||
&donated_instructions,
|
||
&skipped_instructions);
|
||
} else {
|
||
PrepareInstructionForDonation(*instruction, donor_ir_context,
|
||
original_id_to_donated_id,
|
||
&donated_instructions);
|
||
}
|
||
});
|
||
|
||
if (make_livesafe) {
|
||
// Make the function livesafe and then add it.
|
||
AddLivesafeFunction(*function_to_donate, donor_ir_context,
|
||
*original_id_to_donated_id, donated_instructions);
|
||
} else {
|
||
// Add the function in a non-livesafe manner.
|
||
ApplyTransformation(TransformationAddFunction(donated_instructions));
|
||
}
|
||
}
|
||
}
|
||
|
||
bool FuzzerPassDonateModules::CanDonateInstruction(
|
||
opt::IRContext* donor_ir_context, const opt::Instruction& instruction,
|
||
const std::map<uint32_t, uint32_t>& original_id_to_donated_id,
|
||
const std::set<uint32_t>& skipped_instructions) const {
|
||
if (instruction.type_id() &&
|
||
!original_id_to_donated_id.count(instruction.type_id())) {
|
||
// We could not donate the result type of this instruction, so we cannot
|
||
// donate the instruction.
|
||
return false;
|
||
}
|
||
|
||
// Now consider instructions we specifically want to skip because we do not
|
||
// yet support them.
|
||
switch (instruction.opcode()) {
|
||
case SpvOpAtomicLoad:
|
||
case SpvOpAtomicStore:
|
||
case SpvOpAtomicExchange:
|
||
case SpvOpAtomicCompareExchange:
|
||
case SpvOpAtomicCompareExchangeWeak:
|
||
case SpvOpAtomicIIncrement:
|
||
case SpvOpAtomicIDecrement:
|
||
case SpvOpAtomicIAdd:
|
||
case SpvOpAtomicISub:
|
||
case SpvOpAtomicSMin:
|
||
case SpvOpAtomicUMin:
|
||
case SpvOpAtomicSMax:
|
||
case SpvOpAtomicUMax:
|
||
case SpvOpAtomicAnd:
|
||
case SpvOpAtomicOr:
|
||
case SpvOpAtomicXor:
|
||
// We conservatively ignore all atomic instructions at present.
|
||
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3276): Consider
|
||
// being less conservative here.
|
||
case SpvOpImageSampleImplicitLod:
|
||
case SpvOpImageSampleExplicitLod:
|
||
case SpvOpImageSampleDrefImplicitLod:
|
||
case SpvOpImageSampleDrefExplicitLod:
|
||
case SpvOpImageSampleProjImplicitLod:
|
||
case SpvOpImageSampleProjExplicitLod:
|
||
case SpvOpImageSampleProjDrefImplicitLod:
|
||
case SpvOpImageSampleProjDrefExplicitLod:
|
||
case SpvOpImageFetch:
|
||
case SpvOpImageGather:
|
||
case SpvOpImageDrefGather:
|
||
case SpvOpImageRead:
|
||
case SpvOpImageWrite:
|
||
case SpvOpImageSparseSampleImplicitLod:
|
||
case SpvOpImageSparseSampleExplicitLod:
|
||
case SpvOpImageSparseSampleDrefImplicitLod:
|
||
case SpvOpImageSparseSampleDrefExplicitLod:
|
||
case SpvOpImageSparseSampleProjImplicitLod:
|
||
case SpvOpImageSparseSampleProjExplicitLod:
|
||
case SpvOpImageSparseSampleProjDrefImplicitLod:
|
||
case SpvOpImageSparseSampleProjDrefExplicitLod:
|
||
case SpvOpImageSparseFetch:
|
||
case SpvOpImageSparseGather:
|
||
case SpvOpImageSparseDrefGather:
|
||
case SpvOpImageSparseRead:
|
||
case SpvOpImageSampleFootprintNV:
|
||
case SpvOpImage:
|
||
case SpvOpImageQueryFormat:
|
||
case SpvOpImageQueryLevels:
|
||
case SpvOpImageQueryLod:
|
||
case SpvOpImageQueryOrder:
|
||
case SpvOpImageQuerySamples:
|
||
case SpvOpImageQuerySize:
|
||
case SpvOpImageQuerySizeLod:
|
||
case SpvOpSampledImage:
|
||
// We ignore all instructions related to accessing images, since we do not
|
||
// donate images.
