mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2025-01-14 02:10:17 +00:00
8b3dc6bbed
This call returns nullptr to indicate errors. Fixes https://crbug.com/1213365
2622 lines
97 KiB
C++
2622 lines
97 KiB
C++
// Copyright (c) 2018 Google LLC
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "source/opt/folding_rules.h"
|
|
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
#include "ir_builder.h"
|
|
#include "source/latest_version_glsl_std_450_header.h"
|
|
#include "source/opt/ir_context.h"
|
|
|
|
namespace spvtools {
|
|
namespace opt {
|
|
namespace {
|
|
|
|
const uint32_t kExtractCompositeIdInIdx = 0;
|
|
const uint32_t kInsertObjectIdInIdx = 0;
|
|
const uint32_t kInsertCompositeIdInIdx = 1;
|
|
const uint32_t kExtInstSetIdInIdx = 0;
|
|
const uint32_t kExtInstInstructionInIdx = 1;
|
|
const uint32_t kFMixXIdInIdx = 2;
|
|
const uint32_t kFMixYIdInIdx = 3;
|
|
const uint32_t kFMixAIdInIdx = 4;
|
|
const uint32_t kStoreObjectInIdx = 1;
|
|
|
|
// Some image instructions may contain an "image operands" argument.
|
|
// Returns the operand index for the "image operands".
|
|
// Returns -1 if the instruction does not have image operands.
|
|
int32_t ImageOperandsMaskInOperandIndex(Instruction* inst) {
|
|
const auto opcode = inst->opcode();
|
|
switch (opcode) {
|
|
case SpvOpImageSampleImplicitLod:
|
|
case SpvOpImageSampleExplicitLod:
|
|
case SpvOpImageSampleProjImplicitLod:
|
|
case SpvOpImageSampleProjExplicitLod:
|
|
case SpvOpImageFetch:
|
|
case SpvOpImageRead:
|
|
case SpvOpImageSparseSampleImplicitLod:
|
|
case SpvOpImageSparseSampleExplicitLod:
|
|
case SpvOpImageSparseSampleProjImplicitLod:
|
|
case SpvOpImageSparseSampleProjExplicitLod:
|
|
case SpvOpImageSparseFetch:
|
|
case SpvOpImageSparseRead:
|
|
return inst->NumOperands() > 4 ? 2 : -1;
|
|
case SpvOpImageSampleDrefImplicitLod:
|
|
case SpvOpImageSampleDrefExplicitLod:
|
|
case SpvOpImageSampleProjDrefImplicitLod:
|
|
case SpvOpImageSampleProjDrefExplicitLod:
|
|
case SpvOpImageGather:
|
|
case SpvOpImageDrefGather:
|
|
case SpvOpImageSparseSampleDrefImplicitLod:
|
|
case SpvOpImageSparseSampleDrefExplicitLod:
|
|
case SpvOpImageSparseSampleProjDrefImplicitLod:
|
|
case SpvOpImageSparseSampleProjDrefExplicitLod:
|
|
case SpvOpImageSparseGather:
|
|
case SpvOpImageSparseDrefGather:
|
|
return inst->NumOperands() > 5 ? 3 : -1;
|
|
case SpvOpImageWrite:
|
|
return inst->NumOperands() > 3 ? 3 : -1;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// Returns the element width of |type|.
|
|
uint32_t ElementWidth(const analysis::Type* type) {
|
|
if (const analysis::Vector* vec_type = type->AsVector()) {
|
|
return ElementWidth(vec_type->element_type());
|
|
} else if (const analysis::Float* float_type = type->AsFloat()) {
|
|
return float_type->width();
|
|
} else {
|
|
assert(type->AsInteger());
|
|
return type->AsInteger()->width();
|
|
}
|
|
}
|
|
|
|
// Returns true if |type| is Float or a vector of Float.
|
|
bool HasFloatingPoint(const analysis::Type* type) {
|
|
if (type->AsFloat()) {
|
|
return true;
|
|
} else if (const analysis::Vector* vec_type = type->AsVector()) {
|
|
return vec_type->element_type()->AsFloat() != nullptr;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Returns false if |val| is NaN, infinite or subnormal.
|
|
template <typename T>
|
|
bool IsValidResult(T val) {
|
|
int classified = std::fpclassify(val);
|
|
switch (classified) {
|
|
case FP_NAN:
|
|
case FP_INFINITE:
|
|
case FP_SUBNORMAL:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
const analysis::Constant* ConstInput(
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
return constants[0] ? constants[0] : constants[1];
|
|
}
|
|
|
|
Instruction* NonConstInput(IRContext* context, const analysis::Constant* c,
|
|
Instruction* inst) {
|
|
uint32_t in_op = c ? 1u : 0u;
|
|
return context->get_def_use_mgr()->GetDef(
|
|
inst->GetSingleWordInOperand(in_op));
|
|
}
|
|
|
|
std::vector<uint32_t> ExtractInts(uint64_t val) {
|
|
std::vector<uint32_t> words;
|
|
words.push_back(static_cast<uint32_t>(val));
|
|
words.push_back(static_cast<uint32_t>(val >> 32));
|
|
return words;
|
|
}
|
|
|
|
std::vector<uint32_t> GetWordsFromScalarIntConstant(
|
|
const analysis::IntConstant* c) {
|
|
assert(c != nullptr);
|
|
uint32_t width = c->type()->AsInteger()->width();
|
|
assert(width == 32 || width == 64);
|
|
if (width == 64) {
|
|
uint64_t uval = static_cast<uint64_t>(c->GetU64());
|
|
return ExtractInts(uval);
|
|
}
|
|
return {c->GetU32()};
|
|
}
|
|
|
|
std::vector<uint32_t> GetWordsFromScalarFloatConstant(
|
|
const analysis::FloatConstant* c) {
|
|
assert(c != nullptr);
|
|
uint32_t width = c->type()->AsFloat()->width();
|
|
assert(width == 32 || width == 64);
|
|
if (width == 64) {
|
|
utils::FloatProxy<double> result(c->GetDouble());
|
|
return result.GetWords();
|
|
}
|
|
utils::FloatProxy<float> result(c->GetFloat());
|
|
return result.GetWords();
|
|
}
|
|
|
|
std::vector<uint32_t> GetWordsFromNumericScalarOrVectorConstant(
|
|
analysis::ConstantManager* const_mgr, const analysis::Constant* c) {
|
|
if (const auto* float_constant = c->AsFloatConstant()) {
|
|
return GetWordsFromScalarFloatConstant(float_constant);
|
|
} else if (const auto* int_constant = c->AsIntConstant()) {
|
|
return GetWordsFromScalarIntConstant(int_constant);
|
|
} else if (const auto* vec_constant = c->AsVectorConstant()) {
|
|
std::vector<uint32_t> words;
|
|
for (const auto* comp : vec_constant->GetComponents()) {
|
|
auto comp_in_words =
|
|
GetWordsFromNumericScalarOrVectorConstant(const_mgr, comp);
|
|
words.insert(words.end(), comp_in_words.begin(), comp_in_words.end());
|
|
}
|
|
return words;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
const analysis::Constant* ConvertWordsToNumericScalarOrVectorConstant(
|
|
analysis::ConstantManager* const_mgr, const std::vector<uint32_t>& words,
|
|
const analysis::Type* type) {
|
|
if (type->AsInteger() || type->AsFloat())
|
|
return const_mgr->GetConstant(type, words);
|
|
if (const auto* vec_type = type->AsVector())
|
|
return const_mgr->GetNumericVectorConstantWithWords(vec_type, words);
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns the negation of |c|. |c| must be a 32 or 64 bit floating point
|
|
// constant.
|
|
uint32_t NegateFloatingPointConstant(analysis::ConstantManager* const_mgr,
|
|
const analysis::Constant* c) {
|
|
assert(c);
|
|
assert(c->type()->AsFloat());
|
|
uint32_t width = c->type()->AsFloat()->width();
|
|
assert(width == 32 || width == 64);
|
|
std::vector<uint32_t> words;
|
|
if (width == 64) {
|
|
utils::FloatProxy<double> result(c->GetDouble() * -1.0);
|
|
words = result.GetWords();
|
|
} else {
|
|
utils::FloatProxy<float> result(c->GetFloat() * -1.0f);
|
|
words = result.GetWords();
|
|
}
|
|
|
|
const analysis::Constant* negated_const =
|
|
const_mgr->GetConstant(c->type(), std::move(words));
|
|
return const_mgr->GetDefiningInstruction(negated_const)->result_id();
|
|
}
|
|
|
|
// Negates the integer constant |c|. Returns the id of the defining instruction.
|
|
uint32_t NegateIntegerConstant(analysis::ConstantManager* const_mgr,
|
|
const analysis::Constant* c) {
|
|
assert(c);
|
|
assert(c->type()->AsInteger());
|
|
uint32_t width = c->type()->AsInteger()->width();
|
|
assert(width == 32 || width == 64);
|
|
std::vector<uint32_t> words;
|
|
if (width == 64) {
|
|
uint64_t uval = static_cast<uint64_t>(0 - c->GetU64());
|
|
words = ExtractInts(uval);
|
|
} else {
|
|
words.push_back(static_cast<uint32_t>(0 - c->GetU32()));
|
|
}
|
|
|
|
const analysis::Constant* negated_const =
|
|
const_mgr->GetConstant(c->type(), std::move(words));
|
|
return const_mgr->GetDefiningInstruction(negated_const)->result_id();
|
|
}
|
|
|
|
// Negates the vector constant |c|. Returns the id of the defining instruction.
|
|
uint32_t NegateVectorConstant(analysis::ConstantManager* const_mgr,
|
|
const analysis::Constant* c) {
|
|
assert(const_mgr && c);
|
|
assert(c->type()->AsVector());
|
|
if (c->AsNullConstant()) {
|
|
// 0.0 vs -0.0 shouldn't matter.
|
|
return const_mgr->GetDefiningInstruction(c)->result_id();
|
|
} else {
|
|
const analysis::Type* component_type =
|
|
c->AsVectorConstant()->component_type();
|
|
std::vector<uint32_t> words;
|
|
for (auto& comp : c->AsVectorConstant()->GetComponents()) {
|
|
if (component_type->AsFloat()) {
|
|
words.push_back(NegateFloatingPointConstant(const_mgr, comp));
|
|
} else {
|
|
assert(component_type->AsInteger());
|
|
words.push_back(NegateIntegerConstant(const_mgr, comp));
|
|
}
|
|
}
|
|
|
|
const analysis::Constant* negated_const =
|
|
const_mgr->GetConstant(c->type(), std::move(words));
|
|
return const_mgr->GetDefiningInstruction(negated_const)->result_id();
|
|
}
|
|
}
|
|
|
|
// Negates |c|. Returns the id of the defining instruction.
