mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2024-11-22 19:50:05 +00:00
6b4f0c9d0b
This is an int and needs to be cast to a unit for inclusion in the stage specific data passed to the instrumentation check function.
804 lines
30 KiB
C++
804 lines
30 KiB
C++
// Copyright (c) 2018 The Khronos Group Inc.
|
|
// Copyright (c) 2018 Valve Corporation
|
|
// Copyright (c) 2018 LunarG Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "instrument_pass.h"
|
|
|
|
#include "source/cfa.h"
|
|
#include "source/spirv_constant.h"
|
|
|
|
namespace spvtools {
|
|
namespace opt {
|
|
namespace {
|
|
// Indices of operands in SPIR-V instructions
|
|
constexpr int kEntryPointFunctionIdInIdx = 1;
|
|
} // namespace
|
|
|
|
void InstrumentPass::MovePreludeCode(
|
|
BasicBlock::iterator ref_inst_itr,
|
|
UptrVectorIterator<BasicBlock> ref_block_itr,
|
|
std::unique_ptr<BasicBlock>* new_blk_ptr) {
|
|
same_block_pre_.clear();
|
|
same_block_post_.clear();
|
|
// Initialize new block. Reuse label from original block.
|
|
new_blk_ptr->reset(new BasicBlock(std::move(ref_block_itr->GetLabel())));
|
|
// Move contents of original ref block up to ref instruction.
|
|
for (auto cii = ref_block_itr->begin(); cii != ref_inst_itr;
|
|
cii = ref_block_itr->begin()) {
|
|
Instruction* inst = &*cii;
|
|
inst->RemoveFromList();
|
|
std::unique_ptr<Instruction> mv_ptr(inst);
|
|
// Remember same-block ops for possible regeneration.
|
|
if (IsSameBlockOp(&*mv_ptr)) {
|
|
auto* sb_inst_ptr = mv_ptr.get();
|
|
same_block_pre_[mv_ptr->result_id()] = sb_inst_ptr;
|
|
}
|
|
(*new_blk_ptr)->AddInstruction(std::move(mv_ptr));
|
|
}
|
|
}
|
|
|
|
void InstrumentPass::MovePostludeCode(
|
|
UptrVectorIterator<BasicBlock> ref_block_itr, BasicBlock* new_blk_ptr) {
|
|
// Move contents of original ref block.
|
|
for (auto cii = ref_block_itr->begin(); cii != ref_block_itr->end();
|
|
cii = ref_block_itr->begin()) {
|
|
Instruction* inst = &*cii;
|
|
inst->RemoveFromList();
|
|
std::unique_ptr<Instruction> mv_inst(inst);
|
|
// Regenerate any same-block instruction that has not been seen in the
|
|
// current block.
|
|
if (same_block_pre_.size() > 0) {
|
|
CloneSameBlockOps(&mv_inst, &same_block_post_, &same_block_pre_,
|
|
new_blk_ptr);
|
|
// Remember same-block ops in this block.
|
|
if (IsSameBlockOp(&*mv_inst)) {
|
|
const uint32_t rid = mv_inst->result_id();
|
|
same_block_post_[rid] = rid;
|
|
}
|
|
}
|
|
new_blk_ptr->AddInstruction(std::move(mv_inst));
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<Instruction> InstrumentPass::NewLabel(uint32_t label_id) {
|
|
auto new_label =
|
|
MakeUnique<Instruction>(context(), spv::Op::OpLabel, 0, label_id,
|
|
std::initializer_list<Operand>{});
|
|
get_def_use_mgr()->AnalyzeInstDefUse(&*new_label);
|
|
return new_label;
|
|
}
|
|
|
|
std::unique_ptr<Function> InstrumentPass::StartFunction(
|
|
uint32_t func_id, const analysis::Type* return_type,
|
|
const std::vector<const analysis::Type*>& param_types) {
|
|
analysis::TypeManager* type_mgr = context()->get_type_mgr();
|
|
analysis::Function* func_type = GetFunction(return_type, param_types);
|
|
|
|
const std::vector<Operand> operands{
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
|
|
{uint32_t(spv::FunctionControlMask::MaskNone)}},
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {type_mgr->GetId(func_type)}},
|
|
};
|
|
auto func_inst =
|
|
MakeUnique<Instruction>(context(), spv::Op::OpFunction,
|
|
type_mgr->GetId(return_type), func_id, operands);
|
|
get_def_use_mgr()->AnalyzeInstDefUse(&*func_inst);
|
|
return MakeUnique<Function>(std::move(func_inst));
|
|
}
|
|
|
|
std::unique_ptr<Instruction> InstrumentPass::EndFunction() {
|
|
auto end = MakeUnique<Instruction>(context(), spv::Op::OpFunctionEnd, 0, 0,
|
|
std::initializer_list<Operand>{});
|
|
get_def_use_mgr()->AnalyzeInstDefUse(end.get());
|
|
return end;
