SPIRV-Tools/source/opt/strength_reduction_pass.cpp
Steven Perron 476cae6f7d Add the IRContext (part 1)
This is the first part of adding the IRContext.  This class is meant to
hold the extra data that is build on top of the module that it
owns.

The first part will simply create the IRContext class and get it passed
to the passes in place of the module.  For now it does not have any
functionality of its own, but it acts more as a wrapper for the module.

The functions that I added to the IRContext are those that either
traverse the headers or add to them.  I did this because we may decide
to have other ways of dealing with these sections (for example adding a
type pool, or use the decoration manager).

I also added the function that add to the header because the IRContext
needs to know when an instruction is added to update other data
structures appropriately.

Note that there is still lots of work that needs to be done.  There are
still many places that change the module, and do not inform the context.
That will be the next step.
2017-10-31 13:46:05 -04:00

209 lines
6.7 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "strength_reduction_pass.h"
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <unordered_map>
#include <unordered_set>
#include "def_use_manager.h"
#include "log.h"
#include "reflect.h"
#include "ir_context.h"
namespace {
// Count the number of trailing zeros in the binary representation of
// |constVal|.
uint32_t CountTrailingZeros(uint32_t constVal) {
// Faster if we use the hardware count trailing zeros instruction.
// If not available, we could create a table.
uint32_t shiftAmount = 0;
while ((constVal & 1) == 0) {
++shiftAmount;
constVal = (constVal >> 1);
}
return shiftAmount;
}
// Return true if |val| is a power of 2.
bool IsPowerOf2(uint32_t val) {
// The idea is that the & will clear out the least
// significant 1 bit. If it is a power of 2, then
// there is exactly 1 bit set, and the value becomes 0.
if (val == 0) return false;
return ((val - 1) & val) == 0;
}
} // namespace
namespace spvtools {
namespace opt {
Pass::Status StrengthReductionPass::Process(ir::IRContext* c) {
InitializeProcessing(c);
// Initialize the member variables on a per module basis.
bool modified = false;
int32_type_id_ = 0;
uint32_type_id_ = 0;
std::memset(constant_ids_, 0, sizeof(constant_ids_));
FindIntTypesAndConstants();
modified = ScanFunctions();
return (modified ? Status::SuccessWithChange : Status::SuccessWithoutChange);
}
bool StrengthReductionPass::ReplaceMultiplyByPowerOf2(
ir::BasicBlock::iterator* instPtr) {
ir::BasicBlock::iterator& inst = *instPtr;
assert(inst->opcode() == SpvOp::SpvOpIMul &&
"Only works for multiplication of integers.");
bool modified = false;
// Currently only works on 32-bit integers.
if (inst->type_id() != int32_type_id_ && inst->type_id() != uint32_type_id_) {
return modified;
}
// Check the operands for a constant that is a power of 2.
for (int i = 0; i < 2; i++) {
uint32_t opId = inst->GetSingleWordInOperand(i);
ir::Instruction* opInst = get_def_use_mgr()->GetDef(opId);
if (opInst->opcode() == SpvOp::SpvOpConstant) {
// We found a constant operand.
uint32_t constVal = opInst->GetSingleWordOperand(2);
if (IsPowerOf2(constVal)) {
modified = true;
uint32_t shiftAmount = CountTrailingZeros(constVal);
uint32_t shiftConstResultId = GetConstantId(shiftAmount);
// Create the new instruction.
uint32_t newResultId = TakeNextId();
std::vector<ir::Operand> newOperands;
newOperands.push_back(inst->GetInOperand(1 - i));
ir::Operand shiftOperand(spv_operand_type_t::SPV_OPERAND_TYPE_ID,
{shiftConstResultId});
newOperands.push_back(shiftOperand);
std::unique_ptr<ir::Instruction> newInstruction(
new ir::Instruction(SpvOp::SpvOpShiftLeftLogical, inst->type_id(),
newResultId, newOperands));
// Insert the new instruction and update the data structures.
get_def_use_mgr()->AnalyzeInstDefUse(&*newInstruction);
inst = inst.InsertBefore(std::move(newInstruction));
++inst;
get_def_use_mgr()->ReplaceAllUsesWith(inst->result_id(), newResultId);
// Remove the old instruction.
get_def_use_mgr()->KillInst(&*inst);
// We do not want to replace the instruction twice if both operands
// are constants that are a power of 2. So we break here.
break;
}
}
}
return modified;
}
void StrengthReductionPass::FindIntTypesAndConstants() {
for (auto iter = get_module()->types_values_begin();
iter != get_module()->types_values_end(); ++iter) {
switch (iter->opcode()) {
case SpvOp::SpvOpTypeInt:
if (iter->GetSingleWordOperand(1) == 32) {
if (iter->GetSingleWordOperand(2) == 1) {
int32_type_id_ = iter->result_id();
} else {
uint32_type_id_ = iter->result_id();
}
}
break;
case SpvOp::SpvOpConstant:
if (iter->type_id() == uint32_type_id_) {
uint32_t value = iter->GetSingleWordOperand(2);
if (value <= 32) constant_ids_[value] = iter->result_id();
}
break;
default:
break;
}
}
}
uint32_t StrengthReductionPass::GetConstantId(uint32_t val) {
assert(val <= 32 &&
"This function does not handle constants larger than 32.");
if (constant_ids_[val] == 0) {
if (uint32_type_id_ == 0) {
uint32_type_id_ = CreateUint32Type();
}
// Construct the constant.
uint32_t resultId = TakeNextId();
ir::Operand constant(spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
{val});
std::unique_ptr<ir::Instruction> newConstant(new ir::Instruction(
SpvOp::SpvOpConstant, uint32_type_id_, resultId, {constant}));
get_module()->AddGlobalValue(std::move(newConstant));
// Store the result id for next time.
constant_ids_[val] = resultId;
}
return constant_ids_[val];
}
bool StrengthReductionPass::ScanFunctions() {
// I did not use |ForEachInst| in the module because the function that acts on
// the instruction gets a pointer to the instruction. We cannot use that to
// insert a new instruction. I want an iterator.
bool modified = false;
for (auto& func : *get_module()) {
for (auto& bb : func) {
for (auto inst = bb.begin(); inst != bb.end(); ++inst) {
switch (inst->opcode()) {
case SpvOp::SpvOpIMul:
if (ReplaceMultiplyByPowerOf2(&inst)) modified = true;
break;
default:
break;
}
}
}
}
return modified;
}
uint32_t StrengthReductionPass::CreateUint32Type() {
uint32_t type_id = TakeNextId();
ir::Operand widthOperand(spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
{32});
ir::Operand signOperand(spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
{0});
std::unique_ptr<ir::Instruction> newType(new ir::Instruction(
SpvOp::SpvOpTypeInt, type_id, 0, {widthOperand, signOperand}));
context()->AddType(std::move(newType));
return type_id;
}
} // namespace opt
} // namespace spvtools