|
||
return false;
|
||
case SpvOpLoad:
|
||
switch (donor_ir_context->get_def_use_mgr()
|
||
->GetDef(instruction.type_id())
|
||
->opcode()) {
|
||
case SpvOpTypeImage:
|
||
case SpvOpTypeSampledImage:
|
||
case SpvOpTypeSampler:
|
||
// Again, we ignore instructions that relate to accessing images.
|
||
return false;
|
||
default:
|
||
break;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// Examine each id input operand to the instruction. If it turns out that we
|
||
// have skipped any of these operands then we cannot donate the instruction.
|
||
bool result = true;
|
||
instruction.WhileEachInId(
|
||
[donor_ir_context, &original_id_to_donated_id, &result,
|
||
&skipped_instructions](const uint32_t* in_id) -> bool {
|
||
if (!original_id_to_donated_id.count(*in_id)) {
|
||
// We do not have a mapped result id for this id operand. That either
|
||
// means that it is a forward reference (which is OK), that we skipped
|
||
// the instruction that generated it (which is not OK), or that it is
|
||
// the id of a function or global value that we did not donate (which
|
||
// is not OK). We check for the latter two cases.
|
||
if (skipped_instructions.count(*in_id) ||
|
||
// A function or global value does not have an associated basic
|
||
// block.
|
||
!donor_ir_context->get_instr_block(*in_id)) {
|
||
result = false;
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
});
|
||
return result;
|
||
}
|
||
|
||
bool FuzzerPassDonateModules::IsBasicType(
|
||
const opt::Instruction& instruction) const {
|
||
switch (instruction.opcode()) {
|
||
case SpvOpTypeArray:
|
||
case SpvOpTypeFloat:
|
||
case SpvOpTypeInt:
|
||
case SpvOpTypeMatrix:
|
||
case SpvOpTypeStruct:
|
||
case SpvOpTypeVector:
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
std::vector<uint32_t>
|
||
FuzzerPassDonateModules::GetFunctionsInCallGraphTopologicalOrder(
|
||
opt::IRContext* context) {
|
||
CallGraph call_graph(context);
|
||
|
||
// This is an implementation of Kahn’s algorithm for topological sorting.
|
||
|
||
// This is the sorted order of function ids that we will eventually return.
|
||
std::vector<uint32_t> result;
|
||
|
||
// Get a copy of the initial in-degrees of all functions. The algorithm
|
||
// involves decrementing these values, hence why we work on a copy.
|
||
std::map<uint32_t, uint32_t> function_in_degree =
|
||
call_graph.GetFunctionInDegree();
|
||
|
||
// Populate a queue with all those function ids with in-degree zero.
|
||
std::queue<uint32_t> queue;
|
||
for (auto& entry : function_in_degree) {
|
||
if (entry.second == 0) {
|
||
queue.push(entry.first);
|
||
}
|
||
}
|
||
|
||
// Pop ids from the queue, adding them to the sorted order and decreasing the
|
||
// in-degrees of their successors. A successor who's in-degree becomes zero
|
||
// gets added to the queue.