|
|
}
|
|
|
|
std::vector<uint32_t> InstrumentPass::AddParameters(
|
|
Function& func, const std::vector<const analysis::Type*>& param_types) {
|
|
std::vector<uint32_t> param_ids;
|
|
param_ids.reserve(param_types.size());
|
|
for (const analysis::Type* param : param_types) {
|
|
uint32_t pid = TakeNextId();
|
|
param_ids.push_back(pid);
|
|
auto param_inst =
|
|
MakeUnique<Instruction>(context(), spv::Op::OpFunctionParameter,
|
|
context()->get_type_mgr()->GetId(param), pid,
|
|
std::initializer_list<Operand>{});
|
|
get_def_use_mgr()->AnalyzeInstDefUse(param_inst.get());
|
|
func.AddParameter(std::move(param_inst));
|
|
}
|
|
return param_ids;
|
|
}
|
|
|
|
std::unique_ptr<Instruction> InstrumentPass::NewName(
|
|
uint32_t id, const std::string& name_str) {
|
|
return MakeUnique<Instruction>(
|
|
context(), spv::Op::OpName, 0, 0,
|
|
std::initializer_list<Operand>{
|
|
{SPV_OPERAND_TYPE_ID, {id}},
|
|
{SPV_OPERAND_TYPE_LITERAL_STRING, utils::MakeVector(name_str)}});
|
|
}
|
|
|
|
uint32_t InstrumentPass::Gen32BitCvtCode(uint32_t val_id,
|
|
InstructionBuilder* builder) {
|
|
// Convert integer value to 32-bit if necessary
|
|
analysis::TypeManager* type_mgr = context()->get_type_mgr();
|
|
uint32_t val_ty_id = get_def_use_mgr()->GetDef(val_id)->type_id();
|
|
analysis::Integer* val_ty = type_mgr->GetType(val_ty_id)->AsInteger();
|
|
if (val_ty->width() == 32) return val_id;
|
|
bool is_signed = val_ty->IsSigned();
|
|
analysis::Integer val_32b_ty(32, is_signed);
|
|
analysis::Type* val_32b_reg_ty = type_mgr->GetRegisteredType(&val_32b_ty);
|
|
uint32_t val_32b_reg_ty_id = type_mgr->GetId(val_32b_reg_ty);
|
|
if (is_signed)
|
|
return builder->AddUnaryOp(val_32b_reg_ty_id, spv::Op::OpSConvert, val_id)
|
|
->result_id();
|
|
else
|
|
return builder->AddUnaryOp(val_32b_reg_ty_id, spv::Op::OpUConvert, val_id)
|
|
->result_id();
|
|
}
|
|
|
|
uint32_t InstrumentPass::GenUintCastCode(uint32_t val_id,
|
|
InstructionBuilder* builder) {
|
|
// Convert value to 32-bit if necessary
|
|
uint32_t val_32b_id = Gen32BitCvtCode(val_id, builder);
|
|
// Cast value to unsigned if necessary
|
|
analysis::TypeManager* type_mgr = context()->get_type_mgr();
|
|
uint32_t val_ty_id = get_def_use_mgr()->GetDef(val_32b_id)->type_id();
|
|
analysis::Integer* val_ty = type_mgr->GetType(val_ty_id)->AsInteger();
|
|
if (!val_ty->IsSigned()) return val_32b_id;
|
|
return builder->AddUnaryOp(GetUintId(), spv::Op::OpBitcast, val_32b_id)
|
|
->result_id();
|
|
}
|
|
|
|
uint32_t InstrumentPass::GenVarLoad(uint32_t var_id,
|
|
InstructionBuilder* builder) {
|
|
Instruction* var_inst = get_def_use_mgr()->GetDef(var_id);
|
|
uint32_t type_id = GetPointeeTypeId(var_inst);
|
|
Instruction* load_inst = builder->AddLoad(type_id, var_id);
|
|
return load_inst->result_id();
|
|
}
|
|
|
|
uint32_t InstrumentPass::GenStageInfo(uint32_t stage_idx,
|
|
InstructionBuilder* builder) {
|
|
std::vector<uint32_t> ids(4, builder->GetUintConstantId(0));
|
|
ids[0] = builder->GetUintConstantId(stage_idx);
|
|
// %289 = OpCompositeConstruct %v4uint %uint_0 %285 %288 %uint_0
|
|
// TODO(greg-lunarg): Add support for all stages
|
|
switch (spv::ExecutionModel(stage_idx)) {
|
|
case spv::ExecutionModel::Vertex: {
|
|
// Load and store VertexId and InstanceId
|
|
uint32_t load_id = GenVarLoad(
|
|
context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::VertexIndex)),
|
|
builder);
|
|
ids[1] = GenUintCastCode(load_id, builder);
|
|
|
|
load_id = GenVarLoad(context()->GetBuiltinInputVarId(
|
|
uint32_t(spv::BuiltIn::InstanceIndex)),
|
|
builder);
|
|
ids[2] = GenUintCastCode(load_id, builder);
|
|
} break;
|
|
case spv::ExecutionModel::GLCompute:
|
|
case spv::ExecutionModel::TaskNV:
|
|
case spv::ExecutionModel::MeshNV:
|
|
case spv::ExecutionModel::TaskEXT:
|
|
case spv::ExecutionModel::MeshEXT: {
|
|
// Load and store GlobalInvocationId.
