SPIRV-Tools/source/validate_instruction.cpp
Lei Zhang 063dbea0f1 Turn all function static non-POD variables into global POD variables
Function static non-POD data causes problems with DLL lifetime.
This pull request turns all static info tables into strict POD
tables. Specifically, the capabilities/extensions field of
opcode/operand/extended-instruction table are turned into two
fields, one for the count and the other a pointer to an array of
capabilities/extensions. CapabilitySet/EnumSet are not used in
the static table anymore, but they are still used for checking
inclusion by constructing on the fly, which should be cheap for
the majority cases.

Also moves all these tables into the global namespace to avoid
C++11 function static thread-safe initialization overhead.
2017-10-25 15:44:19 -04:00

465 lines
18 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Performs validation on instructions that appear inside of a SPIR-V block.
#include "validate.h"
#include <algorithm>
#include <cassert>
#include <sstream>
#include <string>
#include "binary.h"
#include "diagnostic.h"
#include "enum_set.h"
#include "enum_string_mapping.h"
#include "extensions.h"
#include "opcode.h"
#include "operand.h"
#include "spirv_definition.h"
#include "spirv_validator_options.h"
#include "util/string_utils.h"
#include "val/function.h"
#include "val/validation_state.h"
using libspirv::AssemblyGrammar;
using libspirv::CapabilitySet;
using libspirv::DiagnosticStream;
using libspirv::ExtensionSet;
using libspirv::ValidationState_t;
namespace {
std::string ToString(const CapabilitySet& capabilities,
const AssemblyGrammar& grammar) {
std::stringstream ss;
capabilities.ForEach([&grammar, &ss](SpvCapability cap) {
spv_operand_desc desc;
if (SPV_SUCCESS ==
grammar.lookupOperand(SPV_OPERAND_TYPE_CAPABILITY, cap, &desc))
ss << desc->name << " ";
else
ss << cap << " ";
});
return ss.str();
}
// Reports a missing-capability error to _'s diagnostic stream and returns
// SPV_ERROR_INVALID_CAPABILITY.
spv_result_t CapabilityError(ValidationState_t& _, int which_operand,
SpvOp opcode,
const std::string& required_capabilities) {
return _.diag(SPV_ERROR_INVALID_CAPABILITY)
<< "Operand " << which_operand << " of " << spvOpcodeString(opcode)
<< " requires one of these capabilities: " << required_capabilities;
}
// Returns an operand's required capabilities.
CapabilitySet RequiredCapabilities(const ValidationState_t& state,
spv_operand_type_t type, uint32_t operand) {
// Mere mention of PointSize, ClipDistance, or CullDistance in a Builtin
// decoration does not require the associated capability. The use of such
// a variable value should trigger the capability requirement, but that's
// not implemented yet. This rule is independent of target environment.
// See https://github.com/KhronosGroup/SPIRV-Tools/issues/365
if (type == SPV_OPERAND_TYPE_BUILT_IN) {
switch (operand) {
case SpvBuiltInPointSize:
case SpvBuiltInClipDistance:
case SpvBuiltInCullDistance:
return CapabilitySet();
default:
break;
}
} else if (type == SPV_OPERAND_TYPE_FP_ROUNDING_MODE) {
// Allow all FP rounding modes if requested
if (state.features().free_fp_rounding_mode) {
return CapabilitySet();
}
}
spv_operand_desc operand_desc;
const auto ret = state.grammar().lookupOperand(type, operand, &operand_desc);
if (ret == SPV_SUCCESS) {
CapabilitySet result(operand_desc->numCapabilities,
operand_desc->capabilities);
// Allow FPRoundingMode decoration if requested
if (state.features().free_fp_rounding_mode &&
type == SPV_OPERAND_TYPE_DECORATION &&
operand_desc->value == SpvDecorationFPRoundingMode) {
return CapabilitySet();
}
return result;
}
return CapabilitySet();
}
// Returns operand's required extensions.