|
||
while (!queue.empty()) {
|
||
auto next = queue.front();
|
||
queue.pop();
|
||
result.push_back(next);
|
||
for (auto successor : call_graph.GetDirectCallees(next)) {
|
||
assert(function_in_degree.at(successor) > 0 &&
|
||
"The in-degree cannot be zero if the function is a successor.");
|
||
function_in_degree[successor] = function_in_degree.at(successor) - 1;
|
||
if (function_in_degree.at(successor) == 0) {
|
||
queue.push(successor);
|
||
}
|
||
}
|
||
}
|
||
|
||
assert(result.size() == function_in_degree.size() &&
|
||
"Every function should appear in the sort.");
|
||
|
||
return result;
|
||
}
|
||
|
||
void FuzzerPassDonateModules::HandleOpArrayLength(
|
||
const opt::Instruction& instruction,
|
||
std::map<uint32_t, uint32_t>* original_id_to_donated_id,
|
||
std::vector<protobufs::Instruction>* donated_instructions) const {
|
||
assert(instruction.opcode() == SpvOpArrayLength &&
|
||
"Precondition: instruction must be OpArrayLength.");
|
||
uint32_t donated_variable_id =
|
||
original_id_to_donated_id->at(instruction.GetSingleWordInOperand(0));
|
||
auto donated_variable_instruction =
|
||
GetIRContext()->get_def_use_mgr()->GetDef(donated_variable_id);
|
||
auto pointer_to_struct_instruction =
|
||
GetIRContext()->get_def_use_mgr()->GetDef(
|
||
donated_variable_instruction->type_id());
|
||
assert(pointer_to_struct_instruction->opcode() == SpvOpTypePointer &&
|
||
"Type of variable must be pointer.");
|
||
auto donated_struct_type_instruction =
|
||
GetIRContext()->get_def_use_mgr()->GetDef(
|
||
pointer_to_struct_instruction->GetSingleWordInOperand(1));
|
||
assert(donated_struct_type_instruction->opcode() == SpvOpTypeStruct &&
|
||
"Pointee type of pointer used by OpArrayLength must be struct.");
|
||
assert(donated_struct_type_instruction->NumInOperands() ==
|
||
instruction.GetSingleWordInOperand(1) + 1 &&
|
||
"OpArrayLength must refer to the final member of the given "
|
||
"struct.");
|
||
uint32_t fixed_size_array_type_id =
|
||
donated_struct_type_instruction->GetSingleWordInOperand(
|
||
donated_struct_type_instruction->NumInOperands() - 1);
|
||
auto fixed_size_array_type_instruction =
|
||
GetIRContext()->get_def_use_mgr()->GetDef(fixed_size_array_type_id);
|
||
assert(fixed_size_array_type_instruction->opcode() == SpvOpTypeArray &&
|
||
"The donated array type must be fixed-size.");
|
||
auto array_size_id =
|
||
fixed_size_array_type_instruction->GetSingleWordInOperand(1);
|
||
|
||
if (instruction.result_id() &&
|
||
!original_id_to_donated_id->count(instruction.result_id())) {
|
||
original_id_to_donated_id->insert(
|
||
{instruction.result_id(), GetFuzzerContext()->GetFreshId()});
|
||
}
|
||
|
||
donated_instructions->push_back(MakeInstructionMessage(
|
||
SpvOpCopyObject, original_id_to_donated_id->at(instruction.type_id()),
|
||
original_id_to_donated_id->at(instruction.result_id()),
|
||
opt::Instruction::OperandList({{SPV_OPERAND_TYPE_ID, {array_size_id}}})));
|
||
}
|
||
|
||
void FuzzerPassDonateModules::HandleDifficultInstruction(
|
||
const opt::Instruction& instruction,
|
||
std::map<uint32_t, uint32_t>* original_id_to_donated_id,
|
||
std::vector<protobufs::Instruction>* donated_instructions,
|
||
std::set<uint32_t>* skipped_instructions) {
|
||
if (!instruction.result_id()) {
|
||
// It does not generate a result id, so it can be ignored.
|
||
return;
|
||
}
|
||
if (!original_id_to_donated_id->count(instruction.type_id())) {
|
||
// We cannot handle this instruction's result type, so we need to skip it
|
||
// all together.
|
||
skipped_instructions->insert(instruction.result_id());
|
||
return;
|
||
}
|
||
|
||
// We now attempt to replace the instruction with an OpCopyObject.
|
||
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3278): We could do
|
||
// something more refined here - we could check which operands to the
|
||
// instruction could not be donated and replace those operands with
|
||
// references to other ids (such as constants), so that we still get an
|
||
// instruction with the opcode and easy-to-handle operands of the donor
|
||
// instruction.
|
||
auto remapped_type_id = original_id_to_donated_id->at(instruction.type_id());
|
||
if (!IsBasicType(
|
||
*GetIRContext()->get_def_use_mgr()->GetDef(remapped_type_id))) {
|
||
// The instruction has a non-basic result type, so we cannot replace it with
|
||
// an object copy of a constant. We thus skip it completely.
|
||
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3279): We could
|
||
// instead look for an available id of the right type and generate an
|
||
// OpCopyObject of that id.
|
||
skipped_instructions->insert(instruction.result_id());
|
||
return;
|
||
}
|
||
|
||
// We are going to add an OpCopyObject instruction. Add a mapping for the
|
||
// result id of the original instruction if does not already exist (it may
|
||
// exist in the case that it has been forward-referenced).
