SPIRV-Tools/source/reduce/remove_struct_member_reduction_opportunity.cpp
alan-baker d35a78db57
Switch SPIRV-Tools to use spirv.hpp11 internally (#4981)
Fixes #4960

* Switches to using enum classes with an underlying type to avoid
  undefined behaviour
2022-11-04 17:27:10 -04:00

211 lines
9.2 KiB
C++

// Copyright (c) 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/reduce/remove_struct_member_reduction_opportunity.h"
#include "source/opt/ir_context.h"
namespace spvtools {
namespace reduce {
bool RemoveStructMemberReductionOpportunity::PreconditionHolds() {
return struct_type_->NumInOperands() == original_number_of_members_;
}
void RemoveStructMemberReductionOpportunity::Apply() {
std::set<opt::Instruction*> decorations_to_kill;
// We need to remove decorations that target the removed struct member, and
// adapt decorations that target later struct members by decrementing the
// member identifier. We also need to adapt composite construction
// instructions so that no id is provided for the member being removed.
//
// To do this, we consider every use of the struct type.
struct_type_->context()->get_def_use_mgr()->ForEachUse(
struct_type_, [this, &decorations_to_kill](opt::Instruction* user,
uint32_t /*operand_index*/) {
switch (user->opcode()) {
case spv::Op::OpCompositeConstruct:
case spv::Op::OpConstantComposite:
// This use is constructing a composite of the struct type, so we
// must remove the id that was provided for the member we are
// removing.
user->RemoveInOperand(member_index_);
break;
case spv::Op::OpMemberDecorate:
// This use is decorating a member of the struct.
if (user->GetSingleWordInOperand(1) == member_index_) {
// The member we are removing is being decorated, so we record
// that we need to get rid of the decoration.
decorations_to_kill.insert(user);
} else if (user->GetSingleWordInOperand(1) > member_index_) {
// A member beyond the one we are removing is being decorated, so
// we adjust the index that identifies the member.
user->SetInOperand(1, {user->GetSingleWordInOperand(1) - 1});
}
break;
default:
break;
}
});
// Get rid of all the decorations that were found to target the member being
// removed.
for (auto decoration_to_kill : decorations_to_kill) {
decoration_to_kill->context()->KillInst(decoration_to_kill);
}
// We now look through all instructions that access composites via sequences
// of indices. Every time we find an index into the struct whose member is
// being removed, and if the member being accessed comes after the member
// being removed, we need to adjust the index accordingly.
//
// We go through every relevant instruction in every block of every function,
// and invoke a helper to adjust it.
auto context = struct_type_->context();
for (auto& function : *context->module()) {
for (auto& block : function) {
for (auto& inst : block) {
switch (inst.opcode()) {
case spv::Op::OpAccessChain:
case spv::Op::OpInBoundsAccessChain: {
// These access chain instructions take sequences of ids for
// indexing, starting from input operand 1.
auto composite_type_id =
context->get_def_use_mgr()
->GetDef(context->get_def_use_mgr()
->GetDef(inst.GetSingleWordInOperand(0))
->type_id())
->GetSingleWordInOperand(1);
AdjustAccessedIndices(composite_type_id, 1, false, context, &inst);
} break;
case spv::Op::OpPtrAccessChain:
case spv::Op::OpInBoundsPtrAccessChain: {
// These access chain instructions take sequences of ids for
// indexing, starting from input operand 2.
auto composite_type_id =
context->get_def_use_mgr()
->GetDef(context->get_def_use_mgr()
->GetDef(inst.GetSingleWordInOperand(1))
->type_id())
->GetSingleWordInOperand(1);
AdjustAccessedIndices(composite_type_id, 2, false, context, &inst);
} break;
case spv::Op::OpCompositeExtract: {
// OpCompositeExtract uses literals for indexing, starting at input
// operand 1.
auto composite_type_id =
context->get_def_use_mgr()
->GetDef(inst.GetSingleWordInOperand(0))
->type_id();
AdjustAccessedIndices(composite_type_id, 1, true, context, &inst);
} break;
case spv::Op::OpCompositeInsert: {
// OpCompositeInsert uses literals for indexing, starting at input
// operand 2.
auto composite_type_id =
context->get_def_use_mgr()
->GetDef(inst.GetSingleWordInOperand(1))
->type_id();
AdjustAccessedIndices(composite_type_id, 2, true, context, &inst);
} break;
default:
break;
}
}
}
}
// Remove the member from the struct type.
struct_type_->RemoveInOperand(member_index_);
context->InvalidateAnalysesExceptFor(opt::IRContext::kAnalysisNone);
}
void RemoveStructMemberReductionOpportunity::AdjustAccessedIndices(
uint32_t composite_type_id, uint32_t first_index_input_operand,
bool literal_indices, opt::IRContext* context,
opt::Instruction* composite_access_instruction) const {
// Walk the series of types that are encountered by following the
// instruction's sequence of indices. For all types except structs, this is
// routine: the type of the composite dictates what the next type will be
// regardless of the specific index value.
uint32_t next_type = composite_type_id;
for (uint32_t i = first_index_input_operand;
i < composite_access_instruction->NumInOperands(); i++) {
auto type_inst = context->get_def_use_mgr()->GetDef(next_type);
switch (type_inst->opcode()) {
case spv::Op::OpTypeArray:
case spv::Op::OpTypeMatrix:
case spv::Op::OpTypeRuntimeArray:
case spv::Op::OpTypeVector:
next_type = type_inst->GetSingleWordInOperand(0);
break;
case spv::Op::OpTypeStruct: {
// Struct types are special because (a) we may need to adjust the index
// being used, if the struct type is the one from which we are removing
// a member, and (b) the type encountered by following the current index
// is dependent on the value of the index.
// Work out the member being accessed. If literal indexing is used this
// is simple; otherwise we need to look up the id of the constant
// instruction being used as an index and get the value of the constant.
uint32_t index_operand =
composite_access_instruction->GetSingleWordInOperand(i);
uint32_t member = literal_indices ? index_operand
: context->get_def_use_mgr()
->GetDef(index_operand)
->GetSingleWordInOperand(0);
// The next type we will consider is obtained by looking up the struct
// type at |member|.
next_type = type_inst->GetSingleWordInOperand(member);
if (type_inst == struct_type_ && member > member_index_) {
// The struct type is the struct from which we are removing a member,
// and the member being accessed is beyond the member we are removing.
// We thus need to decrement the index by 1.
uint32_t new_in_operand;
if (literal_indices) {
// With literal indexing this is straightforward.
new_in_operand = member - 1;
} else {
// With id-based indexing this is more tricky: we need to find or
// create a constant instruction whose value is one less than
// |member|, and use the id of this constant as the replacement
// input operand.
auto constant_inst =
context->get_def_use_mgr()->GetDef(index_operand);
auto int_type = context->get_type_mgr()
->GetType(constant_inst->type_id())
->AsInteger();
auto new_index_constant =
opt::analysis::IntConstant(int_type, {member - 1});
new_in_operand = context->get_constant_mgr()
->GetDefiningInstruction(&new_index_constant)
->result_id();
}
composite_access_instruction->SetInOperand(i, {new_in_operand});
}
} break;
default:
assert(0 && "Unknown composite type.");
break;
}
}
}
} // namespace reduce
} // namespace spvtools