|
|
uint32_t NegateConstant(analysis::ConstantManager* const_mgr,
|
|
const analysis::Constant* c) {
|
|
if (c->type()->AsVector()) {
|
|
return NegateVectorConstant(const_mgr, c);
|
|
} else if (c->type()->AsFloat()) {
|
|
return NegateFloatingPointConstant(const_mgr, c);
|
|
} else {
|
|
assert(c->type()->AsInteger());
|
|
return NegateIntegerConstant(const_mgr, c);
|
|
}
|
|
}
|
|
|
|
// Takes the reciprocal of |c|. |c|'s type must be Float or a vector of Float.
|
|
// Returns 0 if the reciprocal is NaN, infinite or subnormal.
|
|
uint32_t Reciprocal(analysis::ConstantManager* const_mgr,
|
|
const analysis::Constant* c) {
|
|
assert(const_mgr && c);
|
|
assert(c->type()->AsFloat());
|
|
|
|
uint32_t width = c->type()->AsFloat()->width();
|
|
assert(width == 32 || width == 64);
|
|
std::vector<uint32_t> words;
|
|
if (width == 64) {
|
|
spvtools::utils::FloatProxy<double> result(1.0 / c->GetDouble());
|
|
if (!IsValidResult(result.getAsFloat())) return 0;
|
|
words = result.GetWords();
|
|
} else {
|
|
spvtools::utils::FloatProxy<float> result(1.0f / c->GetFloat());
|
|
if (!IsValidResult(result.getAsFloat())) return 0;
|
|
words = result.GetWords();
|
|
}
|
|
|
|
const analysis::Constant* negated_const =
|
|
const_mgr->GetConstant(c->type(), std::move(words));
|
|
return const_mgr->GetDefiningInstruction(negated_const)->result_id();
|
|
}
|
|
|
|
// Replaces fdiv where second operand is constant with fmul.
|
|
FoldingRule ReciprocalFDiv() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFDiv);
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
if (!inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
if (constants[1] != nullptr) {
|
|
uint32_t id = 0;
|
|
if (const analysis::VectorConstant* vector_const =
|
|
constants[1]->AsVectorConstant()) {
|
|
std::vector<uint32_t> neg_ids;
|
|
for (auto& comp : vector_const->GetComponents()) {
|
|
id = Reciprocal(const_mgr, comp);
|
|
if (id == 0) return false;
|
|
neg_ids.push_back(id);
|
|
}
|
|
const analysis::Constant* negated_const =
|
|
const_mgr->GetConstant(constants[1]->type(), std::move(neg_ids));
|
|
id = const_mgr->GetDefiningInstruction(negated_const)->result_id();
|
|
} else if (constants[1]->AsFloatConstant()) {
|
|
id = Reciprocal(const_mgr, constants[1]);
|
|
if (id == 0) return false;
|
|
} else {
|
|
// Don't fold a null constant.
|
|
return false;
|
|
}
|
|
inst->SetOpcode(SpvOpFMul);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(0u)}},
|
|
{SPV_OPERAND_TYPE_ID, {id}}});
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Elides consecutive negate instructions.
|
|
FoldingRule MergeNegateArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFNegate || inst->opcode() == SpvOpSNegate);
|
|
(void)constants;
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
if (HasFloatingPoint(type) && !inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
Instruction* op_inst =
|
|
context->get_def_use_mgr()->GetDef(inst->GetSingleWordInOperand(0u));
|
|
if (HasFloatingPoint(type) && !op_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
if (op_inst->opcode() == inst->opcode()) {
|
|
// Elide negates.
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {op_inst->GetSingleWordInOperand(0u)}}});
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Merges negate into a mul or div operation if that operation contains a
|
|
// constant operand.
|
|
// Cases:
|
|
// -(x * 2) = x * -2
|
|
// -(2 * x) = x * -2
|
|
// -(x / 2) = x / -2
|
|
// -(2 / x) = -2 / x
|
|
FoldingRule MergeNegateMulDivArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFNegate || inst->opcode() == SpvOpSNegate);
|
|
(void)constants;
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
if (HasFloatingPoint(type) && !inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
Instruction* op_inst =
|
|
context->get_def_use_mgr()->GetDef(inst->GetSingleWordInOperand(0u));
|
|
if (HasFloatingPoint(type) && !op_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
SpvOp opcode = op_inst->opcode();
|
|
if (opcode == SpvOpFMul || opcode == SpvOpFDiv || opcode == SpvOpIMul ||
|
|
opcode == SpvOpSDiv || opcode == SpvOpUDiv) {
|
|
std::vector<const analysis::Constant*> op_constants =
|
|
const_mgr->GetOperandConstants(op_inst);
|
|
// Merge negate into mul or div if one operand is constant.
|
|
if (op_constants[0] || op_constants[1]) {
|
|
bool zero_is_variable = op_constants[0] == nullptr;
|
|
const analysis::Constant* c = ConstInput(op_constants);
|
|
uint32_t neg_id = NegateConstant(const_mgr, c);
|
|
uint32_t non_const_id = zero_is_variable
|
|
? op_inst->GetSingleWordInOperand(0u)
|
|
: op_inst->GetSingleWordInOperand(1u);
|
|
// Change this instruction to a mul/div.
|
|
inst->SetOpcode(op_inst->opcode());
|
|
if (opcode == SpvOpFDiv || opcode == SpvOpUDiv || opcode == SpvOpSDiv) {
|
|
uint32_t op0 = zero_is_variable ? non_const_id : neg_id;
|
|
uint32_t op1 = zero_is_variable ? neg_id : non_const_id;
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {op0}}, {SPV_OPERAND_TYPE_ID, {op1}}});
|
|
} else {
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {non_const_id}},
|
|
{SPV_OPERAND_TYPE_ID, {neg_id}}});
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Merges negate into a add or sub operation if that operation contains a
|
|
// constant operand.
|
|
// Cases:
|
|
// -(x + 2) = -2 - x
|
|
// -(2 + x) = -2 - x
|
|
// -(x - 2) = 2 - x
|
|
// -(2 - x) = x - 2
|
|
FoldingRule MergeNegateAddSubArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFNegate || inst->opcode() == SpvOpSNegate);
|
|
(void)constants;
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
if (HasFloatingPoint(type) && !inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
Instruction* op_inst =
|
|
context->get_def_use_mgr()->GetDef(inst->GetSingleWordInOperand(0u));
|
|
if (HasFloatingPoint(type) && !op_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
if (op_inst->opcode() == SpvOpFAdd || op_inst->opcode() == SpvOpFSub ||
|
|
op_inst->opcode() == SpvOpIAdd || op_inst->opcode() == SpvOpISub) {
|
|
std::vector<const analysis::Constant*> op_constants =
|
|
const_mgr->GetOperandConstants(op_inst);
|
|
if (op_constants[0] || op_constants[1]) {
|
|
bool zero_is_variable = op_constants[0] == nullptr;
|
|
bool is_add = (op_inst->opcode() == SpvOpFAdd) ||
|
|
(op_inst->opcode() == SpvOpIAdd);
|
|
bool swap_operands = !is_add || zero_is_variable;
|
|
bool negate_const = is_add;
|
|
const analysis::Constant* c = ConstInput(op_constants);
|
|
uint32_t const_id = 0;
|
|
if (negate_const) {
|
|
const_id = NegateConstant(const_mgr, c);
|
|
} else {
|
|
const_id = zero_is_variable ? op_inst->GetSingleWordInOperand(1u)
|
|
: op_inst->GetSingleWordInOperand(0u);
|
|
}
|
|
|
|
// Swap operands if necessary and make the instruction a subtraction.
|
|
uint32_t op0 =
|
|
zero_is_variable ? op_inst->GetSingleWordInOperand(0u) : const_id;
|
|
uint32_t op1 =
|
|
zero_is_variable ? const_id : op_inst->GetSingleWordInOperand(1u);
|
|
if (swap_operands) std::swap(op0, op1);
|
|
inst->SetOpcode(HasFloatingPoint(type) ? SpvOpFSub : SpvOpISub);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {op0}}, {SPV_OPERAND_TYPE_ID, {op1}}});
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Returns true if |c| has a zero element.
|
|
bool HasZero(const analysis::Constant* c) {
|
|
if (c->AsNullConstant()) {
|
|
return true;
|
|
}
|
|
if (const analysis::VectorConstant* vec_const = c->AsVectorConstant()) {
|
|
for (auto& comp : vec_const->GetComponents())
|
|
if (HasZero(comp)) return true;
|
|
} else {
|
|
assert(c->AsScalarConstant());
|
|
return c->AsScalarConstant()->IsZero();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Performs |input1| |opcode| |input2| and returns the merged constant result
|
|
// id. Returns 0 if the result is not a valid value. The input types must be
|
|
// Float.
|
|
uint32_t PerformFloatingPointOperation(analysis::ConstantManager* const_mgr,
|
|
SpvOp opcode,
|
|
const analysis::Constant* input1,
|
|
const analysis::Constant* input2) {
|
|
const analysis::Type* type = input1->type();
|
|
assert(type->AsFloat());
|
|
uint32_t width = type->AsFloat()->width();
|
|
assert(width == 32 || width == 64);
|
|
std::vector<uint32_t> words;
|
|
#define FOLD_OP(op) \
|
|
if (width == 64) { \
|
|
utils::FloatProxy<double> val = \
|
|
input1->GetDouble() op input2->GetDouble(); \
|
|
double dval = val.getAsFloat(); \
|
|
if (!IsValidResult(dval)) return 0; \
|
|
words = val.GetWords(); \
|
|
} else { \
|
|
utils::FloatProxy<float> val = input1->GetFloat() op input2->GetFloat(); \
|
|
float fval = val.getAsFloat(); \
|
|
if (!IsValidResult(fval)) return 0; \
|
|
words = val.GetWords(); \
|
|
} static_assert(true, "require extra semicolon")
|
|
switch (opcode) {
|
|
case SpvOpFMul:
|
|
FOLD_OP(*);
|
|
break;
|
|
case SpvOpFDiv:
|
|
if (HasZero(input2)) return 0;
|
|
FOLD_OP(/);
|
|
break;
|
|
case SpvOpFAdd:
|
|
FOLD_OP(+);
|
|
break;
|
|
case SpvOpFSub:
|
|
FOLD_OP(-);
|
|
break;
|
|
default:
|
|
assert(false && "Unexpected operation");
|
|
break;
|
|
}
|
|
#undef FOLD_OP
|
|
const analysis::Constant* merged_const = const_mgr->GetConstant(type, words);
|
|
return const_mgr->GetDefiningInstruction(merged_const)->result_id();
|
|
}
|
|
|
|
// Performs |input1| |opcode| |input2| and returns the merged constant result
|
|
// id. Returns 0 if the result is not a valid value. The input types must be
|
|
// Integers.
