SPIRV-Tools/test/val/val_atomics_test.cpp
dan sinclair 2cce2c5b97
Move tests into namespaces (#1689)
This CL moves the test into namespaces based on their directories.
2018-07-11 09:24:49 -04:00

1017 lines
34 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "unit_spirv.h"
#include "val_fixtures.h"
namespace spvtools {
namespace val {
namespace {
using ::testing::HasSubstr;
using ::testing::Not;
using ValidateAtomics = spvtest::ValidateBase<bool>;
std::string GenerateShaderCode(
const std::string& body,
const std::string& capabilities_and_extensions = "") {
std::ostringstream ss;
ss << R"(
OpCapability Shader
OpCapability Int64
)";
ss << capabilities_and_extensions;
ss << R"(
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
%void = OpTypeVoid
%func = OpTypeFunction %void
%bool = OpTypeBool
%f32 = OpTypeFloat 32
%u32 = OpTypeInt 32 0
%u64 = OpTypeInt 64 0
%f32vec4 = OpTypeVector %f32 4
%f32_0 = OpConstant %f32 0
%f32_1 = OpConstant %f32 1
%u32_0 = OpConstant %u32 0
%u32_1 = OpConstant %u32 1
%u64_1 = OpConstant %u64 1
%f32vec4_0000 = OpConstantComposite %f32vec4 %f32_0 %f32_0 %f32_0 %f32_0
%cross_device = OpConstant %u32 0
%device = OpConstant %u32 1
%workgroup = OpConstant %u32 2
%subgroup = OpConstant %u32 3
%invocation = OpConstant %u32 4
%relaxed = OpConstant %u32 0
%acquire = OpConstant %u32 2
%release = OpConstant %u32 4
%acquire_release = OpConstant %u32 8
%acquire_and_release = OpConstant %u32 6
%sequentially_consistent = OpConstant %u32 16
%acquire_release_uniform_workgroup = OpConstant %u32 328
%f32_ptr = OpTypePointer Workgroup %f32
%f32_var = OpVariable %f32_ptr Workgroup
%u32_ptr = OpTypePointer Workgroup %u32
%u32_var = OpVariable %u32_ptr Workgroup
%u64_ptr = OpTypePointer Workgroup %u64
%u64_var = OpVariable %u64_ptr Workgroup
%f32vec4_ptr = OpTypePointer Workgroup %f32vec4
%f32vec4_var = OpVariable %f32vec4_ptr Workgroup
%f32_ptr_function = OpTypePointer Function %f32
%main = OpFunction %void None %func
%main_entry = OpLabel
)";
ss << body;
ss << R"(
OpReturn
OpFunctionEnd)";
return ss.str();
}
std::string GenerateKernelCode(
const std::string& body,
const std::string& capabilities_and_extensions = "") {
std::ostringstream ss;
ss << R"(
OpCapability Addresses
OpCapability Kernel
OpCapability Linkage
OpCapability Int64
)";
ss << capabilities_and_extensions;
ss << R"(
OpMemoryModel Physical32 OpenCL
%void = OpTypeVoid
%func = OpTypeFunction %void
%bool = OpTypeBool
%f32 = OpTypeFloat 32
%u32 = OpTypeInt 32 0
%u64 = OpTypeInt 64 0
%f32vec4 = OpTypeVector %f32 4
%f32_0 = OpConstant %f32 0
%f32_1 = OpConstant %f32 1
%u32_0 = OpConstant %u32 0
%u32_1 = OpConstant %u32 1
%u64_1 = OpConstant %u64 1
%f32vec4_0000 = OpConstantComposite %f32vec4 %f32_0 %f32_0 %f32_0 %f32_0
%cross_device = OpConstant %u32 0
%device = OpConstant %u32 1
%workgroup = OpConstant %u32 2
%subgroup = OpConstant %u32 3
%invocation = OpConstant %u32 4
%relaxed = OpConstant %u32 0
%acquire = OpConstant %u32 2
%release = OpConstant %u32 4
%acquire_release = OpConstant %u32 8
%acquire_and_release = OpConstant %u32 6
%sequentially_consistent = OpConstant %u32 16
%acquire_release_uniform_workgroup = OpConstant %u32 328
%acquire_release_atomic_counter_workgroup = OpConstant %u32 1288
%f32_ptr = OpTypePointer Workgroup %f32
%f32_var = OpVariable %f32_ptr Workgroup
%u32_ptr = OpTypePointer Workgroup %u32
%u32_var = OpVariable %u32_ptr Workgroup
%u64_ptr = OpTypePointer Workgroup %u64
%u64_var = OpVariable %u64_ptr Workgroup
%f32vec4_ptr = OpTypePointer Workgroup %f32vec4
%f32vec4_var = OpVariable %f32vec4_ptr Workgroup
%f32_ptr_function = OpTypePointer Function %f32
%main = OpFunction %void None %func
%main_entry = OpLabel
)";
ss << body;
ss << R"(
OpReturn
OpFunctionEnd)";
return ss.str();
}
TEST_F(ValidateAtomics, AtomicLoadShaderSuccess) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %device %relaxed
%val2 = OpAtomicLoad %u32 %u32_var %workgroup %acquire
%val3 = OpAtomicLoad %u64 %u64_var %subgroup %sequentially_consistent
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicLoadKernelSuccess) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %device %relaxed
%val2 = OpAtomicLoad %u32 %u32_var %workgroup %sequentially_consistent
%val3 = OpAtomicLoad %u64 %u64_var %subgroup %acquire
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicLoadVulkanSuccess) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %device %relaxed
%val2 = OpAtomicLoad %u32 %u32_var %workgroup %acquire
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0));
}
// TODO(atgoo@github.com): the corresponding check fails Vulkan CTS,
// reenable once fixed.
TEST_F(ValidateAtomics, DISABLED_AtomicLoadVulkanSubgroup) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %subgroup %acquire
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicLoad: in Vulkan environment memory scope is "
"limited to Device, Workgroup and Invocation"));
}
TEST_F(ValidateAtomics, AtomicLoadVulkanRelease) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %workgroup %release
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicLoad with Memory Semantics "
