SPIRV-Tools/source/validate.cpp
dan sinclair f80696eaf6
[val] Add extra context to error messages. (#1600)
[val] Add extra context to error messages.

This CL extends the error messages produced by the validator to output the
disassembly of the errored line.

The validation_id messages have also been updated to print the line number of
the error instead of the word number. Note, the error number is from the start
of the SPIR-V, it does not include any headers printed in the disassembled code.

Fixes #670, #1581
2018-06-19 16:02:44 -04:00

446 lines
16 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "validate.h"
#include <cassert>
#include <cstdio>
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "binary.h"
#include "diagnostic.h"
#include "enum_string_mapping.h"
#include "extensions.h"
#include "instruction.h"
#include "opcode.h"
#include "operand.h"
#include "spirv-tools/libspirv.h"
#include "spirv_constant.h"
#include "spirv_endian.h"
#include "spirv_target_env.h"
#include "spirv_validator_options.h"
#include "val/construct.h"
#include "val/function.h"
#include "val/validation_state.h"
using std::function;
using std::ostream_iterator;
using std::string;
using std::stringstream;
using std::transform;
using std::vector;
using std::placeholders::_1;
using libspirv::CfgPass;
using libspirv::DataRulesPass;
using libspirv::Extension;
using libspirv::IdPass;
using libspirv::InstructionPass;
using libspirv::LiteralsPass;
using libspirv::ModuleLayoutPass;
using libspirv::ValidationState_t;
spv_result_t spvValidateIDs(const spv_instruction_t* pInsts,
const uint64_t count,
const ValidationState_t& state,
spv_position position) {
position->index = SPV_INDEX_INSTRUCTION;
if (auto error = spvValidateInstructionIDs(pInsts, count, state, position))
return error;
return SPV_SUCCESS;
}
namespace {
// TODO(umar): Validate header
// TODO(umar): The binary parser validates the magic word, and the length of the
// header, but nothing else.
spv_result_t setHeader(void* user_data, spv_endianness_t endian, uint32_t magic,
uint32_t version, uint32_t generator, uint32_t id_bound,
uint32_t reserved) {
// Record the ID bound so that the validator can ensure no ID is out of bound.
ValidationState_t& _ = *(reinterpret_cast<ValidationState_t*>(user_data));
_.setIdBound(id_bound);
(void)endian;
(void)magic;
(void)version;
(void)generator;
(void)id_bound;
(void)reserved;
return SPV_SUCCESS;
}
// Improves diagnostic messages by collecting names of IDs
// NOTE: This function returns void and is not involved in validation
void DebugInstructionPass(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
switch (inst->opcode) {
case SpvOpName: {
const uint32_t target = *(inst->words + inst->operands[0].offset);
const char* str =
reinterpret_cast<const char*>(inst->words + inst->operands[1].offset);
_.AssignNameToId(target, str);
} break;
case SpvOpMemberName: {
const uint32_t target = *(inst->words + inst->operands[0].offset);
const char* str =
reinterpret_cast<const char*>(inst->words + inst->operands[2].offset);
_.AssignNameToId(target, str);
} break;
case SpvOpSourceContinued:
case SpvOpSource:
case SpvOpSourceExtension:
case SpvOpString:
case SpvOpLine:
case SpvOpNoLine:
default:
break;
}
}
// Parses OpExtension instruction and registers extension.
void RegisterExtension(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const std::string extension_str = libspirv::GetExtensionString(inst);
Extension extension;
if (!GetExtensionFromString(extension_str.c_str(), &extension)) {
// The error will be logged in the ProcessInstruction pass.
return;
}
_.RegisterExtension(extension);
}
// Parses the beginning of the module searching for OpExtension instructions.