|
||
if (!original_id_to_donated_id->count(instruction.result_id())) {
|
||
original_id_to_donated_id->insert(
|
||
{instruction.result_id(), GetFuzzerContext()->GetFreshId()});
|
||
}
|
||
|
||
// We find or add a zero constant to the receiving module for the type in
|
||
// question, and add an OpCopyObject instruction that copies this zero.
|
||
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3177):
|
||
// Using this particular constant is arbitrary, so if we have a
|
||
// mechanism for noting that an id use is arbitrary and could be
|
||
// fuzzed we should use it here.
|
||
auto zero_constant = FindOrCreateZeroConstant(remapped_type_id);
|
||
donated_instructions->push_back(MakeInstructionMessage(
|
||
SpvOpCopyObject, remapped_type_id,
|
||
original_id_to_donated_id->at(instruction.result_id()),
|
||
opt::Instruction::OperandList({{SPV_OPERAND_TYPE_ID, {zero_constant}}})));
|
||
}
|
||
|
||
void FuzzerPassDonateModules::PrepareInstructionForDonation(
|
||
const opt::Instruction& instruction, opt::IRContext* donor_ir_context,
|
||
std::map<uint32_t, uint32_t>* original_id_to_donated_id,
|
||
std::vector<protobufs::Instruction>* donated_instructions) {
|
||
// Get the instruction's input operands into donation-ready form,
|
||
// remapping any id uses in the process.
|
||
opt::Instruction::OperandList input_operands;
|
||
|
||
// Consider each input operand in turn.
|
||
for (uint32_t in_operand_index = 0;
|
||
in_operand_index < instruction.NumInOperands(); in_operand_index++) {
|
||
std::vector<uint32_t> operand_data;
|
||
const opt::Operand& in_operand = instruction.GetInOperand(in_operand_index);
|
||
// Check whether this operand is an id.
|
||
if (spvIsIdType(in_operand.type)) {
|
||
// This is an id operand - it consists of a single word of data,
|
||
// which needs to be remapped so that it is replaced with the
|
||
// donated form of the id.
|
||
auto operand_id = in_operand.words[0];
|
||
if (!original_id_to_donated_id->count(operand_id)) {
|
||
// This is a forward reference. We will choose a corresponding
|
||
// donor id for the referenced id and update the mapping to
|
||
// reflect it.
|
||
|
||
// Keep release compilers happy because |donor_ir_context| is only used
|
||
// in this assertion.
|
||
(void)(donor_ir_context);
|
||
assert((donor_ir_context->get_def_use_mgr()
|
||
->GetDef(operand_id)
|
||
->opcode() == SpvOpLabel ||
|
||
instruction.opcode() == SpvOpPhi) &&
|
||
"Unsupported forward reference.");
|
||
original_id_to_donated_id->insert(
|
||
{operand_id, GetFuzzerContext()->GetFreshId()});
|
||
}
|
||
operand_data.push_back(original_id_to_donated_id->at(operand_id));
|
||
} else {
|
||
// For non-id operands, we just add each of the data words.
|
||
for (auto word : in_operand.words) {
|
||
operand_data.push_back(word);
|
||
}
|
||
}
|
||
input_operands.push_back({in_operand.type, operand_data});
|
||
}
|
||
|
||
if (instruction.opcode() == SpvOpVariable &&
|
||
instruction.NumInOperands() == 1) {
|
||
// This is an uninitialized local variable. Initialize it to zero.
|
||
input_operands.push_back(
|
||
{SPV_OPERAND_TYPE_ID,
|
||
{FindOrCreateZeroConstant(fuzzerutil::GetPointeeTypeIdFromPointerType(
|
||
GetIRContext(),
|
||
original_id_to_donated_id->at(instruction.type_id())))}});
|
||
}
|
||
|
||
if (instruction.result_id() &&
|
||
!original_id_to_donated_id->count(instruction.result_id())) {
|
||
original_id_to_donated_id->insert(
|
||
{instruction.result_id(), GetFuzzerContext()->GetFreshId()});
|
||
}
|
||
|
||
// Remap the result type and result id (if present) of the
|
||
// instruction, and turn it into a protobuf message.