|
|
uint32_t PerformIntegerOperation(analysis::ConstantManager* const_mgr,
|
|
SpvOp opcode, const analysis::Constant* input1,
|
|
const analysis::Constant* input2) {
|
|
assert(input1->type()->AsInteger());
|
|
const analysis::Integer* type = input1->type()->AsInteger();
|
|
uint32_t width = type->AsInteger()->width();
|
|
assert(width == 32 || width == 64);
|
|
std::vector<uint32_t> words;
|
|
#define FOLD_OP(op) \
|
|
if (width == 64) { \
|
|
if (type->IsSigned()) { \
|
|
int64_t val = input1->GetS64() op input2->GetS64(); \
|
|
words = ExtractInts(static_cast<uint64_t>(val)); \
|
|
} else { \
|
|
uint64_t val = input1->GetU64() op input2->GetU64(); \
|
|
words = ExtractInts(val); \
|
|
} \
|
|
} else { \
|
|
if (type->IsSigned()) { \
|
|
int32_t val = input1->GetS32() op input2->GetS32(); \
|
|
words.push_back(static_cast<uint32_t>(val)); \
|
|
} else { \
|
|
uint32_t val = input1->GetU32() op input2->GetU32(); \
|
|
words.push_back(val); \
|
|
} \
|
|
} static_assert(true, "require extra semicalon")
|
|
switch (opcode) {
|
|
case SpvOpIMul:
|
|
FOLD_OP(*);
|
|
break;
|
|
case SpvOpSDiv:
|
|
case SpvOpUDiv:
|
|
assert(false && "Should not merge integer division");
|
|
break;
|
|
case SpvOpIAdd:
|
|
FOLD_OP(+);
|
|
break;
|
|
case SpvOpISub:
|
|
FOLD_OP(-);
|
|
break;
|
|
default:
|
|
assert(false && "Unexpected operation");
|
|
break;
|
|
}
|
|
#undef FOLD_OP
|
|
const analysis::Constant* merged_const = const_mgr->GetConstant(type, words);
|
|
return const_mgr->GetDefiningInstruction(merged_const)->result_id();
|
|
}
|
|
|
|
// Performs |input1| |opcode| |input2| and returns the merged constant result
|
|
// id. Returns 0 if the result is not a valid value. The input types must be
|
|
// Integers, Floats or Vectors of such.
|
|
uint32_t PerformOperation(analysis::ConstantManager* const_mgr, SpvOp opcode,
|
|
const analysis::Constant* input1,
|
|
const analysis::Constant* input2) {
|
|
assert(input1 && input2);
|
|
const analysis::Type* type = input1->type();
|
|
std::vector<uint32_t> words;
|
|
if (const analysis::Vector* vector_type = type->AsVector()) {
|
|
const analysis::Type* ele_type = vector_type->element_type();
|
|
for (uint32_t i = 0; i != vector_type->element_count(); ++i) {
|
|
uint32_t id = 0;
|
|
|
|
const analysis::Constant* input1_comp = nullptr;
|
|
if (const analysis::VectorConstant* input1_vector =
|
|
input1->AsVectorConstant()) {
|
|
input1_comp = input1_vector->GetComponents()[i];
|
|
} else {
|
|
assert(input1->AsNullConstant());
|
|
input1_comp = const_mgr->GetConstant(ele_type, {});
|
|
}
|
|
|
|
const analysis::Constant* input2_comp = nullptr;
|
|
if (const analysis::VectorConstant* input2_vector =
|
|
input2->AsVectorConstant()) {
|
|
input2_comp = input2_vector->GetComponents()[i];
|
|
} else {
|
|
assert(input2->AsNullConstant());
|
|
input2_comp = const_mgr->GetConstant(ele_type, {});
|
|
}
|
|
|
|
if (ele_type->AsFloat()) {
|
|
id = PerformFloatingPointOperation(const_mgr, opcode, input1_comp,
|
|
input2_comp);
|
|
} else {
|
|
assert(ele_type->AsInteger());
|
|
id = PerformIntegerOperation(const_mgr, opcode, input1_comp,
|
|
input2_comp);
|
|
}
|
|
if (id == 0) return 0;
|
|
words.push_back(id);
|
|
}
|
|
const analysis::Constant* merged_const =
|
|
const_mgr->GetConstant(type, words);
|
|
return const_mgr->GetDefiningInstruction(merged_const)->result_id();
|
|
} else if (type->AsFloat()) {
|
|
return PerformFloatingPointOperation(const_mgr, opcode, input1, input2);
|
|
} else {
|
|
assert(type->AsInteger());
|
|
return PerformIntegerOperation(const_mgr, opcode, input1, input2);
|
|
}
|
|
}
|
|
|
|
// Merges consecutive multiplies where each contains one constant operand.
|
|
// Cases:
|
|
// 2 * (x * 2) = x * 4
|
|
// 2 * (2 * x) = x * 4
|
|
// (x * 2) * 2 = x * 4
|
|
// (2 * x) * 2 = x * 4
|
|
FoldingRule MergeMulMulArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFMul || inst->opcode() == SpvOpIMul);
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
if (HasFloatingPoint(type) && !inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
// Determine the constant input and the variable input in |inst|.
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (HasFloatingPoint(type) && !other_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
if (other_inst->opcode() == inst->opcode()) {
|
|
std::vector<const analysis::Constant*> other_constants =
|
|
const_mgr->GetOperandConstants(other_inst);
|
|
const analysis::Constant* const_input2 = ConstInput(other_constants);
|
|
if (!const_input2) return false;
|
|
|
|
bool other_first_is_variable = other_constants[0] == nullptr;
|
|
uint32_t merged_id = PerformOperation(const_mgr, inst->opcode(),
|
|
const_input1, const_input2);
|
|
if (merged_id == 0) return false;
|
|
|
|
uint32_t non_const_id = other_first_is_variable
|
|
? other_inst->GetSingleWordInOperand(0u)
|
|
: other_inst->GetSingleWordInOperand(1u);
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {non_const_id}},
|
|
{SPV_OPERAND_TYPE_ID, {merged_id}}});
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Merges divides into subsequent multiplies if each instruction contains one
|
|
// constant operand. Does not support integer operations.
|
|
// Cases:
|
|
// 2 * (x / 2) = x * 1
|
|
// 2 * (2 / x) = 4 / x
|
|
// (x / 2) * 2 = x * 1
|
|
// (2 / x) * 2 = 4 / x
|
|
// (y / x) * x = y
|
|
// x * (y / x) = y
|
|
FoldingRule MergeMulDivArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFMul);
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
|
|
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
if (!inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
for (uint32_t i = 0; i < 2; i++) {
|
|
uint32_t op_id = inst->GetSingleWordInOperand(i);
|
|
Instruction* op_inst = def_use_mgr->GetDef(op_id);
|
|
if (op_inst->opcode() == SpvOpFDiv) {
|
|
if (op_inst->GetSingleWordInOperand(1) ==
|
|
inst->GetSingleWordInOperand(1 - i)) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {op_inst->GetSingleWordInOperand(0)}}});
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (!other_inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
if (other_inst->opcode() == SpvOpFDiv) {
|
|
std::vector<const analysis::Constant*> other_constants =
|
|
const_mgr->GetOperandConstants(other_inst);
|
|
const analysis::Constant* const_input2 = ConstInput(other_constants);
|
|
if (!const_input2 || HasZero(const_input2)) return false;
|
|
|
|
bool other_first_is_variable = other_constants[0] == nullptr;
|
|
// If the variable value is the second operand of the divide, multiply
|
|
// the constants together. Otherwise divide the constants.
|
|
uint32_t merged_id = PerformOperation(
|
|
const_mgr,
|
|
other_first_is_variable ? other_inst->opcode() : inst->opcode(),
|
|
const_input1, const_input2);
|
|
if (merged_id == 0) return false;
|
|
|
|
uint32_t non_const_id = other_first_is_variable
|
|
? other_inst->GetSingleWordInOperand(0u)
|
|
: other_inst->GetSingleWordInOperand(1u);
|
|
|
|
// If the variable value is on the second operand of the div, then this
|
|
// operation is a div. Otherwise it should be a multiply.
|
|
inst->SetOpcode(other_first_is_variable ? inst->opcode()
|
|
: other_inst->opcode());
|
|
if (other_first_is_variable) {
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {non_const_id}},
|
|
{SPV_OPERAND_TYPE_ID, {merged_id}}});
|
|
} else {
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {merged_id}},
|
|
{SPV_OPERAND_TYPE_ID, {non_const_id}}});
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Merges multiply of constant and negation.
|
|
// Cases:
|
|
// (-x) * 2 = x * -2
|
|
// 2 * (-x) = x * -2
|
|
FoldingRule MergeMulNegateArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFMul || inst->opcode() == SpvOpIMul);
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
bool uses_float = HasFloatingPoint(type);
|
|
if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (uses_float && !other_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
if (other_inst->opcode() == SpvOpFNegate ||
|
|
other_inst->opcode() == SpvOpSNegate) {
|
|
uint32_t neg_id = NegateConstant(const_mgr, const_input1);
|
|
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {other_inst->GetSingleWordInOperand(0u)}},
|
|
{SPV_OPERAND_TYPE_ID, {neg_id}}});
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Merges consecutive divides if each instruction contains one constant operand.
|
|
// Does not support integer division.
|
|
// Cases:
|
|
// 2 / (x / 2) = 4 / x
|
|
// 4 / (2 / x) = 2 * x
|
|
// (4 / x) / 2 = 2 / x
|
|
// (x / 2) / 2 = x / 4
|
|
FoldingRule MergeDivDivArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFDiv);
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
if (!inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1 || HasZero(const_input1)) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (!other_inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
bool first_is_variable = constants[0] == nullptr;
|
|
if (other_inst->opcode() == inst->opcode()) {
|
|
std::vector<const analysis::Constant*> other_constants =
|
|
const_mgr->GetOperandConstants(other_inst);
|
|
const analysis::Constant* const_input2 = ConstInput(other_constants);
|
|
if (!const_input2 || HasZero(const_input2)) return false;
|
|
|
|
bool other_first_is_variable = other_constants[0] == nullptr;
|
|
|
|
SpvOp merge_op = inst->opcode();
|
|
if (other_first_is_variable) {
|
|
// Constants magnify.
|
|
merge_op = SpvOpFMul;
|
|
}
|
|
|
|
// This is an x / (*) case. Swap the inputs. Doesn't harm multiply
|
|
// because it is commutative.