|
|
uint32_t load_id = GenVarLoad(context()->GetBuiltinInputVarId(uint32_t(
|
|
spv::BuiltIn::GlobalInvocationId)),
|
|
builder);
|
|
for (uint32_t u = 0; u < 3u; ++u) {
|
|
ids[u + 1] = builder->AddCompositeExtract(GetUintId(), load_id, {u})
|
|
->result_id();
|
|
}
|
|
} break;
|
|
case spv::ExecutionModel::Geometry: {
|
|
// Load and store PrimitiveId and InvocationId.
|
|
uint32_t load_id = GenVarLoad(
|
|
context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::PrimitiveId)),
|
|
builder);
|
|
ids[1] = load_id;
|
|
load_id = GenVarLoad(
|
|
context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::InvocationId)),
|
|
builder);
|
|
ids[2] = GenUintCastCode(load_id, builder);
|
|
} break;
|
|
case spv::ExecutionModel::TessellationControl: {
|
|
// Load and store InvocationId and PrimitiveId
|
|
uint32_t load_id = GenVarLoad(
|
|
context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::InvocationId)),
|
|
builder);
|
|
ids[1] = GenUintCastCode(load_id, builder);
|
|
load_id = GenVarLoad(
|
|
context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::PrimitiveId)),
|
|
builder);
|
|
ids[2] = load_id;
|
|
} break;
|
|
case spv::ExecutionModel::TessellationEvaluation: {
|
|
// Load and store PrimitiveId and TessCoord.uv
|
|
uint32_t load_id = GenVarLoad(
|
|
context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::PrimitiveId)),
|
|
builder);
|
|
ids[1] = load_id;
|
|
load_id = GenVarLoad(
|
|
context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::TessCoord)),
|
|
builder);
|
|
Instruction* uvec3_cast_inst =
|
|
builder->AddUnaryOp(GetVec3UintId(), spv::Op::OpBitcast, load_id);
|
|
uint32_t uvec3_cast_id = uvec3_cast_inst->result_id();
|
|
for (uint32_t u = 0; u < 2u; ++u) {
|
|
ids[u + 2] =
|
|
builder->AddCompositeExtract(GetUintId(), uvec3_cast_id, {u})
|
|
->result_id();
|
|
}
|
|
} break;
|
|
case spv::ExecutionModel::Fragment: {
|
|
// Load FragCoord and convert to Uint
|
|
Instruction* frag_coord_inst = builder->AddLoad(
|
|
GetVec4FloatId(),
|
|
context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::FragCoord)));
|
|
Instruction* uint_frag_coord_inst = builder->AddUnaryOp(
|
|
GetVec4UintId(), spv::Op::OpBitcast, frag_coord_inst->result_id());
|
|
for (uint32_t u = 0; u < 2u; ++u) {
|
|
ids[u + 1] =
|
|
builder
|
|
->AddCompositeExtract(GetUintId(),
|
|
uint_frag_coord_inst->result_id(), {u})
|
|
->result_id();
|
|
}
|
|
} break;
|
|
case spv::ExecutionModel::RayGenerationNV:
|
|
case spv::ExecutionModel::IntersectionNV:
|
|
case spv::ExecutionModel::AnyHitNV:
|
|
case spv::ExecutionModel::ClosestHitNV:
|
|
case spv::ExecutionModel::MissNV:
|
|
case spv::ExecutionModel::CallableNV: {
|
|
// Load and store LaunchIdNV.
|
|
uint32_t launch_id = GenVarLoad(
|
|
context()->GetBuiltinInputVarId(uint32_t(spv::BuiltIn::LaunchIdNV)),
|
|
builder);
|
|
for (uint32_t u = 0; u < 3u; ++u) {
|
|
ids[u + 1] = builder->AddCompositeExtract(GetUintId(), launch_id, {u})
|
|
->result_id();
|
|
}
|
|
} break;
|
|
default: { assert(false && "unsupported stage"); } break;
|
|
}
|
|
return builder->AddCompositeConstruct(GetVec4UintId(), ids)->result_id();
|
|
}
|
|
|
|
bool InstrumentPass::AllConstant(const std::vector<uint32_t>& ids) {
|
|
for (auto& id : ids) {
|
|
Instruction* id_inst = context()->get_def_use_mgr()->GetDef(id);
|
|
if (!spvOpcodeIsConstant(id_inst->opcode())) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
uint32_t InstrumentPass::GenReadFunctionCall(
|
|
uint32_t return_id, uint32_t func_id,
|
|
const std::vector<uint32_t>& func_call_args,
|
|
InstructionBuilder* ref_builder) {
|
|
// If optimizing direct reads and the call has already been generated,
|
|
// use its result
|
|
if (opt_direct_reads_) {
|
|
uint32_t res_id = call2id_[func_call_args];
|
|
if (res_id != 0) return res_id;
|
|
}
|
|
// If the function arguments are all constants, the call can be moved to the
|
|
// first block of the function where its result can be reused. One example
|
|
// where this is profitable is for uniform buffer references, of which there
|
|
// are often many.