|
||
donated_instructions->push_back(MakeInstructionMessage(
|
||
instruction.opcode(),
|
||
instruction.type_id()
|
||
? original_id_to_donated_id->at(instruction.type_id())
|
||
: 0,
|
||
instruction.result_id()
|
||
? original_id_to_donated_id->at(instruction.result_id())
|
||
: 0,
|
||
input_operands));
|
||
}
|
||
|
||
void FuzzerPassDonateModules::AddLivesafeFunction(
|
||
const opt::Function& function_to_donate, opt::IRContext* donor_ir_context,
|
||
const std::map<uint32_t, uint32_t>& original_id_to_donated_id,
|
||
const std::vector<protobufs::Instruction>& donated_instructions) {
|
||
// Various types and constants must be in place for a function to be made
|
||
// live-safe. Add them if not already present.
|
||
FindOrCreateBoolType(); // Needed for comparisons
|
||
FindOrCreatePointerToIntegerType(
|
||
32, false, SpvStorageClassFunction); // Needed for adding loop limiters
|
||
FindOrCreateIntegerConstant({0}, 32,
|
||
false); // Needed for initializing loop limiters
|
||
FindOrCreateIntegerConstant({1}, 32,
|
||
false); // Needed for incrementing loop limiters
|
||
|
||
// Get a fresh id for the variable that will be used as a loop limiter.
|
||
const uint32_t loop_limiter_variable_id = GetFuzzerContext()->GetFreshId();
|
||
// Choose a random loop limit, and add the required constant to the
|
||
// module if not already there.
|
||
const uint32_t loop_limit = FindOrCreateIntegerConstant(
|
||
{GetFuzzerContext()->GetRandomLoopLimit()}, 32, false);
|
||
|
||
// Consider every loop header in the function to donate, and create a
|
||
// structure capturing the ids to be used for manipulating the loop
|
||
// limiter each time the loop is iterated.
|
||
std::vector<protobufs::LoopLimiterInfo> loop_limiters;
|
||
for (auto& block : function_to_donate) {
|
||
if (block.IsLoopHeader()) {
|
||
protobufs::LoopLimiterInfo loop_limiter;
|
||
// Grab the loop header's id, mapped to its donated value.
|
||
loop_limiter.set_loop_header_id(original_id_to_donated_id.at(block.id()));
|
||
// Get fresh ids that will be used to load the loop limiter, increment
|
||
// it, compare it with the loop limit, and an id for a new block that
|
||
// will contain the loop's original terminator.
|
||
loop_limiter.set_load_id(GetFuzzerContext()->GetFreshId());
|
||
loop_limiter.set_increment_id(GetFuzzerContext()->GetFreshId());
|
||
loop_limiter.set_compare_id(GetFuzzerContext()->GetFreshId());
|
||
loop_limiter.set_logical_op_id(GetFuzzerContext()->GetFreshId());
|
||
loop_limiters.emplace_back(loop_limiter);
|
||
}
|
||
}
|
||
|
||
// Consider every access chain in the function to donate, and create a
|
||
// structure containing the ids necessary to clamp the access chain
|
||
// indices to be in-bounds.
|
||
std::vector<protobufs::AccessChainClampingInfo> access_chain_clamping_info;
|
||
for (auto& block : function_to_donate) {
|
||
for (auto& inst : block) {
|
||
switch (inst.opcode()) {
|
||
case SpvOpAccessChain:
|
||
case SpvOpInBoundsAccessChain: {
|
||
protobufs::AccessChainClampingInfo clamping_info;
|
||
clamping_info.set_access_chain_id(
|
||
original_id_to_donated_id.at(inst.result_id()));
|
||
|
||
auto base_object = donor_ir_context->get_def_use_mgr()->GetDef(
|
||
inst.GetSingleWordInOperand(0));
|
||
assert(base_object && "The base object must exist.");
|
||
auto pointer_type = donor_ir_context->get_def_use_mgr()->GetDef(
|
||
base_object->type_id());
|
||
assert(pointer_type && pointer_type->opcode() == SpvOpTypePointer &&
|
||
"The base object must have pointer type.");
|
||
|
||
auto should_be_composite_type =
|
||
donor_ir_context->get_def_use_mgr()->GetDef(
|
||
pointer_type->GetSingleWordInOperand(1));
|
||
|
||
// Walk the access chain, creating fresh ids to facilitate
|
||
// clamping each index. For simplicity we do this for every
|
||
// index, even though constant indices will not end up being
|
||
// clamped.