|
|
if (first_is_variable) std::swap(const_input1, const_input2);
|
|
uint32_t merged_id =
|
|
PerformOperation(const_mgr, merge_op, const_input1, const_input2);
|
|
if (merged_id == 0) return false;
|
|
|
|
uint32_t non_const_id = other_first_is_variable
|
|
? other_inst->GetSingleWordInOperand(0u)
|
|
: other_inst->GetSingleWordInOperand(1u);
|
|
|
|
SpvOp op = inst->opcode();
|
|
if (!first_is_variable && !other_first_is_variable) {
|
|
// Effectively div of 1/x, so change to multiply.
|
|
op = SpvOpFMul;
|
|
}
|
|
|
|
uint32_t op1 = merged_id;
|
|
uint32_t op2 = non_const_id;
|
|
if (first_is_variable && other_first_is_variable) std::swap(op1, op2);
|
|
inst->SetOpcode(op);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}});
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Fold multiplies succeeded by divides where each instruction contains a
|
|
// constant operand. Does not support integer divide.
|
|
// Cases:
|
|
// 4 / (x * 2) = 2 / x
|
|
// 4 / (2 * x) = 2 / x
|
|
// (x * 4) / 2 = x * 2
|
|
// (4 * x) / 2 = x * 2
|
|
// (x * y) / x = y
|
|
// (y * x) / x = y
|
|
FoldingRule MergeDivMulArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFDiv);
|
|
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
if (!inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
uint32_t op_id = inst->GetSingleWordInOperand(0);
|
|
Instruction* op_inst = def_use_mgr->GetDef(op_id);
|
|
|
|
if (op_inst->opcode() == SpvOpFMul) {
|
|
for (uint32_t i = 0; i < 2; i++) {
|
|
if (op_inst->GetSingleWordInOperand(i) ==
|
|
inst->GetSingleWordInOperand(1)) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID,
|
|
{op_inst->GetSingleWordInOperand(1 - i)}}});
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1 || HasZero(const_input1)) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (!other_inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
bool first_is_variable = constants[0] == nullptr;
|
|
if (other_inst->opcode() == SpvOpFMul) {
|
|
std::vector<const analysis::Constant*> other_constants =
|
|
const_mgr->GetOperandConstants(other_inst);
|
|
const analysis::Constant* const_input2 = ConstInput(other_constants);
|
|
if (!const_input2) return false;
|
|
|
|
bool other_first_is_variable = other_constants[0] == nullptr;
|
|
|
|
// This is an x / (*) case. Swap the inputs.
|
|
if (first_is_variable) std::swap(const_input1, const_input2);
|
|
uint32_t merged_id = PerformOperation(const_mgr, inst->opcode(),
|
|
const_input1, const_input2);
|
|
if (merged_id == 0) return false;
|
|
|
|
uint32_t non_const_id = other_first_is_variable
|
|
? other_inst->GetSingleWordInOperand(0u)
|
|
: other_inst->GetSingleWordInOperand(1u);
|
|
|
|
uint32_t op1 = merged_id;
|
|
uint32_t op2 = non_const_id;
|
|
if (first_is_variable) std::swap(op1, op2);
|
|
|
|
// Convert to multiply
|
|
if (first_is_variable) inst->SetOpcode(other_inst->opcode());
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}});
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Fold divides of a constant and a negation.
|
|
// Cases:
|
|
// (-x) / 2 = x / -2
|
|
// 2 / (-x) = 2 / -x
|
|
FoldingRule MergeDivNegateArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFDiv || inst->opcode() == SpvOpSDiv ||
|
|
inst->opcode() == SpvOpUDiv);
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
bool uses_float = HasFloatingPoint(type);
|
|
if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (uses_float && !other_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
bool first_is_variable = constants[0] == nullptr;
|
|
if (other_inst->opcode() == SpvOpFNegate ||
|
|
other_inst->opcode() == SpvOpSNegate) {
|
|
uint32_t neg_id = NegateConstant(const_mgr, const_input1);
|
|
|
|
if (first_is_variable) {
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {other_inst->GetSingleWordInOperand(0u)}},
|
|
{SPV_OPERAND_TYPE_ID, {neg_id}}});
|
|
} else {
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {neg_id}},
|
|
{SPV_OPERAND_TYPE_ID, {other_inst->GetSingleWordInOperand(0u)}}});
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Folds addition of a constant and a negation.
|
|
// Cases:
|
|
// (-x) + 2 = 2 - x
|
|
// 2 + (-x) = 2 - x
|
|
FoldingRule MergeAddNegateArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFAdd || inst->opcode() == SpvOpIAdd);
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
bool uses_float = HasFloatingPoint(type);
|
|
if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (uses_float && !other_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
if (other_inst->opcode() == SpvOpSNegate ||
|
|
other_inst->opcode() == SpvOpFNegate) {
|
|
inst->SetOpcode(HasFloatingPoint(type) ? SpvOpFSub : SpvOpISub);
|
|
uint32_t const_id = constants[0] ? inst->GetSingleWordInOperand(0u)
|
|
: inst->GetSingleWordInOperand(1u);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {const_id}},
|
|
{SPV_OPERAND_TYPE_ID, {other_inst->GetSingleWordInOperand(0u)}}});
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Folds subtraction of a constant and a negation.
|
|
// Cases:
|
|
// (-x) - 2 = -2 - x
|
|
// 2 - (-x) = x + 2
|
|
FoldingRule MergeSubNegateArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFSub || inst->opcode() == SpvOpISub);
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
bool uses_float = HasFloatingPoint(type);
|
|
if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (uses_float && !other_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
if (other_inst->opcode() == SpvOpSNegate ||
|
|
other_inst->opcode() == SpvOpFNegate) {
|
|
uint32_t op1 = 0;
|
|
uint32_t op2 = 0;
|
|
SpvOp opcode = inst->opcode();
|
|
if (constants[0] != nullptr) {
|
|
op1 = other_inst->GetSingleWordInOperand(0u);
|
|
op2 = inst->GetSingleWordInOperand(0u);
|
|
opcode = HasFloatingPoint(type) ? SpvOpFAdd : SpvOpIAdd;
|
|
} else {
|
|
op1 = NegateConstant(const_mgr, const_input1);
|
|
op2 = other_inst->GetSingleWordInOperand(0u);
|
|
}
|
|
|
|
inst->SetOpcode(opcode);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}});
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Folds addition of an addition where each operation has a constant operand.
|
|
// Cases:
|
|
// (x + 2) + 2 = x + 4
|
|
// (2 + x) + 2 = x + 4
|
|
// 2 + (x + 2) = x + 4
|
|
// 2 + (2 + x) = x + 4
|
|
FoldingRule MergeAddAddArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFAdd || inst->opcode() == SpvOpIAdd);
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
bool uses_float = HasFloatingPoint(type);
|
|
if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (uses_float && !other_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
if (other_inst->opcode() == SpvOpFAdd ||
|
|
other_inst->opcode() == SpvOpIAdd) {
|
|
std::vector<const analysis::Constant*> other_constants =
|
|
const_mgr->GetOperandConstants(other_inst);
|
|
const analysis::Constant* const_input2 = ConstInput(other_constants);
|
|
if (!const_input2) return false;
|
|
|
|
Instruction* non_const_input =
|
|
NonConstInput(context, other_constants[0], other_inst);
|
|
uint32_t merged_id = PerformOperation(const_mgr, inst->opcode(),
|
|
const_input1, const_input2);
|
|
if (merged_id == 0) return false;
|
|
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {non_const_input->result_id()}},
|
|
{SPV_OPERAND_TYPE_ID, {merged_id}}});
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Folds addition of a subtraction where each operation has a constant operand.
|
|
// Cases:
|
|
// (x - 2) + 2 = x + 0
|
|
// (2 - x) + 2 = 4 - x
|
|
// 2 + (x - 2) = x + 0
|
|
// 2 + (2 - x) = 4 - x
|
|
FoldingRule MergeAddSubArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFAdd || inst->opcode() == SpvOpIAdd);
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
bool uses_float = HasFloatingPoint(type);
|
|
if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (uses_float && !other_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
if (other_inst->opcode() == SpvOpFSub ||
|
|
other_inst->opcode() == SpvOpISub) {
|
|
std::vector<const analysis::Constant*> other_constants =
|
|
const_mgr->GetOperandConstants(other_inst);
|
|
const analysis::Constant* const_input2 = ConstInput(other_constants);
|
|
if (!const_input2) return false;
|
|
|
|
bool first_is_variable = other_constants[0] == nullptr;
|
|
SpvOp op = inst->opcode();
|
|
uint32_t op1 = 0;
|
|
uint32_t op2 = 0;
|
|
if (first_is_variable) {
|
|
// Subtract constants. Non-constant operand is first.
|
|
op1 = other_inst->GetSingleWordInOperand(0u);
|
|
op2 = PerformOperation(const_mgr, other_inst->opcode(), const_input1,
|
|
const_input2);
|
|
} else {
|
|
// Add constants. Constant operand is first. Change the opcode.
|
|
op1 = PerformOperation(const_mgr, inst->opcode(), const_input1,
|
|
const_input2);
|
|
op2 = other_inst->GetSingleWordInOperand(1u);
|
|
op = other_inst->opcode();
|
|
}
|
|
if (op1 == 0 || op2 == 0) return false;
|
|
|
|
inst->SetOpcode(op);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}});
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Folds subtraction of an addition where each operand has a constant operand.
|
|
// Cases:
|
|
// (x + 2) - 2 = x + 0
|
|
// (2 + x) - 2 = x + 0
|
|
// 2 - (x + 2) = 0 - x
|
|
// 2 - (2 + x) = 0 - x
|
|
FoldingRule MergeSubAddArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFSub || inst->opcode() == SpvOpISub);
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
bool uses_float = HasFloatingPoint(type);
|
|
if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (uses_float && !other_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
if (other_inst->opcode() == SpvOpFAdd ||
|
|
other_inst->opcode() == SpvOpIAdd) {
|
|
std::vector<const analysis::Constant*> other_constants =
|
|
const_mgr->GetOperandConstants(other_inst);
|
|
const analysis::Constant* const_input2 = ConstInput(other_constants);
|
|
if (!const_input2) return false;
|
|
|
|
Instruction* non_const_input =
|
|
NonConstInput(context, other_constants[0], other_inst);
|
|
|
|
// If the first operand of the sub is not a constant, swap the constants
|
|
// so the subtraction has the correct operands.
|
|
if (constants[0] == nullptr) std::swap(const_input1, const_input2);
|
|
// Subtract the constants.
|
|
uint32_t merged_id = PerformOperation(const_mgr, inst->opcode(),
|
|
const_input1, const_input2);
|
|
SpvOp op = inst->opcode();
|
|
uint32_t op1 = 0;
|
|
uint32_t op2 = 0;
|
|
if (constants[0] == nullptr) {
|
|
// Non-constant operand is first. Change the opcode.