|
|
InstructionBuilder builder(ref_builder->GetContext(),
|
|
&*ref_builder->GetInsertPoint(),
|
|
ref_builder->GetPreservedAnalysis());
|
|
bool insert_in_first_block = opt_direct_reads_ && AllConstant(func_call_args);
|
|
if (insert_in_first_block) {
|
|
Instruction* insert_before = &*curr_func_->begin()->tail();
|
|
builder.SetInsertPoint(insert_before);
|
|
}
|
|
uint32_t res_id =
|
|
builder.AddFunctionCall(return_id, func_id, func_call_args)->result_id();
|
|
if (insert_in_first_block) call2id_[func_call_args] = res_id;
|
|
return res_id;
|
|
}
|
|
|
|
bool InstrumentPass::IsSameBlockOp(const Instruction* inst) const {
|
|
return inst->opcode() == spv::Op::OpSampledImage ||
|
|
inst->opcode() == spv::Op::OpImage;
|
|
}
|
|
|
|
void InstrumentPass::CloneSameBlockOps(
|
|
std::unique_ptr<Instruction>* inst,
|
|
std::unordered_map<uint32_t, uint32_t>* same_blk_post,
|
|
std::unordered_map<uint32_t, Instruction*>* same_blk_pre,
|
|
BasicBlock* block_ptr) {
|
|
bool changed = false;
|
|
(*inst)->ForEachInId([&same_blk_post, &same_blk_pre, &block_ptr, &changed,
|
|
this](uint32_t* iid) {
|
|
const auto map_itr = (*same_blk_post).find(*iid);
|
|
if (map_itr == (*same_blk_post).end()) {
|
|
const auto map_itr2 = (*same_blk_pre).find(*iid);
|
|
if (map_itr2 != (*same_blk_pre).end()) {
|
|
// Clone pre-call same-block ops, map result id.
|
|
const Instruction* in_inst = map_itr2->second;
|
|
std::unique_ptr<Instruction> sb_inst(in_inst->Clone(context()));
|
|
const uint32_t rid = sb_inst->result_id();
|
|
const uint32_t nid = this->TakeNextId();
|
|
get_decoration_mgr()->CloneDecorations(rid, nid);
|
|
sb_inst->SetResultId(nid);
|
|
get_def_use_mgr()->AnalyzeInstDefUse(&*sb_inst);
|
|
(*same_blk_post)[rid] = nid;
|
|
*iid = nid;
|
|
changed = true;
|
|
CloneSameBlockOps(&sb_inst, same_blk_post, same_blk_pre, block_ptr);
|
|
block_ptr->AddInstruction(std::move(sb_inst));
|
|
}
|
|
} else {
|
|
// Reset same-block op operand if necessary
|
|
if (*iid != map_itr->second) {
|
|
*iid = map_itr->second;
|
|
changed = true;
|
|
}
|
|
}
|
|
});
|
|
if (changed) get_def_use_mgr()->AnalyzeInstUse(&**inst);
|
|
}
|
|
|
|
void InstrumentPass::UpdateSucceedingPhis(
|
|
std::vector<std::unique_ptr<BasicBlock>>& new_blocks) {
|
|
const auto first_blk = new_blocks.begin();
|
|
const auto last_blk = new_blocks.end() - 1;
|
|
const uint32_t first_id = (*first_blk)->id();
|
|
const uint32_t last_id = (*last_blk)->id();
|
|
const BasicBlock& const_last_block = *last_blk->get();
|
|
const_last_block.ForEachSuccessorLabel(
|
|
[&first_id, &last_id, this](const uint32_t succ) {
|
|
BasicBlock* sbp = this->id2block_[succ];
|
|
sbp->ForEachPhiInst([&first_id, &last_id, this](Instruction* phi) {
|
|
bool changed = false;
|
|
phi->ForEachInId([&first_id, &last_id, &changed](uint32_t* id) {
|
|
if (*id == first_id) {
|
|
*id = last_id;
|
|
changed = true;
|
|
}
|
|
});
|
|
if (changed) get_def_use_mgr()->AnalyzeInstUse(phi);
|
|
});
|
|
});
|
|
}
|
|
|
|
analysis::Integer* InstrumentPass::GetInteger(uint32_t width, bool is_signed) {
|
|
analysis::Integer i(width, is_signed);
|
|
analysis::Type* type = context()->get_type_mgr()->GetRegisteredType(&i);
|
|
assert(type && type->AsInteger());
|
|
return type->AsInteger();
|
|
}
|
|
|
|
analysis::Struct* InstrumentPass::GetStruct(
|
|
const std::vector<const analysis::Type*>& fields) {
|
|
analysis::Struct s(fields);
|
|
analysis::Type* type = context()->get_type_mgr()->GetRegisteredType(&s);
|
|
assert(type && type->AsStruct());
|
|
return type->AsStruct();
|
|
}
|
|
|
|
analysis::RuntimeArray* InstrumentPass::GetRuntimeArray(
|
|