|
||
for (uint32_t index = 1; index < inst.NumInOperands(); index++) {
|
||
auto compare_and_select_ids =
|
||
clamping_info.add_compare_and_select_ids();
|
||
compare_and_select_ids->set_first(GetFuzzerContext()->GetFreshId());
|
||
compare_and_select_ids->set_second(
|
||
GetFuzzerContext()->GetFreshId());
|
||
|
||
// Get the bound for the component being indexed into.
|
||
uint32_t bound;
|
||
if (should_be_composite_type->opcode() == SpvOpTypeRuntimeArray) {
|
||
// The donor is indexing into a runtime array. We do not
|
||
// donate runtime arrays. Instead, we donate a corresponding
|
||
// fixed-size array for every runtime array. We should thus
|
||
// find that donor composite type's result id maps to a fixed-
|
||
// size array.
|
||
auto fixed_size_array_type =
|
||
GetIRContext()->get_def_use_mgr()->GetDef(
|
||
original_id_to_donated_id.at(
|
||
should_be_composite_type->result_id()));
|
||
assert(fixed_size_array_type->opcode() == SpvOpTypeArray &&
|
||
"A runtime array type in the donor should have been "
|
||
"replaced by a fixed-sized array in the recipient.");
|
||
// The size of this fixed-size array is a suitable bound.
|
||
bound = TransformationAddFunction::GetBoundForCompositeIndex(
|
||
GetIRContext(), *fixed_size_array_type);
|
||
} else {
|
||
bound = TransformationAddFunction::GetBoundForCompositeIndex(
|
||
donor_ir_context, *should_be_composite_type);
|
||
}
|
||
const uint32_t index_id = inst.GetSingleWordInOperand(index);
|
||
auto index_inst =
|
||
donor_ir_context->get_def_use_mgr()->GetDef(index_id);
|
||
auto index_type_inst = donor_ir_context->get_def_use_mgr()->GetDef(
|
||
index_inst->type_id());
|
||
assert(index_type_inst->opcode() == SpvOpTypeInt);
|
||
opt::analysis::Integer* index_int_type =
|
||
donor_ir_context->get_type_mgr()
|
||
->GetType(index_type_inst->result_id())
|
||
->AsInteger();
|
||
if (index_inst->opcode() != SpvOpConstant) {
|
||
// We will have to clamp this index, so we need a constant
|
||
// whose value is one less than the bound, to compare
|
||
// against and to use as the clamped value.
|
||
FindOrCreateIntegerConstant({bound - 1}, 32,
|
||
index_int_type->IsSigned());
|
||
}
|
||
should_be_composite_type =
|
||
TransformationAddFunction::FollowCompositeIndex(
|
||
donor_ir_context, *should_be_composite_type, index_id);
|
||
}
|
||
access_chain_clamping_info.push_back(clamping_info);
|
||
break;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// If the function contains OpKill or OpUnreachable instructions, and has
|
||
// non-void return type, then we need a value %v to use in order to turn
|
||
// these into instructions of the form OpReturn %v.
|
||
uint32_t kill_unreachable_return_value_id;
|
||
auto function_return_type_inst =
|
||
donor_ir_context->get_def_use_mgr()->GetDef(function_to_donate.type_id());
|
||
if (function_return_type_inst->opcode() == SpvOpTypeVoid) {
|
||
// The return type is void, so we don't need a return value.
|
||
kill_unreachable_return_value_id = 0;
|
||
} else {
|
||
// We do need a return value; we use zero.
|
||
assert(function_return_type_inst->opcode() != SpvOpTypePointer &&
|
||
"Function return type must not be a pointer.");
|
||
kill_unreachable_return_value_id = FindOrCreateZeroConstant(
|
||
original_id_to_donated_id.at(function_return_type_inst->result_id()));
|
||
}
|
||
// Add the function in a livesafe manner.
|
||
ApplyTransformation(TransformationAddFunction(
|
||
donated_instructions, loop_limiter_variable_id, loop_limit, loop_limiters,
|
||
kill_unreachable_return_value_id, access_chain_clamping_info));
|
||
}
|
||
|
||
} // namespace fuzz
|
||
} // namespace spvtools
|