|
|
op1 = non_const_input->result_id();
|
|
op2 = merged_id;
|
|
op = other_inst->opcode();
|
|
} else {
|
|
// Constant operand is first.
|
|
op1 = merged_id;
|
|
op2 = non_const_input->result_id();
|
|
}
|
|
if (op1 == 0 || op2 == 0) return false;
|
|
|
|
inst->SetOpcode(op);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}});
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Folds subtraction of a subtraction where each operand has a constant operand.
|
|
// Cases:
|
|
// (x - 2) - 2 = x - 4
|
|
// (2 - x) - 2 = 0 - x
|
|
// 2 - (x - 2) = 4 - x
|
|
// 2 - (2 - x) = x + 0
|
|
FoldingRule MergeSubSubArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFSub || inst->opcode() == SpvOpISub);
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
bool uses_float = HasFloatingPoint(type);
|
|
if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
const analysis::Constant* const_input1 = ConstInput(constants);
|
|
if (!const_input1) return false;
|
|
Instruction* other_inst = NonConstInput(context, constants[0], inst);
|
|
if (uses_float && !other_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
if (other_inst->opcode() == SpvOpFSub ||
|
|
other_inst->opcode() == SpvOpISub) {
|
|
std::vector<const analysis::Constant*> other_constants =
|
|
const_mgr->GetOperandConstants(other_inst);
|
|
const analysis::Constant* const_input2 = ConstInput(other_constants);
|
|
if (!const_input2) return false;
|
|
|
|
Instruction* non_const_input =
|
|
NonConstInput(context, other_constants[0], other_inst);
|
|
|
|
// Merge the constants.
|
|
uint32_t merged_id = 0;
|
|
SpvOp merge_op = inst->opcode();
|
|
if (other_constants[0] == nullptr) {
|
|
merge_op = uses_float ? SpvOpFAdd : SpvOpIAdd;
|
|
} else if (constants[0] == nullptr) {
|
|
std::swap(const_input1, const_input2);
|
|
}
|
|
merged_id =
|
|
PerformOperation(const_mgr, merge_op, const_input1, const_input2);
|
|
if (merged_id == 0) return false;
|
|
|
|
SpvOp op = inst->opcode();
|
|
if (constants[0] != nullptr && other_constants[0] != nullptr) {
|
|
// Change the operation.
|
|
op = uses_float ? SpvOpFAdd : SpvOpIAdd;
|
|
}
|
|
|
|
uint32_t op1 = 0;
|
|
uint32_t op2 = 0;
|
|
if ((constants[0] == nullptr) ^ (other_constants[0] == nullptr)) {
|
|
op1 = merged_id;
|
|
op2 = non_const_input->result_id();
|
|
} else {
|
|
op1 = non_const_input->result_id();
|
|
op2 = merged_id;
|
|
}
|
|
|
|
inst->SetOpcode(op);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}});
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// Helper function for MergeGenericAddSubArithmetic. If |addend| and
|
|
// subtrahend of |sub| is the same, merge to copy of minuend of |sub|.
|
|
bool MergeGenericAddendSub(uint32_t addend, uint32_t sub, Instruction* inst) {
|
|
IRContext* context = inst->context();
|
|
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
|
|
Instruction* sub_inst = def_use_mgr->GetDef(sub);
|
|
if (sub_inst->opcode() != SpvOpFSub && sub_inst->opcode() != SpvOpISub)
|
|
return false;
|
|
if (sub_inst->opcode() == SpvOpFSub &&
|
|
!sub_inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
if (addend != sub_inst->GetSingleWordInOperand(1)) return false;
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {sub_inst->GetSingleWordInOperand(0)}}});
|
|
context->UpdateDefUse(inst);
|
|
return true;
|
|
}
|
|
|
|
// Folds addition of a subtraction where the subtrahend is equal to the
|
|
// other addend. Return a copy of the minuend. Accepts generic (const and
|
|
// non-const) operands.
|
|
// Cases:
|
|
// (a - b) + b = a
|
|
// b + (a - b) = a
|
|
FoldingRule MergeGenericAddSubArithmetic() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>&) {
|
|
assert(inst->opcode() == SpvOpFAdd || inst->opcode() == SpvOpIAdd);
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
bool uses_float = HasFloatingPoint(type);
|
|
if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
uint32_t width = ElementWidth(type);
|
|
if (width != 32 && width != 64) return false;
|
|
|
|
uint32_t add_op0 = inst->GetSingleWordInOperand(0);
|
|
uint32_t add_op1 = inst->GetSingleWordInOperand(1);
|
|
if (MergeGenericAddendSub(add_op0, add_op1, inst)) return true;
|
|
return MergeGenericAddendSub(add_op1, add_op0, inst);
|
|
};
|
|
}
|
|
|
|
// Helper function for FactorAddMuls. If |factor0_0| is the same as |factor1_0|,
|
|
// generate |factor0_0| * (|factor0_1| + |factor1_1|).
|
|
bool FactorAddMulsOpnds(uint32_t factor0_0, uint32_t factor0_1,
|
|
uint32_t factor1_0, uint32_t factor1_1,
|
|
Instruction* inst) {
|
|
IRContext* context = inst->context();
|
|
if (factor0_0 != factor1_0) return false;
|
|
InstructionBuilder ir_builder(
|
|
context, inst,
|
|
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
|
|
Instruction* new_add_inst = ir_builder.AddBinaryOp(
|
|
inst->type_id(), inst->opcode(), factor0_1, factor1_1);
|
|
inst->SetOpcode(inst->opcode() == SpvOpFAdd ? SpvOpFMul : SpvOpIMul);
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {factor0_0}},
|
|
{SPV_OPERAND_TYPE_ID, {new_add_inst->result_id()}}});
|
|
context->UpdateDefUse(inst);
|
|
return true;
|
|
}
|
|
|
|
// Perform the following factoring identity, handling all operand order
|
|
// combinations: (a * b) + (a * c) = a * (b + c)
|
|
FoldingRule FactorAddMuls() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>&) {
|
|
assert(inst->opcode() == SpvOpFAdd || inst->opcode() == SpvOpIAdd);
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
bool uses_float = HasFloatingPoint(type);
|
|
if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false;
|
|
|
|
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
|
|
uint32_t add_op0 = inst->GetSingleWordInOperand(0);
|
|
Instruction* add_op0_inst = def_use_mgr->GetDef(add_op0);
|
|
if (add_op0_inst->opcode() != SpvOpFMul &&
|
|
add_op0_inst->opcode() != SpvOpIMul)
|
|
return false;
|
|
uint32_t add_op1 = inst->GetSingleWordInOperand(1);
|
|
Instruction* add_op1_inst = def_use_mgr->GetDef(add_op1);
|
|
if (add_op1_inst->opcode() != SpvOpFMul &&
|
|
add_op1_inst->opcode() != SpvOpIMul)
|
|
return false;
|
|
|
|
// Only perform this optimization if both of the muls only have one use.
|
|
// Otherwise this is a deoptimization in size and performance.
|
|
if (def_use_mgr->NumUses(add_op0_inst) > 1) return false;
|
|
if (def_use_mgr->NumUses(add_op1_inst) > 1) return false;
|
|
|
|
if (add_op0_inst->opcode() == SpvOpFMul &&
|
|
(!add_op0_inst->IsFloatingPointFoldingAllowed() ||
|
|
!add_op1_inst->IsFloatingPointFoldingAllowed()))
|
|
return false;
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 0; j < 2; j++) {
|
|
// Check if operand i in add_op0_inst matches operand j in add_op1_inst.
|
|
if (FactorAddMulsOpnds(add_op0_inst->GetSingleWordInOperand(i),
|
|
add_op0_inst->GetSingleWordInOperand(1 - i),
|
|
add_op1_inst->GetSingleWordInOperand(j),
|
|
add_op1_inst->GetSingleWordInOperand(1 - j),
|
|
inst))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
}
|
|
|
|
FoldingRule IntMultipleBy1() {
|
|
return [](IRContext*, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpIMul && "Wrong opcode. Should be OpIMul.");
|
|
for (uint32_t i = 0; i < 2; i++) {
|
|
if (constants[i] == nullptr) {
|
|
continue;
|
|
}
|
|
const analysis::IntConstant* int_constant = constants[i]->AsIntConstant();
|
|
if (int_constant) {
|
|
uint32_t width = ElementWidth(int_constant->type());
|
|
if (width != 32 && width != 64) return false;
|
|
bool is_one = (width == 32) ? int_constant->GetU32BitValue() == 1u
|
|
: int_constant->GetU64BitValue() == 1ull;
|
|
if (is_one) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(1 - i)}}});
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
}
|
|
|
|
FoldingRule CompositeConstructFeedingExtract() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>&) {
|
|
// If the input to an OpCompositeExtract is an OpCompositeConstruct,
|
|
// then we can simply use the appropriate element in the construction.
|
|
assert(inst->opcode() == SpvOpCompositeExtract &&
|
|
"Wrong opcode. Should be OpCompositeExtract.");
|
|
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
|
|
analysis::TypeManager* type_mgr = context->get_type_mgr();
|
|
|
|
// If there are no index operands, then this rule cannot do anything.
|
|
if (inst->NumInOperands() <= 1) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t cid = inst->GetSingleWordInOperand(kExtractCompositeIdInIdx);
|
|
Instruction* cinst = def_use_mgr->GetDef(cid);
|
|
|
|
if (cinst->opcode() != SpvOpCompositeConstruct) {
|
|
return false;
|
|
}
|
|
|
|
std::vector<Operand> operands;
|
|
analysis::Type* composite_type = type_mgr->GetType(cinst->type_id());
|
|
if (composite_type->AsVector() == nullptr) {
|
|
// Get the element being extracted from the OpCompositeConstruct
|
|
// Since it is not a vector, it is simple to extract the single element.
|
|
uint32_t element_index = inst->GetSingleWordInOperand(1);
|
|
uint32_t element_id = cinst->GetSingleWordInOperand(element_index);
|
|
operands.push_back({SPV_OPERAND_TYPE_ID, {element_id}});
|
|
|
|
// Add the remaining indices for extraction.
|
|
for (uint32_t i = 2; i < inst->NumInOperands(); ++i) {
|
|
operands.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER,
|
|
{inst->GetSingleWordInOperand(i)}});
|
|
}
|
|
|
|
} else {
|
|
// With vectors we have to handle the case where it is concatenating
|
|
// vectors.