"Release, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicLoadVulkanAcquireRelease) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %workgroup %acquire_release
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicLoad with Memory Semantics "
"Release, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicLoadVulkanSequentiallyConsistent) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %workgroup %sequentially_consistent
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicLoad with Memory Semantics "
"Release, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicLoadShaderFloat) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %device %relaxed
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicLoad: "
"expected Result Type to be int scalar type"));
}
TEST_F(ValidateAtomics, AtomicLoadVulkanInt64) {
const std::string body = R"(
%val1 = OpAtomicLoad %u64 %u64_var %device %relaxed
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicLoad: according to the Vulkan spec atomic "
"Result Type needs to be a 32-bit int scalar type"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongResultType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32vec4 %f32vec4_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicLoad: "
"expected Result Type to be int or float scalar type"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongPointerType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_ptr %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicLoad: expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongPointerDataType) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %f32_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicLoad: "
"expected Pointer to point to a value of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongScopeType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %f32_1 %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicLoad: expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongMemorySemanticsType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %device %u64_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicLoad: expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicStoreKernelSuccess) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
OpAtomicStore %u32_var %subgroup %release %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicStoreShaderSuccess) {
const std::string body = R"(
OpAtomicStore %u32_var %device %release %u32_1
OpAtomicStore %u32_var %subgroup %sequentially_consistent %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicStoreVulkanSuccess) {
const std::string body = R"(
OpAtomicStore %u32_var %device %release %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0));
}
TEST_F(ValidateAtomics, AtomicStoreVulkanAcquire) {
const std::string body = R"(
OpAtomicStore %u32_var %device %acquire %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicStore with Memory Semantics "
"Acquire, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicStoreVulkanAcquireRelease) {
const std::string body = R"(
OpAtomicStore %u32_var %device %acquire_release %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicStore with Memory Semantics "
"Acquire, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicStoreVulkanSequentiallyConsistent) {
const std::string body = R"(
OpAtomicStore %u32_var %device %sequentially_consistent %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicStore with Memory Semantics "
"Acquire, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongPointerType) {
const std::string body = R"(
OpAtomicStore %f32_1 %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongPointerDataType) {
const std::string body = R"(
OpAtomicStore %f32vec4_var %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: "
"expected Pointer to be a pointer to int or float scalar "
"type"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongPointerStorageType) {
const std::string body = R"(
%f32_var_function = OpVariable %f32_ptr_function Function
OpAtomicStore %f32_var_function %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: expected Pointer Storage Class to be Uniform, "
"Workgroup, CrossWorkgroup, Generic, AtomicCounter, Image or "
"StorageBuffer"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongScopeType) {
const std::string body = R"(
OpAtomicStore %f32_var %f32_1 %relaxed %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicStore: expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongMemorySemanticsType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %f32_1 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongValueType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: "
"expected Value type and the type pointed to by Pointer to "
"be the same"));
}
TEST_F(ValidateAtomics, AtomicExchangeShaderSuccess) {
const std::string body = R"(
%val1 = OpAtomicStore %u32_var %device %relaxed %u32_1
%val2 = OpAtomicExchange %u32 %u32_var %device %relaxed %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicExchangeKernelSuccess) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %device %relaxed %f32_0