ExtensionSet RequiredExtensions(const ValidationState_t& state,
spv_operand_type_t type, uint32_t operand) {
spv_operand_desc operand_desc;
if (state.grammar().lookupOperand(type, operand, &operand_desc) ==
SPV_SUCCESS) {
assert(operand_desc);
return {operand_desc->numExtensions, operand_desc->extensions};
}
return ExtensionSet();
}
} // namespace
namespace libspirv {
spv_result_t CapabilityCheck(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
spv_opcode_desc opcode_desc = {};
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
if (SPV_SUCCESS == _.grammar().lookupOpcode(opcode, &opcode_desc)) {
CapabilitySet opcode_caps(opcode_desc->numCapabilities,
opcode_desc->capabilities);
if (!_.HasAnyOfCapabilities(opcode_caps))
return _.diag(SPV_ERROR_INVALID_CAPABILITY)
<< "Opcode " << spvOpcodeString(opcode)
<< " requires one of these capabilities: "
<< ToString(opcode_caps, _.grammar());
}
for (int i = 0; i < inst->num_operands; ++i) {
const auto& operand = inst->operands[i];
const auto word = inst->words[operand.offset];
if (spvOperandIsConcreteMask(operand.type)) {
// Check for required capabilities for each bit position of the mask.
for (uint32_t mask_bit = 0x80000000; mask_bit; mask_bit >>= 1) {
if (word & mask_bit) {
const auto caps = RequiredCapabilities(_, operand.type, mask_bit);
if (!_.HasAnyOfCapabilities(caps)) {
return CapabilityError(_, i + 1, opcode,
ToString(caps, _.grammar()));
}
}
}
} else if (spvIsIdType(operand.type)) {
// TODO(dneto): Check the value referenced by this Id, if we can compute
// it. For now, just punt, to fix issue 248:
// https://github.com/KhronosGroup/SPIRV-Tools/issues/248
} else {
// Check the operand word as a whole.
const auto caps = RequiredCapabilities(_, operand.type, word);
if (!_.HasAnyOfCapabilities(caps)) {
return CapabilityError(_, i + 1, opcode, ToString(caps, _.grammar()));
}
}
}
return SPV_SUCCESS;
}
// Checks that all required extensions were declared in the module.
spv_result_t ExtensionCheck(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
for (size_t operand_index = 0; operand_index < inst->num_operands;
++operand_index) {
const auto& operand = inst->operands[operand_index];
const uint32_t word = inst->words[operand.offset];
const ExtensionSet required_extensions =
RequiredExtensions(_, operand.type, word);
if (!_.HasAnyOfExtensions(required_extensions)) {
return _.diag(SPV_ERROR_MISSING_EXTENSION)
<< spvutils::CardinalToOrdinal(operand_index + 1) << " operand of "
<< spvOpcodeString(opcode) << ": operand " << word
<< " requires one of these extensions: "
<< ExtensionSetToString(required_extensions);
}
}
return SPV_SUCCESS;
}
// Checks that the instruction is not reserved for future use.
spv_result_t ReservedCheck(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
switch (opcode) {
case SpvOpImageSparseSampleProjImplicitLod:
case SpvOpImageSparseSampleProjExplicitLod:
case SpvOpImageSparseSampleProjDrefImplicitLod:
case SpvOpImageSparseSampleProjDrefExplicitLod:
return _.diag(SPV_ERROR_INVALID_VALUE)
<< spvOpcodeString(opcode) << " is reserved for future use.";
default:
return SPV_SUCCESS;
}
}
// Checks that the Resuld <id> is within the valid bound.
spv_result_t LimitCheckIdBound(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
if (inst->result_id >= _.getIdBound()) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Result <id> '" << inst->result_id
<< "' must be less than the ID bound '" << _.getIdBound() << "'.";
}
return SPV_SUCCESS;
}
// Checks that the number of OpTypeStruct members is within the limit.
spv_result_t LimitCheckStruct(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
if (SpvOpTypeStruct != inst->opcode) {
return SPV_SUCCESS;
}
// Number of members is the number of operands of the instruction minus 1.
// One operand is the result ID.
const uint16_t limit =
static_cast<uint16_t>(_.options()->universal_limits_.max_struct_members);
if (inst->num_operands - 1 > limit) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Number of OpTypeStruct members (" << inst->num_operands - 1
<< ") has exceeded the limit (" << limit << ").";
}
// Section 2.17 of SPIRV Spec specifies that the "Structure Nesting Depth"
// must be less than or equal to 255.
// This is interpreted as structures including other structures as members.
// The code does not follow pointers or look into arrays to see if we reach a
// structure downstream.