const analysis::Type* element) {
|
|
analysis::RuntimeArray r(element);
|
|
analysis::Type* type = context()->get_type_mgr()->GetRegisteredType(&r);
|
|
assert(type && type->AsRuntimeArray());
|
|
return type->AsRuntimeArray();
|
|
}
|
|
|
|
analysis::Array* InstrumentPass::GetArray(const analysis::Type* element,
|
|
uint32_t length) {
|
|
uint32_t length_id = context()->get_constant_mgr()->GetUIntConstId(length);
|
|
analysis::Array::LengthInfo length_info{
|
|
length_id, {analysis::Array::LengthInfo::Case::kConstant, length}};
|
|
|
|
analysis::Array r(element, length_info);
|
|
|
|
analysis::Type* type = context()->get_type_mgr()->GetRegisteredType(&r);
|
|
assert(type && type->AsArray());
|
|
return type->AsArray();
|
|
}
|
|
|
|
analysis::Function* InstrumentPass::GetFunction(
|
|
const analysis::Type* return_val,
|
|
const std::vector<const analysis::Type*>& args) {
|
|
analysis::Function func(return_val, args);
|
|
analysis::Type* type = context()->get_type_mgr()->GetRegisteredType(&func);
|
|
assert(type && type->AsFunction());
|
|
return type->AsFunction();
|
|
}
|
|
|
|
analysis::RuntimeArray* InstrumentPass::GetUintXRuntimeArrayType(
|
|
uint32_t width, analysis::RuntimeArray** rarr_ty) {
|
|
if (*rarr_ty == nullptr) {
|
|
*rarr_ty = GetRuntimeArray(GetInteger(width, false));
|
|
uint32_t uint_arr_ty_id =
|
|
context()->get_type_mgr()->GetTypeInstruction(*rarr_ty);
|
|
// By the Vulkan spec, a pre-existing RuntimeArray of uint must be part of
|
|
// a block, and will therefore be decorated with an ArrayStride. Therefore
|
|
// the undecorated type returned here will not be pre-existing and can
|
|
// safely be decorated. Since this type is now decorated, it is out of
|
|
// sync with the TypeManager and therefore the TypeManager must be
|
|
// invalidated after this pass.
|
|
assert(get_def_use_mgr()->NumUses(uint_arr_ty_id) == 0 &&
|
|
"used RuntimeArray type returned");
|
|
get_decoration_mgr()->AddDecorationVal(
|
|
uint_arr_ty_id, uint32_t(spv::Decoration::ArrayStride), width / 8u);
|
|
}
|
|
return *rarr_ty;
|
|
}
|
|
|
|
analysis::RuntimeArray* InstrumentPass::GetUintRuntimeArrayType(
|
|
uint32_t width) {
|
|
analysis::RuntimeArray** rarr_ty =
|
|
(width == 64) ? &uint64_rarr_ty_ : &uint32_rarr_ty_;
|
|
return GetUintXRuntimeArrayType(width, rarr_ty);
|
|
}
|
|
|
|
void InstrumentPass::AddStorageBufferExt() {
|
|
if (storage_buffer_ext_defined_) return;
|
|
if (!get_feature_mgr()->HasExtension(kSPV_KHR_storage_buffer_storage_class)) {
|
|
context()->AddExtension("SPV_KHR_storage_buffer_storage_class");
|
|
}
|
|
storage_buffer_ext_defined_ = true;
|
|
}
|
|
|
|
uint32_t InstrumentPass::GetFloatId() {
|
|
if (float_id_ == 0) {
|
|
analysis::TypeManager* type_mgr = context()->get_type_mgr();
|
|
analysis::Float float_ty(32);
|
|
analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty);
|
|
float_id_ = type_mgr->GetTypeInstruction(reg_float_ty);
|
|
}
|
|
return float_id_;
|
|
}
|
|
|
|
uint32_t InstrumentPass::GetVec4FloatId() {
|
|
if (v4float_id_ == 0) {
|
|
analysis::TypeManager* type_mgr = context()->get_type_mgr();
|
|
analysis::Float float_ty(32);
|
|
analysis::Type* reg_float_ty = type_mgr->GetRegisteredType(&float_ty);
|
|
analysis::Vector v4float_ty(reg_float_ty, 4);
|
|
analysis::Type* reg_v4float_ty = type_mgr->GetRegisteredType(&v4float_ty);
|
|
v4float_id_ = type_mgr->GetTypeInstruction(reg_v4float_ty);
|
|
}
|
|
return v4float_id_;
|
|
}
|
|
|
|
uint32_t InstrumentPass::GetUintId() {
|
|
if (uint_id_ == 0) {
|
|
analysis::TypeManager* type_mgr = context()->get_type_mgr();
|
|
analysis::Integer uint_ty(32, false);
|
|
analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
|
|
uint_id_ = type_mgr->GetTypeInstruction(reg_uint_ty);
|
|
}
|
|
return uint_id_;
|
|
}
|
|
|
|
uint32_t InstrumentPass::GetUint64Id() {
|
|
if (uint64_id_ == 0) {
|
|
analysis::TypeManager* type_mgr = context()->get_type_mgr();
|
|
analysis::Integer uint64_ty(64, false);
|
|
analysis::Type* reg_uint64_ty = type_mgr->GetRegisteredType(&uint64_ty);
|
|
uint64_id_ = type_mgr->GetTypeInstruction(reg_uint64_ty);
|
|
}
|
|
return uint64_id_;
|
|
}
|
|
|
|
uint32_t InstrumentPass::GetUint8Id() {
|
|
if (uint8_id_ == 0) {
|
|
analysis::TypeManager* type_mgr = context()->get_type_mgr();
|
|
analysis::Integer uint8_ty(8, false);
|
|
analysis::Type* reg_uint8_ty = type_mgr->GetRegisteredType(&uint8_ty);
|
|
uint8_id_ = type_mgr->GetTypeInstruction(reg_uint8_ty);
|
|
}
|
|
return uint8_id_;
|
|
}
|
|
|
|
uint32_t InstrumentPass::GetVecUintId(uint32_t len) {
|
|
analysis::TypeManager* type_mgr = context()->get_type_mgr();
|
|
analysis::Integer uint_ty(32, false);
|
|
analysis::Type* reg_uint_ty = type_mgr->GetRegisteredType(&uint_ty);
|
|
analysis::Vector v_uint_ty(reg_uint_ty, len);
|
|
analysis::Type* reg_v_uint_ty = type_mgr->GetRegisteredType(&v_uint_ty);
|
|
uint32_t v_uint_id = type_mgr->GetTypeInstruction(reg_v_uint_ty);
|
|
return v_uint_id;
|
|
}
|
|
|
|
uint32_t InstrumentPass::GetVec4UintId() {
|
|
if (v4uint_id_ == 0) v4uint_id_ = GetVecUintId(4u);
|
|
return v4uint_id_;
|
|
}
|
|
|
|
uint32_t InstrumentPass::GetVec3UintId() {
|
|
if (v3uint_id_ == 0) v3uint_id_ = GetVecUintId(3u);
|
|
return v3uint_id_;
|
|
}
|
|
|
|
uint32_t InstrumentPass::GetBoolId() {
|
|
if (bool_id_ == 0) {
|
|
analysis::TypeManager* type_mgr = context()->get_type_mgr();
|
|
analysis::Bool bool_ty;
|
|
analysis::Type* reg_bool_ty = type_mgr->GetRegisteredType(&bool_ty);
|
|
bool_id_ = type_mgr->GetTypeInstruction(reg_bool_ty);
|
|
}
|
|
return bool_id_;
|
|
}
|
|
|
|
uint32_t InstrumentPass::GetVoidId() {
|
|
if (void_id_ == 0) {
|
|
analysis::TypeManager* type_mgr = context()->get_type_mgr();
|
|
analysis::Void void_ty;
|
|
analysis::Type* reg_void_ty = type_mgr->GetRegisteredType(&void_ty);
|
|
void_id_ = type_mgr->GetTypeInstruction(reg_void_ty);
|
|
}
|
|
return void_id_;
|
|
}
|
|
|
|
void InstrumentPass::SplitBlock(
|
|
BasicBlock::iterator inst_itr, UptrVectorIterator<BasicBlock> block_itr,
|
|
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
|
|
// Make sure def/use analysis is done before we start moving instructions
|
|
// out of function
|
|
(void)get_def_use_mgr();
|
|
// Move original block's preceding instructions into first new block
|
|
std::unique_ptr<BasicBlock> first_blk_ptr;
|
|
MovePreludeCode(inst_itr, block_itr, &first_blk_ptr);
|
|
InstructionBuilder builder(
|
|
context(), &*first_blk_ptr,
|
|
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
|
|
uint32_t split_blk_id = TakeNextId();
|
|
std::unique_ptr<Instruction> split_label(NewLabel(split_blk_id));
|
|
(void)builder.AddBranch(split_blk_id);
|
|
new_blocks->push_back(std::move(first_blk_ptr));
|
|
// Move remaining instructions into split block and add to new blocks
|
|
std::unique_ptr<BasicBlock> split_blk_ptr(
|
|
new BasicBlock(std::move(split_label)));
|
|
MovePostludeCode(block_itr, &*split_blk_ptr);
|
|
new_blocks->push_back(std::move(split_blk_ptr));
|
|
}
|
|
|
|
bool InstrumentPass::InstrumentFunction(Function* func, uint32_t stage_idx,
|
|
InstProcessFunction& pfn) {
|
|
curr_func_ = func;
|
|
call2id_.clear();
|
|
bool first_block_split = false;
|
|
bool modified = false;
|
|
// Apply instrumentation function to each instruction.