// Registers extensions if recognized. Returns SPV_REQUESTED_TERMINATION
// once an instruction which is not SpvOpCapability and SpvOpExtension is
// encountered. According to the SPIR-V spec extensions are declared after
// capabilities and before everything else.
spv_result_t ProcessExtensions(void* user_data,
const spv_parsed_instruction_t* inst) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
if (opcode == SpvOpCapability) return SPV_SUCCESS;
if (opcode == SpvOpExtension) {
ValidationState_t& _ = *(reinterpret_cast<ValidationState_t*>(user_data));
RegisterExtension(_, inst);
return SPV_SUCCESS;
}
// OpExtension block is finished, requesting termination.
return SPV_REQUESTED_TERMINATION;
}
spv_result_t ProcessInstruction(void* user_data,
const spv_parsed_instruction_t* inst) {
ValidationState_t& _ = *(reinterpret_cast<ValidationState_t*>(user_data));
_.increment_instruction_count();
if (static_cast<SpvOp>(inst->opcode) == SpvOpEntryPoint) {
const auto entry_point = inst->words[2];
const SpvExecutionModel execution_model = SpvExecutionModel(inst->words[1]);
const char* str =
reinterpret_cast<const char*>(inst->words + inst->operands[2].offset);
ValidationState_t::EntryPointDescription desc;
desc.name = str;
std::vector<uint32_t> interfaces;
for (int i = 3; i < inst->num_operands; ++i) {
desc.interfaces.push_back(inst->words[inst->operands[i].offset]);
}
_.RegisterEntryPoint(entry_point, execution_model, std::move(desc));
}
if (static_cast<SpvOp>(inst->opcode) == SpvOpFunctionCall) {
_.AddFunctionCallTarget(inst->words[3]);
}
DebugInstructionPass(_, inst);
if (auto error = CapabilityPass(_, inst)) return error;
// The IdPass check registers instructions and, therefore, must be called
// before any instruction lookups are performed.
if (auto error = IdPass(_, inst)) return error;
if (auto error = DataRulesPass(_, inst)) return error;
if (auto error = ModuleLayoutPass(_, inst)) return error;
if (auto error = CfgPass(_, inst)) return error;
if (auto error = InstructionPass(_, inst)) return error;
if (auto error = TypeUniquePass(_, inst)) return error;
if (auto error = ArithmeticsPass(_, inst)) return error;
if (auto error = CompositesPass(_, inst)) return error;
if (auto error = ConversionPass(_, inst)) return error;
if (auto error = DerivativesPass(_, inst)) return error;
if (auto error = LogicalsPass(_, inst)) return error;
if (auto error = BitwisePass(_, inst)) return error;
if (auto error = ExtInstPass(_, inst)) return error;
if (auto error = ImagePass(_, inst)) return error;
if (auto error = AtomicsPass(_, inst)) return error;
if (auto error = BarriersPass(_, inst)) return error;
if (auto error = PrimitivesPass(_, inst)) return error;
if (auto error = LiteralsPass(_, inst)) return error;
if (auto error = NonUniformPass(_, inst)) return error;
return SPV_SUCCESS;
}
void printDot(const ValidationState_t& _, const libspirv::BasicBlock& other) {
string block_string;
if (other.successors()->empty()) {
block_string += "end ";
} else {
for (auto block : *other.successors()) {
block_string += _.getIdOrName(block->id()) + " ";
}
}
printf("%10s -> {%s\b}\n", _.getIdOrName(other.id()).c_str(),
block_string.c_str());
}
void PrintBlocks(ValidationState_t& _, libspirv::Function func) {
assert(func.first_block());
printf("%10s -> %s\n", _.getIdOrName(func.id()).c_str(),
_.getIdOrName(func.first_block()->id()).c_str());
for (const auto& block : func.ordered_blocks()) {
printDot(_, *block);
}
}
#ifdef __clang__
#define UNUSED(func) [[gnu::unused]] func
#elif defined(__GNUC__)
#define UNUSED(func) \
func __attribute__((unused)); \
func
#elif defined(_MSC_VER)