// The nesting depth of a struct is 1+(largest depth of any member).
// Scalars are at depth 0.
uint32_t max_member_depth = 0;
// Struct members start at word 2 of OpTypeStruct instruction.
for (size_t word_i = 2; word_i < inst->num_words; ++word_i) {
auto member = inst->words[word_i];
auto memberTypeInstr = _.FindDef(member);
if (memberTypeInstr && SpvOpTypeStruct == memberTypeInstr->opcode()) {
max_member_depth = std::max(
max_member_depth, _.struct_nesting_depth(memberTypeInstr->id()));
}
}
const uint32_t depth_limit = _.options()->universal_limits_.max_struct_depth;
const uint32_t cur_depth = 1 + max_member_depth;
_.set_struct_nesting_depth(inst->result_id, cur_depth);
if (cur_depth > depth_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Structure Nesting Depth may not be larger than " << depth_limit
<< ". Found " << cur_depth << ".";
}
return SPV_SUCCESS;
}
// Checks that the number of (literal, label) pairs in OpSwitch is within the
// limit.
spv_result_t LimitCheckSwitch(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
if (SpvOpSwitch == inst->opcode) {
// The instruction syntax is as follows:
// OpSwitch <selector ID> <Default ID> literal label literal label ...
// literal,label pairs come after the first 2 operands.
// It is guaranteed at this point that num_operands is an even numner.
unsigned int num_pairs = (inst->num_operands - 2) / 2;
const unsigned int num_pairs_limit =
_.options()->universal_limits_.max_switch_branches;
if (num_pairs > num_pairs_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Number of (literal, label) pairs in OpSwitch (" << num_pairs
<< ") exceeds the limit (" << num_pairs_limit << ").";
}
}
return SPV_SUCCESS;
}
// Ensure the number of variables of the given class does not exceed the limit.
spv_result_t LimitCheckNumVars(ValidationState_t& _, const uint32_t var_id,
const SpvStorageClass storage_class) {
if (SpvStorageClassFunction == storage_class) {
_.registerLocalVariable(var_id);
const uint32_t num_local_vars_limit =
_.options()->universal_limits_.max_local_variables;
if (_.num_local_vars() > num_local_vars_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Number of local variables ('Function' Storage Class) "
"exceeded the valid limit ("
<< num_local_vars_limit << ").";
}
} else {
_.registerGlobalVariable(var_id);
const uint32_t num_global_vars_limit =
_.options()->universal_limits_.max_global_variables;
if (_.num_global_vars() > num_global_vars_limit) {
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "Number of Global Variables (Storage Class other than "
"'Function') exceeded the valid limit ("
<< num_global_vars_limit << ").";
}
}
return SPV_SUCCESS;
}
// Registers necessary decoration(s) for the appropriate IDs based on the
// instruction.
spv_result_t RegisterDecorations(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
switch (inst->opcode) {
case SpvOpDecorate: {
const uint32_t target_id = inst->words[1];
const SpvDecoration dec_type = static_cast<SpvDecoration>(inst->words[2]);
std::vector<uint32_t> dec_params;
if (inst->num_words > 3) {
dec_params.insert(dec_params.end(), inst->words + 3,
inst->words + inst->num_words);
}
_.RegisterDecorationForId(target_id, Decoration(dec_type, dec_params));
break;
}
case SpvOpMemberDecorate: {
const uint32_t struct_id = inst->words[1];
const uint32_t index = inst->words[2];
const SpvDecoration dec_type = static_cast<SpvDecoration>(inst->words[3]);
std::vector<uint32_t> dec_params;
if (inst->num_words > 4) {
dec_params.insert(dec_params.end(), inst->words + 4,
inst->words + inst->num_words);
}
_.RegisterDecorationForId(struct_id,
Decoration(dec_type, dec_params, index));
break;
}
case SpvOpDecorationGroup: {
// We don't need to do anything right now. Assigning decorations to groups
// will be taken care of via OpGroupDecorate.
break;
}
case SpvOpGroupDecorate: {
// Word 1 is the group <id>. All subsequent words are target <id>s that
// are going to be decorated with the decorations.