|
|
// Using block iterators here because of block erasures and insertions.
|
|
std::vector<std::unique_ptr<BasicBlock>> new_blks;
|
|
for (auto bi = func->begin(); bi != func->end(); ++bi) {
|
|
for (auto ii = bi->begin(); ii != bi->end();) {
|
|
// Split all executable instructions out of first block into a following
|
|
// block. This will allow function calls to be inserted into the first
|
|
// block without interfering with the instrumentation algorithm.
|
|
if (opt_direct_reads_ && !first_block_split) {
|
|
if (ii->opcode() != spv::Op::OpVariable) {
|
|
SplitBlock(ii, bi, &new_blks);
|
|
first_block_split = true;
|
|
}
|
|
} else {
|
|
pfn(ii, bi, stage_idx, &new_blks);
|
|
}
|
|
// If no new code, continue
|
|
if (new_blks.size() == 0) {
|
|
++ii;
|
|
continue;
|
|
}
|
|
// Add new blocks to label id map
|
|
for (auto& blk : new_blks) id2block_[blk->id()] = &*blk;
|
|
// If there are new blocks we know there will always be two or
|
|
// more, so update succeeding phis with label of new last block.
|
|
size_t newBlocksSize = new_blks.size();
|
|
assert(newBlocksSize > 1);
|
|
UpdateSucceedingPhis(new_blks);
|
|
// Replace original block with new block(s)
|
|
bi = bi.Erase();
|
|
for (auto& bb : new_blks) {
|
|
bb->SetParent(func);
|
|
}
|
|
bi = bi.InsertBefore(&new_blks);
|
|
// Reset block iterator to last new block
|
|
for (size_t i = 0; i < newBlocksSize - 1; i++) ++bi;
|
|
modified = true;
|
|
// Restart instrumenting at beginning of last new block,
|
|
// but skip over any new phi or copy instruction.
|
|
ii = bi->begin();
|
|
if (ii->opcode() == spv::Op::OpPhi ||
|
|
ii->opcode() == spv::Op::OpCopyObject)
|
|
++ii;
|
|
new_blks.clear();
|
|
}
|
|
}
|
|
return modified;
|
|
}
|
|
|
|
bool InstrumentPass::InstProcessCallTreeFromRoots(InstProcessFunction& pfn,
|
|
std::queue<uint32_t>* roots,
|
|
uint32_t stage_idx) {
|
|
bool modified = false;
|
|
std::unordered_set<uint32_t> done;
|
|
// Don't process input and output functions
|
|
for (auto& ifn : param2input_func_id_) done.insert(ifn.second);
|
|
for (auto& ofn : param2output_func_id_) done.insert(ofn.second);
|
|
// Process all functions from roots
|
|
while (!roots->empty()) {
|
|
const uint32_t fi = roots->front();
|
|
roots->pop();
|
|
if (done.insert(fi).second) {
|
|
Function* fn = id2function_.at(fi);
|
|
// Add calls first so we don't add new output function
|
|
context()->AddCalls(fn, roots);
|
|
modified = InstrumentFunction(fn, stage_idx, pfn) || modified;
|
|
}
|
|
}
|
|
return modified;
|
|
}
|
|
|
|
bool InstrumentPass::InstProcessEntryPointCallTree(InstProcessFunction& pfn) {
|
|
uint32_t stage_id;
|
|
if (use_stage_info_) {
|
|
// Make sure all entry points have the same execution model. Do not
|
|
// instrument if they do not.
|
|
// TODO(greg-lunarg): Handle mixed stages. Technically, a shader module
|
|
// can contain entry points with different execution models, although
|
|
// such modules will likely be rare as GLSL and HLSL are geared toward
|
|
// one model per module. In such cases we will need
|
|
// to clone any functions which are in the call trees of entrypoints
|
|
// with differing execution models.