%val3 = OpAtomicStore %u32_var %device %relaxed %u32_1
%val4 = OpAtomicExchange %u32 %u32_var %device %relaxed %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicExchangeShaderFloat) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %device %relaxed %f32_0
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicExchange: "
"expected Result Type to be int scalar type"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongResultType) {
const std::string body = R"(
%val1 = OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicExchange %f32vec4 %f32vec4_var %device %relaxed %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicExchange: "
"expected Result Type to be int or float scalar type"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongPointerType) {
const std::string body = R"(
%val2 = OpAtomicExchange %f32 %f32vec4_ptr %device %relaxed %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicExchange: expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongPointerDataType) {
const std::string body = R"(
%val1 = OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicExchange %f32 %f32vec4_var %device %relaxed %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicExchange: "
"expected Pointer to point to a value of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongScopeType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %f32_1 %relaxed %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicExchange: expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongMemorySemanticsType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %device %f32_1 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicExchange: expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongValueType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %device %relaxed %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicExchange: "
"expected Value to be of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeShaderSuccess) {
const std::string body = R"(
%val1 = OpAtomicStore %u32_var %device %relaxed %u32_1
%val2 = OpAtomicCompareExchange %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicCompareExchangeKernelSuccess) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %f32_0 %f32_1
%val3 = OpAtomicStore %u32_var %device %relaxed %u32_1
%val4 = OpAtomicCompareExchange %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicCompareExchangeShaderFloat) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val1 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %f32_0 %f32_1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Result Type to be int scalar type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongResultType) {
const std::string body = R"(
%val1 = OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicCompareExchange %f32vec4 %f32vec4_var %device %relaxed %relaxed %f32vec4_0000 %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Result Type to be int or float scalar type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongPointerType) {
const std::string body = R"(
%val2 = OpAtomicCompareExchange %f32 %f32vec4_ptr %device %relaxed %relaxed %f32vec4_0000 %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: expected Pointer to be of type "
"OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongPointerDataType) {
const std::string body = R"(
%val1 = OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicCompareExchange %f32 %f32vec4_var %device %relaxed %relaxed %f32_0 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Pointer to point to a value of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongScopeType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %f32_1 %relaxed %relaxed %f32_0 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicCompareExchange: expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongMemorySemanticsType1) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %f32_1 %relaxed %f32_0 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicCompareExchange: expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongMemorySemanticsType2) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %f32_1 %f32_0 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicCompareExchange: expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeUnequalRelease) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %release %f32_0 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: Memory Semantics Release and "
"AcquireRelease cannot be used for operand Unequal"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongValueType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %u32_0 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Value to be of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongComparatorType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %f32_0 %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Comparator to be of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWeakSuccess) {