const uint32_t decoration_group_id = inst->words[1];
std::vector<Decoration>& group_decorations =
_.id_decorations(decoration_group_id);
for (int i = 2; i < inst->num_words; ++i) {
const uint32_t target_id = inst->words[i];
_.RegisterDecorationsForId(target_id, group_decorations.begin(),
group_decorations.end());
}
break;
}
case SpvOpGroupMemberDecorate: {
// Word 1 is the Decoration Group <id> followed by (struct<id>,literal)
// pairs. All decorations of the group should be applied to all the struct
// members that are specified in the instructions.
const uint32_t decoration_group_id = inst->words[1];
std::vector<Decoration>& group_decorations =
_.id_decorations(decoration_group_id);
// Grammar checks ensures that the number of arguments to this instruction
// is an odd number: 1 decoration group + (id,literal) pairs.
for (int i = 2; i + 1 < inst->num_words; i = i + 2) {
const uint32_t struct_id = inst->words[i];
const uint32_t index = inst->words[i + 1];
// ID validation phase ensures this is in fact a struct instruction and
// that the index is not out of bound.
_.RegisterDecorationsForStructMember(struct_id, index,
group_decorations.begin(),
group_decorations.end());
}
break;
}
default:
break;
}
return SPV_SUCCESS;
}
// Parses OpExtension instruction and logs warnings if unsuccessful.
void CheckIfKnownExtension(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const std::string extension_str = GetExtensionString(inst);
Extension extension;
if (!GetExtensionFromString(extension_str, &extension)) {
_.diag(SPV_SUCCESS) << "Found unrecognized extension " << extension_str;
return;
}
}
spv_result_t InstructionPass(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
if (opcode == SpvOpExtension) CheckIfKnownExtension(_, inst);
if (opcode == SpvOpCapability) {
_.RegisterCapability(
static_cast<SpvCapability>(inst->words[inst->operands[0].offset]));
}
if (opcode == SpvOpMemoryModel) {
_.set_addressing_model(
static_cast<SpvAddressingModel>(inst->words[inst->operands[0].offset]));
_.set_memory_model(
static_cast<SpvMemoryModel>(inst->words[inst->operands[1].offset]));
}
if (opcode == SpvOpVariable) {
const auto storage_class =
static_cast<SpvStorageClass>(inst->words[inst->operands[2].offset]);
if (auto error = LimitCheckNumVars(_, inst->result_id, storage_class)) {
return error;
}
if (storage_class == SpvStorageClassGeneric)
return _.diag(SPV_ERROR_INVALID_BINARY)
<< "OpVariable storage class cannot be Generic";
if (_.current_layout_section() == kLayoutFunctionDefinitions) {
if (storage_class != SpvStorageClassFunction) {
return _.diag(SPV_ERROR_INVALID_LAYOUT)
<< "Variables must have a function[7] storage class inside"
" of a function";
}
if (_.current_function().IsFirstBlock(
_.current_function().current_block()->id()) == false) {
return _.diag(SPV_ERROR_INVALID_CFG) << "Variables can only be defined "
"in the first block of a "
"function";
}
} else {
if (storage_class == SpvStorageClassFunction) {
return _.diag(SPV_ERROR_INVALID_LAYOUT)
<< "Variables can not have a function[7] storage class "
"outside of a function";
}
}
}
// SPIR-V Spec 2.16.3: Validation Rules for Kernel Capabilities: The
// Signedness in OpTypeInt must always be 0.
if (SpvOpTypeInt == inst->opcode && _.HasCapability(SpvCapabilityKernel) &&
inst->words[inst->operands[2].offset] != 0u) {
return _.diag(SPV_ERROR_INVALID_BINARY) << "The Signedness in OpTypeInt "
"must always be 0 when Kernel "
"capability is used.";
}
// In order to validate decoration rules, we need to know all the decorations
// that are applied to any given <id>.
RegisterDecorations(_, inst);
if (auto error = ExtensionCheck(_, inst)) return error;
if (auto error = CapabilityCheck(_, inst)) return error;
if (auto error = LimitCheckIdBound(_, inst)) return error;
if (auto error = LimitCheckStruct(_, inst)) return error;
if (auto error = LimitCheckSwitch(_, inst)) return error;
if (auto error = ReservedCheck(_, inst)) return error;
// All instruction checks have passed.
return SPV_SUCCESS;
}
} // namespace libspirv