#define UNUSED(func) func
#endif
UNUSED(void PrintDotGraph(ValidationState_t& _, libspirv::Function func)) {
if (func.first_block()) {
string func_name(_.getIdOrName(func.id()));
printf("digraph %s {\n", func_name.c_str());
PrintBlocks(_, func);
printf("}\n");
}
}
spv_result_t ValidateBinaryUsingContextAndValidationState(
const spv_context_t& context, const uint32_t* words, const size_t num_words,
spv_diagnostic* pDiagnostic, ValidationState_t* vstate) {
auto binary = std::unique_ptr<spv_const_binary_t>(
new spv_const_binary_t{words, num_words});
spv_endianness_t endian;
spv_position_t position = {};
if (spvBinaryEndianness(binary.get(), &endian)) {
return libspirv::DiagnosticStream(position, context.consumer, "",
SPV_ERROR_INVALID_BINARY)
<< "Invalid SPIR-V magic number.";
}
spv_header_t header;
if (spvBinaryHeaderGet(binary.get(), endian, &header)) {
return libspirv::DiagnosticStream(position, context.consumer, "",
SPV_ERROR_INVALID_BINARY)
<< "Invalid SPIR-V header.";
}
if (header.version > spvVersionForTargetEnv(context.target_env)) {
return libspirv::DiagnosticStream(position, context.consumer, "",
SPV_ERROR_WRONG_VERSION)
<< "Invalid SPIR-V binary version "
<< SPV_SPIRV_VERSION_MAJOR_PART(header.version) << "."
<< SPV_SPIRV_VERSION_MINOR_PART(header.version)
<< " for target environment "
<< spvTargetEnvDescription(context.target_env) << ".";
}
// Look for OpExtension instructions and register extensions.
// Diagnostics if any will be produced in the next pass (ProcessInstruction).
spvBinaryParse(&context, vstate, words, num_words,
/* parsed_header = */ nullptr, ProcessExtensions,
/* diagnostic = */ nullptr);
// NOTE: Parse the module and perform inline validation checks. These
// checks do not require the the knowledge of the whole module.
if (auto error = spvBinaryParse(&context, vstate, words, num_words, setHeader,
ProcessInstruction, pDiagnostic))
return error;
if (!vstate->has_memory_model_specified())
return vstate->diag(SPV_ERROR_INVALID_LAYOUT)
<< "Missing required OpMemoryModel instruction.";
if (vstate->in_function_body())
return vstate->diag(SPV_ERROR_INVALID_LAYOUT)
<< "Missing OpFunctionEnd at end of module.";
// TODO(umar): Add validation checks which require the parsing of the entire
// module. Use the information from the ProcessInstruction pass to make the
// checks.
if (vstate->unresolved_forward_id_count() > 0) {
stringstream ss;
vector<uint32_t> ids = vstate->UnresolvedForwardIds();
transform(begin(ids), end(ids), ostream_iterator<string>(ss, " "),
bind(&ValidationState_t::getIdName, std::ref(*vstate), _1));
auto id_str = ss.str();
return vstate->diag(SPV_ERROR_INVALID_ID)
<< "The following forward referenced IDs have not been defined:\n"
<< id_str.substr(0, id_str.size() - 1);
}
vstate->ComputeFunctionToEntryPointMapping();
// Validate the preconditions involving adjacent instructions. e.g. SpvOpPhi
// must only be preceeded by SpvOpLabel, SpvOpPhi, or SpvOpLine.
if (auto error = ValidateAdjacency(*vstate)) return error;
// CFG checks are performed after the binary has been parsed
// and the CFGPass has collected information about the control flow
if (auto error = PerformCfgChecks(*vstate)) return error;
if (auto error = UpdateIdUse(*vstate)) return error;
if (auto error = CheckIdDefinitionDominateUse(*vstate)) return error;
if (auto error = ValidateDecorations(*vstate)) return error;
if (auto error = ValidateInterfaces(*vstate)) return error;
// Entry point validation. Based on 2.16.1 (Universal Validation Rules) of the
// SPIRV spec:
// * There is at least one OpEntryPoint instruction, unless the Linkage
// capability is being used.