|
|
assert(inst->NumInOperands() == 2 &&
|
|
"Expecting a vector of scalar values.");
|
|
|
|
uint32_t element_index = inst->GetSingleWordInOperand(1);
|
|
for (uint32_t construct_index = 0;
|
|
construct_index < cinst->NumInOperands(); ++construct_index) {
|
|
uint32_t element_id = cinst->GetSingleWordInOperand(construct_index);
|
|
Instruction* element_def = def_use_mgr->GetDef(element_id);
|
|
analysis::Vector* element_type =
|
|
type_mgr->GetType(element_def->type_id())->AsVector();
|
|
if (element_type) {
|
|
uint32_t vector_size = element_type->element_count();
|
|
if (vector_size <= element_index) {
|
|
// The element we want comes after this vector.
|
|
element_index -= vector_size;
|
|
} else {
|
|
// We want an element of this vector.
|
|
operands.push_back({SPV_OPERAND_TYPE_ID, {element_id}});
|
|
operands.push_back(
|
|
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {element_index}});
|
|
break;
|
|
}
|
|
} else {
|
|
if (element_index == 0) {
|
|
// This is a scalar, and we this is the element we are extracting.
|
|
operands.push_back({SPV_OPERAND_TYPE_ID, {element_id}});
|
|
break;
|
|
} else {
|
|
// Skip over this scalar value.
|
|
--element_index;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there were no extra indices, then we have the final object. No need
|
|
// to extract even more.
|
|
if (operands.size() == 1) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
}
|
|
|
|
inst->SetInOperands(std::move(operands));
|
|
return true;
|
|
};
|
|
}
|
|
|
|
// If the OpCompositeConstruct is simply putting back together elements that
|
|
// where extracted from the same source, we can simply reuse the source.
|
|
//
|
|
// This is a common code pattern because of the way that scalar replacement
|
|
// works.
|
|
bool CompositeExtractFeedingConstruct(
|
|
IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>&) {
|
|
assert(inst->opcode() == SpvOpCompositeConstruct &&
|
|
"Wrong opcode. Should be OpCompositeConstruct.");
|
|
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
|
|
uint32_t original_id = 0;
|
|
|
|
if (inst->NumInOperands() == 0) {
|
|
// The struct being constructed has no members.
|
|
return false;
|
|
}
|
|
|
|
// Check each element to make sure they are:
|
|
// - extractions
|
|
// - extracting the same position they are inserting
|
|
// - all extract from the same id.
|
|
for (uint32_t i = 0; i < inst->NumInOperands(); ++i) {
|
|
const uint32_t element_id = inst->GetSingleWordInOperand(i);
|
|
Instruction* element_inst = def_use_mgr->GetDef(element_id);
|
|
|
|
if (element_inst->opcode() != SpvOpCompositeExtract) {
|
|
return false;
|
|
}
|
|
|
|
if (element_inst->NumInOperands() != 2) {
|
|
return false;
|
|
}
|
|
|
|
if (element_inst->GetSingleWordInOperand(1) != i) {
|
|
return false;
|
|
}
|
|
|
|
if (i == 0) {
|
|
original_id =
|
|
element_inst->GetSingleWordInOperand(kExtractCompositeIdInIdx);
|
|
} else if (original_id !=
|
|
element_inst->GetSingleWordInOperand(kExtractCompositeIdInIdx)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// The last check it to see that the object being extracted from is the
|
|
// correct type.
|
|
Instruction* original_inst = def_use_mgr->GetDef(original_id);
|
|
if (original_inst->type_id() != inst->type_id()) {
|
|
return false;
|
|
}
|
|
|
|
// Simplify by using the original object.
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {original_id}}});
|
|
return true;
|
|
}
|
|
|
|
FoldingRule InsertFeedingExtract() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>&) {
|
|
assert(inst->opcode() == SpvOpCompositeExtract &&
|
|
"Wrong opcode. Should be OpCompositeExtract.");
|
|
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
|
|
uint32_t cid = inst->GetSingleWordInOperand(kExtractCompositeIdInIdx);
|
|
Instruction* cinst = def_use_mgr->GetDef(cid);
|
|
|
|
if (cinst->opcode() != SpvOpCompositeInsert) {
|
|
return false;
|
|
}
|
|
|
|
// Find the first position where the list of insert and extract indicies
|
|
// differ, if at all.
|
|
uint32_t i;
|
|
for (i = 1; i < inst->NumInOperands(); ++i) {
|
|
if (i + 1 >= cinst->NumInOperands()) {
|
|
break;
|
|
}
|
|
|
|
if (inst->GetSingleWordInOperand(i) !=
|
|
cinst->GetSingleWordInOperand(i + 1)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We are extracting the element that was inserted.
|
|
if (i == inst->NumInOperands() && i + 1 == cinst->NumInOperands()) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID,
|
|
{cinst->GetSingleWordInOperand(kInsertObjectIdInIdx)}}});
|
|
return true;
|
|
}
|
|
|
|
// Extracting the value that was inserted along with values for the base
|
|
// composite. Cannot do anything.
|
|
if (i == inst->NumInOperands()) {
|
|
return false;
|
|
}
|
|
|
|
// Extracting an element of the value that was inserted. Extract from
|
|
// that value directly.
|
|
if (i + 1 == cinst->NumInOperands()) {
|
|
std::vector<Operand> operands;
|
|
operands.push_back(
|
|
{SPV_OPERAND_TYPE_ID,
|
|
{cinst->GetSingleWordInOperand(kInsertObjectIdInIdx)}});
|
|
for (; i < inst->NumInOperands(); ++i) {
|
|
operands.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER,
|
|
{inst->GetSingleWordInOperand(i)}});
|
|
}
|
|
inst->SetInOperands(std::move(operands));
|
|
return true;
|
|
}
|
|
|
|
// Extracting a value that is disjoint from the element being inserted.
|
|
// Rewrite the extract to use the composite input to the insert.
|
|
std::vector<Operand> operands;
|
|
operands.push_back(
|
|
{SPV_OPERAND_TYPE_ID,
|
|
{cinst->GetSingleWordInOperand(kInsertCompositeIdInIdx)}});
|
|
for (i = 1; i < inst->NumInOperands(); ++i) {
|
|
operands.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER,
|
|
{inst->GetSingleWordInOperand(i)}});
|
|
}
|
|
inst->SetInOperands(std::move(operands));
|
|
return true;
|
|
};
|
|
}
|
|
|
|
// When a VectorShuffle is feeding an Extract, we can extract from one of the
|
|
// operands of the VectorShuffle. We just need to adjust the index in the
|
|
// extract instruction.
|
|
FoldingRule VectorShuffleFeedingExtract() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>&) {
|
|
assert(inst->opcode() == SpvOpCompositeExtract &&
|
|
"Wrong opcode. Should be OpCompositeExtract.");
|
|
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
|
|
analysis::TypeManager* type_mgr = context->get_type_mgr();
|
|
uint32_t cid = inst->GetSingleWordInOperand(kExtractCompositeIdInIdx);
|
|
Instruction* cinst = def_use_mgr->GetDef(cid);
|
|
|
|
if (cinst->opcode() != SpvOpVectorShuffle) {
|
|
return false;
|
|
}
|
|
|
|
// Find the size of the first vector operand of the VectorShuffle
|
|
Instruction* first_input =
|
|
def_use_mgr->GetDef(cinst->GetSingleWordInOperand(0));
|
|
analysis::Type* first_input_type =
|
|
type_mgr->GetType(first_input->type_id());
|
|
assert(first_input_type->AsVector() &&
|
|
"Input to vector shuffle should be vectors.");
|
|
uint32_t first_input_size = first_input_type->AsVector()->element_count();
|
|
|
|
// Get index of the element the vector shuffle is placing in the position
|
|
// being extracted.
|
|
uint32_t new_index =
|
|
cinst->GetSingleWordInOperand(2 + inst->GetSingleWordInOperand(1));
|
|
|
|
// Extracting an undefined value so fold this extract into an undef.
|
|
const uint32_t undef_literal_value = 0xffffffff;
|
|
if (new_index == undef_literal_value) {
|
|
inst->SetOpcode(SpvOpUndef);
|
|
inst->SetInOperands({});
|
|
return true;
|
|
}
|
|
|
|
// Get the id of the of the vector the elemtent comes from, and update the
|
|
// index if needed.
|
|
uint32_t new_vector = 0;
|
|
if (new_index < first_input_size) {
|
|
new_vector = cinst->GetSingleWordInOperand(0);
|
|
} else {
|
|
new_vector = cinst->GetSingleWordInOperand(1);
|
|
new_index -= first_input_size;
|
|
}
|
|
|
|
// Update the extract instruction.
|
|
inst->SetInOperand(kExtractCompositeIdInIdx, {new_vector});
|
|
inst->SetInOperand(1, {new_index});
|
|
return true;
|
|
};
|
|
}
|
|
|
|
// When an FMix with is feeding an Extract that extracts an element whose
|
|
// corresponding |a| in the FMix is 0 or 1, we can extract from one of the
|
|
// operands of the FMix.
|
|
FoldingRule FMixFeedingExtract() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>&) {
|
|
assert(inst->opcode() == SpvOpCompositeExtract &&
|
|
"Wrong opcode. Should be OpCompositeExtract.");
|
|
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
|
|
uint32_t composite_id =
|
|
inst->GetSingleWordInOperand(kExtractCompositeIdInIdx);
|
|
Instruction* composite_inst = def_use_mgr->GetDef(composite_id);
|
|
|
|
if (composite_inst->opcode() != SpvOpExtInst) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t inst_set_id =
|
|
context->get_feature_mgr()->GetExtInstImportId_GLSLstd450();
|
|
|
|
if (composite_inst->GetSingleWordInOperand(kExtInstSetIdInIdx) !=
|
|
inst_set_id ||
|
|
composite_inst->GetSingleWordInOperand(kExtInstInstructionInIdx) !=
|
|
GLSLstd450FMix) {
|
|
return false;
|
|
}
|
|
|
|
// Get the |a| for the FMix instruction.
|
|
uint32_t a_id = composite_inst->GetSingleWordInOperand(kFMixAIdInIdx);
|
|
std::unique_ptr<Instruction> a(inst->Clone(context));
|
|
a->SetInOperand(kExtractCompositeIdInIdx, {a_id});
|
|
context->get_instruction_folder().FoldInstruction(a.get());
|
|
|
|
if (a->opcode() != SpvOpCopyObject) {
|
|
return false;
|
|
}
|
|
|
|
const analysis::Constant* a_const =
|
|
const_mgr->FindDeclaredConstant(a->GetSingleWordInOperand(0));
|
|
|
|
if (!a_const) {
|
|
return false;
|
|
}
|
|
|
|
bool use_x = false;
|
|
|
|
assert(a_const->type()->AsFloat());
|
|
double element_value = a_const->GetValueAsDouble();
|
|
if (element_value == 0.0) {
|
|
use_x = true;
|
|
} else if (element_value == 1.0) {
|
|
use_x = false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Get the id of the of the vector the element comes from.
