SPIRV-Tools/source/opt/inline_pass.h
dan sinclair f96b7f1cb9
use Pass::Run to set the context on each pass. (#1708)
Currently the IRContext is passed into the Pass::Process method. It is
then up to the individual pass to store the context into the context_
variable. This CL changes the Run method to store the context before
calling Process which no-longer receives the context as a parameter.
2018-07-12 09:08:45 -04:00

193 lines
7.6 KiB
C++

// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPT_INLINE_PASS_H_
#define LIBSPIRV_OPT_INLINE_PASS_H_
#include <algorithm>
#include <list>
#include <memory>
#include <unordered_map>
#include <vector>
#include "decoration_manager.h"
#include "module.h"
#include "pass.h"
namespace spvtools {
namespace opt {
// See optimizer.hpp for documentation.
class InlinePass : public Pass {
using cbb_ptr = const opt::BasicBlock*;
public:
using GetBlocksFunction =
std::function<std::vector<opt::BasicBlock*>*(const opt::BasicBlock*)>;
virtual ~InlinePass() = default;
protected:
InlinePass();
// Add pointer to type to module and return resultId.
uint32_t AddPointerToType(uint32_t type_id, SpvStorageClass storage_class);
// Add unconditional branch to labelId to end of block block_ptr.
void AddBranch(uint32_t labelId, std::unique_ptr<opt::BasicBlock>* block_ptr);
// Add conditional branch to end of block |block_ptr|.
void AddBranchCond(uint32_t cond_id, uint32_t true_id, uint32_t false_id,
std::unique_ptr<opt::BasicBlock>* block_ptr);
// Add unconditional branch to labelId to end of block block_ptr.
void AddLoopMerge(uint32_t merge_id, uint32_t continue_id,
std::unique_ptr<opt::BasicBlock>* block_ptr);
// Add store of valId to ptrId to end of block block_ptr.
void AddStore(uint32_t ptrId, uint32_t valId,
std::unique_ptr<opt::BasicBlock>* block_ptr);
// Add load of ptrId into resultId to end of block block_ptr.
void AddLoad(uint32_t typeId, uint32_t resultId, uint32_t ptrId,
std::unique_ptr<opt::BasicBlock>* block_ptr);
// Return new label.
std::unique_ptr<opt::Instruction> NewLabel(uint32_t label_id);
// Returns the id for the boolean false value. Looks in the module first
// and creates it if not found. Remembers it for future calls.
uint32_t GetFalseId();
// Map callee params to caller args
void MapParams(opt::Function* calleeFn,
opt::BasicBlock::iterator call_inst_itr,
std::unordered_map<uint32_t, uint32_t>* callee2caller);
// Clone and map callee locals
void CloneAndMapLocals(
opt::Function* calleeFn,
std::vector<std::unique_ptr<opt::Instruction>>* new_vars,
std::unordered_map<uint32_t, uint32_t>* callee2caller);
// Create return variable for callee clone code if needed. Return id
// if created, otherwise 0.
uint32_t CreateReturnVar(
opt::Function* calleeFn,
std::vector<std::unique_ptr<opt::Instruction>>* new_vars);
// Return true if instruction must be in the same block that its result
// is used.
bool IsSameBlockOp(const opt::Instruction* inst) const;
// Clone operands which must be in same block as consumer instructions.
// Look in preCallSB for instructions that need cloning. Look in
// postCallSB for instructions already cloned. Add cloned instruction
// to postCallSB.
void CloneSameBlockOps(
std::unique_ptr<opt::Instruction>* inst,
std::unordered_map<uint32_t, uint32_t>* postCallSB,
std::unordered_map<uint32_t, opt::Instruction*>* preCallSB,
std::unique_ptr<opt::BasicBlock>* block_ptr);
// Return in new_blocks the result of inlining the call at call_inst_itr
// within its block at call_block_itr. The block at call_block_itr can
// just be replaced with the blocks in new_blocks. Any additional branches
// are avoided. Debug instructions are cloned along with their callee
// instructions. Early returns are replaced by a store to a local return
// variable and a branch to a (created) exit block where the local variable
// is returned. Formal parameters are trivially mapped to their actual
// parameters. Note that the first block in new_blocks retains the label
// of the original calling block. Also note that if an exit block is
// created, it is the last block of new_blocks.
//
// Also return in new_vars additional OpVariable instructions required by
// and to be inserted into the caller function after the block at
// call_block_itr is replaced with new_blocks.
void GenInlineCode(std::vector<std::unique_ptr<opt::BasicBlock>>* new_blocks,
std::vector<std::unique_ptr<opt::Instruction>>* new_vars,
opt::BasicBlock::iterator call_inst_itr,
opt::UptrVectorIterator<opt::BasicBlock> call_block_itr);
// Return true if |inst| is a function call that can be inlined.
bool IsInlinableFunctionCall(const opt::Instruction* inst);
// Compute structured successors for function |func|.
// A block's structured successors are the blocks it branches to
// together with its declared merge block if it has one.
// When order matters, the merge block always appears first.
// This assures correct depth first search in the presence of early
// returns and kills. If the successor vector contain duplicates
// if the merge block, they are safely ignored by DFS.
void ComputeStructuredSuccessors(opt::Function* func);
// Return function to return ordered structure successors for a given block
// Assumes ComputeStructuredSuccessors() has been called.
GetBlocksFunction StructuredSuccessorsFunction();
// Return true if |func| has multiple returns
bool HasMultipleReturns(opt::Function* func);
// Return true if |func| has no return in a loop. The current analysis
// requires structured control flow, so return false if control flow not
// structured ie. module is not a shader.
bool HasNoReturnInLoop(opt::Function* func);
// Find all functions with multiple returns and no returns in loops
void AnalyzeReturns(opt::Function* func);
// Return true if |func| is a function that can be inlined.
bool IsInlinableFunction(opt::Function* func);
// Update phis in succeeding blocks to point to new last block
void UpdateSucceedingPhis(
std::vector<std::unique_ptr<opt::BasicBlock>>& new_blocks);
// Initialize state for optimization of |module|
void InitializeInline();
// Map from function's result id to function.
std::unordered_map<uint32_t, opt::Function*> id2function_;
// Map from block's label id to block. TODO(dnovillo): This is superfluous wrt
// opt::CFG. It has functionality not present in opt::CFG. Consolidate.
std::unordered_map<uint32_t, opt::BasicBlock*> id2block_;
// Set of ids of functions with multiple returns.
std::set<uint32_t> multi_return_funcs_;
// Set of ids of functions with no returns in loop
std::set<uint32_t> no_return_in_loop_;
// Set of ids of inlinable functions
std::set<uint32_t> inlinable_;
// result id for OpConstantFalse
uint32_t false_id_;
// Map from block to its structured successor blocks. See
// ComputeStructuredSuccessors() for definition. TODO(dnovillo): This is
// superfluous wrt opt::CFG, but it seems to be computed in a slightly
// different way in the inliner. Can these be consolidated?
std::unordered_map<const opt::BasicBlock*, std::vector<opt::BasicBlock*>>
block2structured_succs_;
};
} // namespace opt
} // namespace spvtools
#endif // LIBSPIRV_OPT_INLINE_PASS_H_