// * No function can be targeted by both an OpEntryPoint instruction and an
// OpFunctionCall instruction.
if (vstate->entry_points().empty() &&
!vstate->HasCapability(SpvCapabilityLinkage)) {
return vstate->diag(SPV_ERROR_INVALID_BINARY)
<< "No OpEntryPoint instruction was found. This is only allowed if "
"the Linkage capability is being used.";
}
for (const auto& entry_point : vstate->entry_points()) {
if (vstate->IsFunctionCallTarget(entry_point)) {
return vstate->diag(SPV_ERROR_INVALID_BINARY)
<< "A function (" << entry_point
<< ") may not be targeted by both an OpEntryPoint instruction and "
"an OpFunctionCall instruction.";
}
}
// NOTE: Copy each instruction for easier processing
std::vector<spv_instruction_t> instructions;
// Expect average instruction length to be a bit over 2 words.
instructions.reserve(binary->wordCount / 2);
uint64_t index = SPV_INDEX_INSTRUCTION;
while (index < binary->wordCount) {
uint16_t wordCount;
uint16_t opcode;
spvOpcodeSplit(spvFixWord(binary->code[index], endian), &wordCount,
&opcode);
spv_instruction_t inst;
spvInstructionCopy(&binary->code[index], static_cast<SpvOp>(opcode),
wordCount, endian, &inst);
instructions.emplace_back(std::move(inst));
index += wordCount;
}
position.index = SPV_INDEX_INSTRUCTION;
if (auto error = spvValidateIDs(instructions.data(), instructions.size(),
*vstate, &position))
return error;
if (auto error = ValidateBuiltIns(*vstate)) return error;
return SPV_SUCCESS;
}
} // anonymous namespace
spv_result_t spvValidate(const spv_const_context context,
const spv_const_binary binary,
spv_diagnostic* pDiagnostic) {
return spvValidateBinary(context, binary->code, binary->wordCount,
pDiagnostic);
}
spv_result_t spvValidateBinary(const spv_const_context context,
const uint32_t* words, const size_t num_words,
spv_diagnostic* pDiagnostic) {
spv_context_t hijack_context = *context;
if (pDiagnostic) {
*pDiagnostic = nullptr;
libspirv::UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic);
}
// This interface is used for default command line options.
spv_validator_options default_options = spvValidatorOptionsCreate();
// Create the ValidationState using the context and default options.
ValidationState_t vstate(&hijack_context, default_options, words, num_words);
spv_result_t result = ValidateBinaryUsingContextAndValidationState(
hijack_context, words, num_words, pDiagnostic, &vstate);
spvValidatorOptionsDestroy(default_options);
return result;
}
spv_result_t spvValidateWithOptions(const spv_const_context context,
spv_const_validator_options options,
const spv_const_binary binary,
spv_diagnostic* pDiagnostic) {
spv_context_t hijack_context = *context;
if (pDiagnostic) {
*pDiagnostic = nullptr;
libspirv::UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic);
}
// Create the ValidationState using the context.
ValidationState_t vstate(&hijack_context, options, binary->code,
binary->wordCount);
return ValidateBinaryUsingContextAndValidationState(
hijack_context, binary->code, binary->wordCount, pDiagnostic, &vstate);
}
namespace spvtools {
spv_result_t ValidateBinaryAndKeepValidationState(
const spv_const_context context, spv_const_validator_options options,
const uint32_t* words, const size_t num_words, spv_diagnostic* pDiagnostic,
std::unique_ptr<ValidationState_t>* vstate) {
spv_context_t hijack_context = *context;
if (pDiagnostic) {
*pDiagnostic = nullptr;
libspirv::UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic);
}
vstate->reset(
new ValidationState_t(&hijack_context, options, words, num_words));
return ValidateBinaryUsingContextAndValidationState(
hijack_context, words, num_words, pDiagnostic, vstate->get());
}
spv_result_t ValidateInstructionAndUpdateValidationState(
ValidationState_t* vstate, const spv_parsed_instruction_t* inst) {
return ProcessInstruction(vstate, inst);
}
} // namespace spvtools