|
|
uint32_t new_vector = 0;
|
|
if (use_x) {
|
|
new_vector = composite_inst->GetSingleWordInOperand(kFMixXIdInIdx);
|
|
} else {
|
|
new_vector = composite_inst->GetSingleWordInOperand(kFMixYIdInIdx);
|
|
}
|
|
|
|
// Update the extract instruction.
|
|
inst->SetInOperand(kExtractCompositeIdInIdx, {new_vector});
|
|
return true;
|
|
};
|
|
}
|
|
|
|
FoldingRule RedundantPhi() {
|
|
// An OpPhi instruction where all values are the same or the result of the phi
|
|
// itself, can be replaced by the value itself.
|
|
return [](IRContext*, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>&) {
|
|
assert(inst->opcode() == SpvOpPhi && "Wrong opcode. Should be OpPhi.");
|
|
|
|
uint32_t incoming_value = 0;
|
|
|
|
for (uint32_t i = 0; i < inst->NumInOperands(); i += 2) {
|
|
uint32_t op_id = inst->GetSingleWordInOperand(i);
|
|
if (op_id == inst->result_id()) {
|
|
continue;
|
|
}
|
|
|
|
if (incoming_value == 0) {
|
|
incoming_value = op_id;
|
|
} else if (op_id != incoming_value) {
|
|
// Found two possible value. Can't simplify.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (incoming_value == 0) {
|
|
// Code looks invalid. Don't do anything.
|
|
return false;
|
|
}
|
|
|
|
// We have a single incoming value. Simplify using that value.
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {incoming_value}}});
|
|
return true;
|
|
};
|
|
}
|
|
|
|
FoldingRule BitCastScalarOrVector() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpBitcast && constants.size() == 1);
|
|
if (constants[0] == nullptr) return false;
|
|
|
|
const analysis::Type* type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
if (HasFloatingPoint(type) && !inst->IsFloatingPointFoldingAllowed())
|
|
return false;
|
|
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
std::vector<uint32_t> words =
|
|
GetWordsFromNumericScalarOrVectorConstant(const_mgr, constants[0]);
|
|
if (words.size() == 0) return false;
|
|
|
|
const analysis::Constant* bitcasted_constant =
|
|
ConvertWordsToNumericScalarOrVectorConstant(const_mgr, words, type);
|
|
if (!bitcasted_constant) return false;
|
|
|
|
auto new_feeder_id =
|
|
const_mgr->GetDefiningInstruction(bitcasted_constant, inst->type_id())
|
|
->result_id();
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {new_feeder_id}}});
|
|
return true;
|
|
};
|
|
}
|
|
|
|
FoldingRule RedundantSelect() {
|
|
// An OpSelect instruction where both values are the same or the condition is
|
|
// constant can be replaced by one of the values
|
|
return [](IRContext*, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpSelect &&
|
|
"Wrong opcode. Should be OpSelect.");
|
|
assert(inst->NumInOperands() == 3);
|
|
assert(constants.size() == 3);
|
|
|
|
uint32_t true_id = inst->GetSingleWordInOperand(1);
|
|
uint32_t false_id = inst->GetSingleWordInOperand(2);
|
|
|
|
if (true_id == false_id) {
|
|
// Both results are the same, condition doesn't matter
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {true_id}}});
|
|
return true;
|
|
} else if (constants[0]) {
|
|
const analysis::Type* type = constants[0]->type();
|
|
if (type->AsBool()) {
|
|
// Scalar constant value, select the corresponding value.
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
if (constants[0]->AsNullConstant() ||
|
|
!constants[0]->AsBoolConstant()->value()) {
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {false_id}}});
|
|
} else {
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {true_id}}});
|
|
}
|
|
return true;
|
|
} else {
|
|
assert(type->AsVector());
|
|
if (constants[0]->AsNullConstant()) {
|
|
// All values come from false id.
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {false_id}}});
|
|
return true;
|
|
} else {
|
|
// Convert to a vector shuffle.
|
|
std::vector<Operand> ops;
|
|
ops.push_back({SPV_OPERAND_TYPE_ID, {true_id}});
|
|
ops.push_back({SPV_OPERAND_TYPE_ID, {false_id}});
|
|
const analysis::VectorConstant* vector_const =
|
|
constants[0]->AsVectorConstant();
|
|
uint32_t size =
|
|
static_cast<uint32_t>(vector_const->GetComponents().size());
|
|
for (uint32_t i = 0; i != size; ++i) {
|
|
const analysis::Constant* component =
|
|
vector_const->GetComponents()[i];
|
|
if (component->AsNullConstant() ||
|
|
!component->AsBoolConstant()->value()) {
|
|
// Selecting from the false vector which is the second input
|
|
// vector to the shuffle. Offset the index by |size|.
|
|
ops.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER, {i + size}});
|
|
} else {
|
|
// Selecting from true vector which is the first input vector to
|
|
// the shuffle.
|
|
ops.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER, {i}});
|
|
}
|
|
}
|
|
|
|
inst->SetOpcode(SpvOpVectorShuffle);
|
|
inst->SetInOperands(std::move(ops));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
enum class FloatConstantKind { Unknown, Zero, One };
|
|
|
|
FloatConstantKind getFloatConstantKind(const analysis::Constant* constant) {
|
|
if (constant == nullptr) {
|
|
return FloatConstantKind::Unknown;
|
|
}
|
|
|
|
assert(HasFloatingPoint(constant->type()) && "Unexpected constant type");
|
|
|
|
if (constant->AsNullConstant()) {
|
|
return FloatConstantKind::Zero;
|
|
} else if (const analysis::VectorConstant* vc =
|
|
constant->AsVectorConstant()) {
|
|
const std::vector<const analysis::Constant*>& components =
|
|
vc->GetComponents();
|
|
assert(!components.empty());
|
|
|
|
FloatConstantKind kind = getFloatConstantKind(components[0]);
|
|
|
|
for (size_t i = 1; i < components.size(); ++i) {
|
|
if (getFloatConstantKind(components[i]) != kind) {
|
|
return FloatConstantKind::Unknown;
|
|
}
|
|
}
|
|
|
|
return kind;
|
|
} else if (const analysis::FloatConstant* fc = constant->AsFloatConstant()) {
|
|
if (fc->IsZero()) return FloatConstantKind::Zero;
|
|
|
|
uint32_t width = fc->type()->AsFloat()->width();
|
|
if (width != 32 && width != 64) return FloatConstantKind::Unknown;
|
|
|
|
double value = (width == 64) ? fc->GetDoubleValue() : fc->GetFloatValue();
|
|
|
|
if (value == 0.0) {
|
|
return FloatConstantKind::Zero;
|
|
} else if (value == 1.0) {
|
|
return FloatConstantKind::One;
|
|
} else {
|
|
return FloatConstantKind::Unknown;
|
|
}
|
|
} else {
|
|
return FloatConstantKind::Unknown;
|
|
}
|
|
}
|
|
|
|
FoldingRule RedundantFAdd() {
|
|
return [](IRContext*, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFAdd && "Wrong opcode. Should be OpFAdd.");
|
|
assert(constants.size() == 2);
|
|
|
|
if (!inst->IsFloatingPointFoldingAllowed()) {
|
|
return false;
|
|
}
|
|
|
|
FloatConstantKind kind0 = getFloatConstantKind(constants[0]);
|
|
FloatConstantKind kind1 = getFloatConstantKind(constants[1]);
|
|
|
|
if (kind0 == FloatConstantKind::Zero || kind1 == FloatConstantKind::Zero) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID,
|
|
{inst->GetSingleWordInOperand(
|
|
kind0 == FloatConstantKind::Zero ? 1 : 0)}}});
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
FoldingRule RedundantFSub() {
|
|
return [](IRContext*, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFSub && "Wrong opcode. Should be OpFSub.");
|
|
assert(constants.size() == 2);
|
|
|
|
if (!inst->IsFloatingPointFoldingAllowed()) {
|
|
return false;
|
|
}
|
|
|
|
FloatConstantKind kind0 = getFloatConstantKind(constants[0]);
|
|
FloatConstantKind kind1 = getFloatConstantKind(constants[1]);
|
|
|
|
if (kind0 == FloatConstantKind::Zero) {
|
|
inst->SetOpcode(SpvOpFNegate);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(1)}}});
|
|
return true;
|
|
}
|
|
|
|
if (kind1 == FloatConstantKind::Zero) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(0)}}});
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
FoldingRule RedundantFMul() {
|
|
return [](IRContext*, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFMul && "Wrong opcode. Should be OpFMul.");
|
|
assert(constants.size() == 2);
|
|
|
|
if (!inst->IsFloatingPointFoldingAllowed()) {
|
|
return false;
|
|
}
|
|
|
|
FloatConstantKind kind0 = getFloatConstantKind(constants[0]);
|
|
FloatConstantKind kind1 = getFloatConstantKind(constants[1]);
|
|
|
|
if (kind0 == FloatConstantKind::Zero || kind1 == FloatConstantKind::Zero) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID,
|
|
{inst->GetSingleWordInOperand(
|
|
kind0 == FloatConstantKind::Zero ? 0 : 1)}}});
|
|
return true;
|
|
}
|
|
|
|
if (kind0 == FloatConstantKind::One || kind1 == FloatConstantKind::One) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID,
|
|
{inst->GetSingleWordInOperand(
|
|
kind0 == FloatConstantKind::One ? 1 : 0)}}});
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
FoldingRule RedundantFDiv() {
|
|
return [](IRContext*, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpFDiv && "Wrong opcode. Should be OpFDiv.");
|
|
assert(constants.size() == 2);
|
|
|
|
if (!inst->IsFloatingPointFoldingAllowed()) {
|
|
return false;
|
|
}
|
|
|
|
FloatConstantKind kind0 = getFloatConstantKind(constants[0]);
|
|
FloatConstantKind kind1 = getFloatConstantKind(constants[1]);
|
|
|
|
if (kind0 == FloatConstantKind::Zero) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(0)}}});
|
|
return true;
|
|
}
|
|
|
|
if (kind1 == FloatConstantKind::One) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(0)}}});
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
FoldingRule RedundantFMix() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpExtInst &&
|
|
"Wrong opcode. Should be OpExtInst.");
|
|
|
|
if (!inst->IsFloatingPointFoldingAllowed()) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t instSetId =
|
|
context->get_feature_mgr()->GetExtInstImportId_GLSLstd450();
|
|
|
|
if (inst->GetSingleWordInOperand(kExtInstSetIdInIdx) == instSetId &&
|
|
inst->GetSingleWordInOperand(kExtInstInstructionInIdx) ==
|
|
GLSLstd450FMix) {
|
|
assert(constants.size() == 5);
|
|
|
|
FloatConstantKind kind4 = getFloatConstantKind(constants[4]);
|
|
|
|
if (kind4 == FloatConstantKind::Zero || kind4 == FloatConstantKind::One) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
inst->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID,
|
|
{inst->GetSingleWordInOperand(kind4 == FloatConstantKind::Zero
|
|
? kFMixXIdInIdx
|
|
: kFMixYIdInIdx)}}});
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// This rule handles addition of zero for integers.