const std::string body = R"(
%val3 = OpAtomicStore %u32_var %device %relaxed %u32_1
%val4 = OpAtomicCompareExchangeWeak %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWeakWrongResultType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchangeWeak %f32 %f32_var %device %relaxed %relaxed %f32_0 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchangeWeak: "
"expected Result Type to be int scalar type"));
}
TEST_F(ValidateAtomics, AtomicArithmeticsSuccess) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release
%val2 = OpAtomicIDecrement %u32 %u32_var %device %acquire_release
%val3 = OpAtomicIAdd %u32 %u32_var %device %acquire_release %u32_1
%val4 = OpAtomicISub %u32 %u32_var %device %acquire_release %u32_1
%val5 = OpAtomicUMin %u32 %u32_var %device %acquire_release %u32_1
%val6 = OpAtomicUMax %u32 %u32_var %device %acquire_release %u32_1
%val7 = OpAtomicSMin %u32 %u32_var %device %sequentially_consistent %u32_1
%val8 = OpAtomicSMax %u32 %u32_var %device %sequentially_consistent %u32_1
%val9 = OpAtomicAnd %u32 %u32_var %device %sequentially_consistent %u32_1
%val10 = OpAtomicOr %u32 %u32_var %device %sequentially_consistent %u32_1
%val11 = OpAtomicXor %u32 %u32_var %device %sequentially_consistent %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicFlagsSuccess) {
const std::string body = R"(
OpAtomicFlagClear %u32_var %device %release
%val1 = OpAtomicFlagTestAndSet %bool %u32_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongResultType) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %u32 %u32_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Result Type to be bool scalar type"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotPointer) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u32_1 %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotIntPointer) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %f32_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotInt32Pointer) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u64_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongScopeType) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u32_var %u64_1 %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongMemorySemanticsType) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u32_var %device %u64_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicFlagClearAcquire) {
const std::string body = R"(
OpAtomicFlagClear %u32_var %device %acquire
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Memory Semantics Acquire and AcquireRelease cannot be "
"used with AtomicFlagClear"));
}
TEST_F(ValidateAtomics, AtomicFlagClearNotPointer) {
const std::string body = R"(
OpAtomicFlagClear %u32_1 %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagClear: "
"expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicFlagClearNotIntPointer) {
const std::string body = R"(
OpAtomicFlagClear %f32_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagClear: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagClearNotInt32Pointer) {
const std::string body = R"(
OpAtomicFlagClear %u64_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagClear: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagClearWrongScopeType) {
const std::string body = R"(
OpAtomicFlagClear %u32_var %u64_1 %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagClear: expected Scope to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicFlagClearWrongMemorySemanticsType) {
const std::string body = R"(
OpAtomicFlagClear %u32_var %device %u64_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagClear: expected Memory Semantics to be 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicIIncrementAcquireAndRelease) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_and_release
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicIIncrement: no more than one of the following Memory "
"Semantics bits can be set at the same time: Acquire, Release, "
"AcquireRelease or SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicUniformMemorySemanticsShader) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release_uniform_workgroup
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicUniformMemorySemanticsKernel) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release_uniform_workgroup
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicIIncrement: Memory Semantics UniformMemory "
"requires capability Shader"));
}
TEST_F(ValidateAtomics, AtomicCounterMemorySemanticsNoCapability) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release_atomic_counter_workgroup
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicIIncrement: Memory Semantics UniformMemory "
"requires capability AtomicStorage"));
}
TEST_F(ValidateAtomics, AtomicCounterMemorySemanticsWithCapability) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release_atomic_counter_workgroup
)";
CompileSuccessfully(GenerateKernelCode(body, "OpCapability AtomicStorage\n"));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
} // namespace
} // namespace val
} // namespace spvtools