|
|
spv::ExecutionModel stage = context()->GetStage();
|
|
// Check for supported stages
|
|
if (stage != spv::ExecutionModel::Vertex &&
|
|
stage != spv::ExecutionModel::Fragment &&
|
|
stage != spv::ExecutionModel::Geometry &&
|
|
stage != spv::ExecutionModel::GLCompute &&
|
|
stage != spv::ExecutionModel::TessellationControl &&
|
|
stage != spv::ExecutionModel::TessellationEvaluation &&
|
|
stage != spv::ExecutionModel::TaskNV &&
|
|
stage != spv::ExecutionModel::MeshNV &&
|
|
stage != spv::ExecutionModel::RayGenerationNV &&
|
|
stage != spv::ExecutionModel::IntersectionNV &&
|
|
stage != spv::ExecutionModel::AnyHitNV &&
|
|
stage != spv::ExecutionModel::ClosestHitNV &&
|
|
stage != spv::ExecutionModel::MissNV &&
|
|
stage != spv::ExecutionModel::CallableNV &&
|
|
stage != spv::ExecutionModel::TaskEXT &&
|
|
stage != spv::ExecutionModel::MeshEXT) {
|
|
if (consumer()) {
|
|
std::string message = "Stage not supported by instrumentation";
|
|
consumer()(SPV_MSG_ERROR, 0, {0, 0, 0}, message.c_str());
|
|
}
|
|
return false;
|
|
}
|
|
stage_id = static_cast<uint32_t>(stage);
|
|
} else {
|
|
stage_id = 0;
|
|
}
|
|
// Add together the roots of all entry points
|
|
std::queue<uint32_t> roots;
|
|
for (auto& e : get_module()->entry_points()) {
|
|
roots.push(e.GetSingleWordInOperand(kEntryPointFunctionIdInIdx));
|
|
}
|
|
bool modified = InstProcessCallTreeFromRoots(pfn, &roots, stage_id);
|
|
return modified;
|
|
}
|
|
|
|
void InstrumentPass::InitializeInstrument() {
|
|
float_id_ = 0;
|
|
v4float_id_ = 0;
|
|
uint_id_ = 0;
|
|
uint64_id_ = 0;
|
|
uint8_id_ = 0;
|
|
v4uint_id_ = 0;
|
|
v3uint_id_ = 0;
|
|
bool_id_ = 0;
|
|
void_id_ = 0;
|
|
storage_buffer_ext_defined_ = false;
|
|
uint32_rarr_ty_ = nullptr;
|
|
uint64_rarr_ty_ = nullptr;
|
|
|
|
// clear collections
|
|
id2function_.clear();
|
|
id2block_.clear();
|
|
|
|
// clear maps
|
|
param2input_func_id_.clear();
|
|
param2output_func_id_.clear();
|
|
|
|
// Initialize function and block maps.
|
|
for (auto& fn : *get_module()) {
|
|
id2function_[fn.result_id()] = &fn;
|
|
for (auto& blk : fn) {
|
|
id2block_[blk.id()] = &blk;
|
|
}
|
|
}
|
|
|
|
// Remember original instruction offsets
|
|
uint32_t module_offset = 0;
|
|
Module* module = get_module();
|
|
for (auto& i : context()->capabilities()) {
|
|
(void)i;
|
|
++module_offset;
|
|
}
|
|
for (auto& i : module->extensions()) {
|
|
(void)i;
|
|
++module_offset;
|
|
}
|
|
for (auto& i : module->ext_inst_imports()) {
|
|
(void)i;
|
|
++module_offset;
|
|
}
|
|
++module_offset; // memory_model
|
|
for (auto& i : module->entry_points()) {
|
|
(void)i;
|
|
++module_offset;
|
|
}
|
|
for (auto& i : module->execution_modes()) {
|
|
(void)i;
|
|
++module_offset;
|
|
}
|
|
for (auto& i : module->debugs1()) {
|
|
(void)i;
|
|
++module_offset;
|
|
}
|
|
for (auto& i : module->debugs2()) {
|
|
(void)i;
|
|
++module_offset;
|
|
}
|
|
for (auto& i : module->debugs3()) {
|
|
(void)i;
|
|
++module_offset;
|
|
}
|
|
for (auto& i : module->ext_inst_debuginfo()) {
|
|
(void)i;
|
|
++module_offset;
|
|
}
|
|
for (auto& i : module->annotations()) {
|
|
(void)i;
|
|
++module_offset;
|
|
}
|
|
for (auto& i : module->types_values()) {
|
|
module_offset += 1;
|
|
module_offset += static_cast<uint32_t>(i.dbg_line_insts().size());
|
|
}
|
|
|
|
auto curr_fn = get_module()->begin();
|
|
for (; curr_fn != get_module()->end(); ++curr_fn) {
|
|
// Count function instruction
|
|
module_offset += 1;
|
|
curr_fn->ForEachParam(
|
|
[&module_offset](const Instruction*) { module_offset += 1; }, true);
|
|
for (auto& blk : *curr_fn) {
|
|
// Count label
|
|
module_offset += 1;
|
|
for (auto& inst : blk) {
|
|
module_offset += static_cast<uint32_t>(inst.dbg_line_insts().size());
|
|
uid2offset_[inst.unique_id()] = module_offset;
|
|
module_offset += 1;
|
|
}
|
|
}
|
|
// Count function end instruction
|
|
module_offset += 1;
|
|
}
|
|
}
|
|
|
|
} // namespace opt
|
|
} // namespace spvtools
|