|
|
FoldingRule RedundantIAdd() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpIAdd && "Wrong opcode. Should be OpIAdd.");
|
|
|
|
uint32_t operand = std::numeric_limits<uint32_t>::max();
|
|
const analysis::Type* operand_type = nullptr;
|
|
if (constants[0] && constants[0]->IsZero()) {
|
|
operand = inst->GetSingleWordInOperand(1);
|
|
operand_type = constants[0]->type();
|
|
} else if (constants[1] && constants[1]->IsZero()) {
|
|
operand = inst->GetSingleWordInOperand(0);
|
|
operand_type = constants[1]->type();
|
|
}
|
|
|
|
if (operand != std::numeric_limits<uint32_t>::max()) {
|
|
const analysis::Type* inst_type =
|
|
context->get_type_mgr()->GetType(inst->type_id());
|
|
if (inst_type->IsSame(operand_type)) {
|
|
inst->SetOpcode(SpvOpCopyObject);
|
|
} else {
|
|
inst->SetOpcode(SpvOpBitcast);
|
|
}
|
|
inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {operand}}});
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// This rule look for a dot with a constant vector containing a single 1 and
|
|
// the rest 0s. This is the same as doing an extract.
|
|
FoldingRule DotProductDoingExtract() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
assert(inst->opcode() == SpvOpDot && "Wrong opcode. Should be OpDot.");
|
|
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
|
|
if (!inst->IsFloatingPointFoldingAllowed()) {
|
|
return false;
|
|
}
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
if (!constants[i]) {
|
|
continue;
|
|
}
|
|
|
|
const analysis::Vector* vector_type = constants[i]->type()->AsVector();
|
|
assert(vector_type && "Inputs to OpDot must be vectors.");
|
|
const analysis::Float* element_type =
|
|
vector_type->element_type()->AsFloat();
|
|
assert(element_type && "Inputs to OpDot must be vectors of floats.");
|
|
uint32_t element_width = element_type->width();
|
|
if (element_width != 32 && element_width != 64) {
|
|
return false;
|
|
}
|
|
|
|
std::vector<const analysis::Constant*> components;
|
|
components = constants[i]->GetVectorComponents(const_mgr);
|
|
|
|
const uint32_t kNotFound = std::numeric_limits<uint32_t>::max();
|
|
|
|
uint32_t component_with_one = kNotFound;
|
|
bool all_others_zero = true;
|
|
for (uint32_t j = 0; j < components.size(); ++j) {
|
|
const analysis::Constant* element = components[j];
|
|
double value =
|
|
(element_width == 32 ? element->GetFloat() : element->GetDouble());
|
|
if (value == 0.0) {
|
|
continue;
|
|
} else if (value == 1.0) {
|
|
if (component_with_one == kNotFound) {
|
|
component_with_one = j;
|
|
} else {
|
|
component_with_one = kNotFound;
|
|
break;
|
|
}
|
|
} else {
|
|
all_others_zero = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!all_others_zero || component_with_one == kNotFound) {
|
|
continue;
|
|
}
|
|
|
|
std::vector<Operand> operands;
|
|
operands.push_back(
|
|
{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(1u - i)}});
|
|
operands.push_back(
|
|
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {component_with_one}});
|
|
|
|
inst->SetOpcode(SpvOpCompositeExtract);
|
|
inst->SetInOperands(std::move(operands));
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
}
|
|
|
|
// If we are storing an undef, then we can remove the store.
|
|
//
|
|
// TODO: We can do something similar for OpImageWrite, but checking for volatile
|
|
// is complicated. Waiting to see if it is needed.
|
|
FoldingRule StoringUndef() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>&) {
|
|
assert(inst->opcode() == SpvOpStore && "Wrong opcode. Should be OpStore.");
|
|
|
|
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
|
|
|
|
// If this is a volatile store, the store cannot be removed.
|
|
if (inst->NumInOperands() == 3) {
|
|
if (inst->GetSingleWordInOperand(2) & SpvMemoryAccessVolatileMask) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
uint32_t object_id = inst->GetSingleWordInOperand(kStoreObjectInIdx);
|
|
Instruction* object_inst = def_use_mgr->GetDef(object_id);
|
|
if (object_inst->opcode() == SpvOpUndef) {
|
|
inst->ToNop();
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
}
|
|
|
|
FoldingRule VectorShuffleFeedingShuffle() {
|
|
return [](IRContext* context, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>&) {
|
|
assert(inst->opcode() == SpvOpVectorShuffle &&
|
|
"Wrong opcode. Should be OpVectorShuffle.");
|
|
|
|
analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
|
|
analysis::TypeManager* type_mgr = context->get_type_mgr();
|
|
|
|
Instruction* feeding_shuffle_inst =
|
|
def_use_mgr->GetDef(inst->GetSingleWordInOperand(0));
|
|
analysis::Vector* op0_type =
|
|
type_mgr->GetType(feeding_shuffle_inst->type_id())->AsVector();
|
|
uint32_t op0_length = op0_type->element_count();
|
|
|
|
bool feeder_is_op0 = true;
|
|
if (feeding_shuffle_inst->opcode() != SpvOpVectorShuffle) {
|
|
feeding_shuffle_inst =
|
|
def_use_mgr->GetDef(inst->GetSingleWordInOperand(1));
|
|
feeder_is_op0 = false;
|
|
}
|
|
|
|
if (feeding_shuffle_inst->opcode() != SpvOpVectorShuffle) {
|
|
return false;
|
|
}
|
|
|
|
Instruction* feeder2 =
|
|
def_use_mgr->GetDef(feeding_shuffle_inst->GetSingleWordInOperand(0));
|
|
analysis::Vector* feeder_op0_type =
|
|
type_mgr->GetType(feeder2->type_id())->AsVector();
|
|
uint32_t feeder_op0_length = feeder_op0_type->element_count();
|
|
|
|
uint32_t new_feeder_id = 0;
|
|
std::vector<Operand> new_operands;
|
|
new_operands.resize(
|
|
2, {SPV_OPERAND_TYPE_ID, {0}}); // Place holders for vector operands.
|
|
const uint32_t undef_literal = 0xffffffff;
|
|
for (uint32_t op = 2; op < inst->NumInOperands(); ++op) {
|
|
uint32_t component_index = inst->GetSingleWordInOperand(op);
|
|
|
|
// Do not interpret the undefined value literal as coming from operand 1.
|
|
if (component_index != undef_literal &&
|
|
feeder_is_op0 == (component_index < op0_length)) {
|
|
// This component comes from the feeding_shuffle_inst. Update
|
|
// |component_index| to be the index into the operand of the feeder.
|
|
|
|
// Adjust component_index to get the index into the operands of the
|
|
// feeding_shuffle_inst.
|
|
if (component_index >= op0_length) {
|
|
component_index -= op0_length;
|
|
}
|
|
component_index =
|
|
feeding_shuffle_inst->GetSingleWordInOperand(component_index + 2);
|
|
|
|
// Check if we are using a component from the first or second operand of
|
|
// the feeding instruction.
|
|
if (component_index < feeder_op0_length) {
|
|
if (new_feeder_id == 0) {
|
|
// First time through, save the id of the operand the element comes
|
|
// from.
|
|
new_feeder_id = feeding_shuffle_inst->GetSingleWordInOperand(0);
|
|
} else if (new_feeder_id !=
|
|
feeding_shuffle_inst->GetSingleWordInOperand(0)) {
|
|
// We need both elements of the feeding_shuffle_inst, so we cannot
|
|
// fold.
|
|
return false;
|
|
}
|
|
} else {
|
|
if (new_feeder_id == 0) {
|
|
// First time through, save the id of the operand the element comes
|
|
// from.
|
|
new_feeder_id = feeding_shuffle_inst->GetSingleWordInOperand(1);
|
|
} else if (new_feeder_id !=
|
|
feeding_shuffle_inst->GetSingleWordInOperand(1)) {
|
|
// We need both elements of the feeding_shuffle_inst, so we cannot
|
|
// fold.
|
|
return false;
|
|
}
|
|
component_index -= feeder_op0_length;
|
|
}
|
|
|
|
if (!feeder_is_op0) {
|
|
component_index += op0_length;
|
|
}
|
|
}
|
|
new_operands.push_back(
|
|
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {component_index}});
|
|
}
|
|
|
|
if (new_feeder_id == 0) {
|
|
analysis::ConstantManager* const_mgr = context->get_constant_mgr();
|
|
const analysis::Type* type =
|
|
type_mgr->GetType(feeding_shuffle_inst->type_id());
|
|
const analysis::Constant* null_const = const_mgr->GetConstant(type, {});
|
|
new_feeder_id =
|
|
const_mgr->GetDefiningInstruction(null_const, 0)->result_id();
|
|
}
|
|
|
|
if (feeder_is_op0) {
|
|
// If the size of the first vector operand changed then the indices
|
|
// referring to the second operand need to be adjusted.
|
|
Instruction* new_feeder_inst = def_use_mgr->GetDef(new_feeder_id);
|
|
analysis::Type* new_feeder_type =
|
|
type_mgr->GetType(new_feeder_inst->type_id());
|
|
uint32_t new_op0_size = new_feeder_type->AsVector()->element_count();
|
|
int32_t adjustment = op0_length - new_op0_size;
|
|
|
|
if (adjustment != 0) {
|
|
for (uint32_t i = 2; i < new_operands.size(); i++) {
|
|
if (inst->GetSingleWordInOperand(i) >= op0_length) {
|
|
new_operands[i].words[0] -= adjustment;
|
|
}
|
|
}
|
|
}
|
|
|
|
new_operands[0].words[0] = new_feeder_id;
|
|
new_operands[1] = inst->GetInOperand(1);
|
|
} else {
|
|
new_operands[1].words[0] = new_feeder_id;
|
|
new_operands[0] = inst->GetInOperand(0);
|
|
}
|
|
|
|
inst->SetInOperands(std::move(new_operands));
|
|
return true;
|
|
};
|
|
}
|
|
|
|
// Removes duplicate ids from the interface list of an OpEntryPoint
|
|
// instruction.
|
|
FoldingRule RemoveRedundantOperands() {
|
|
return [](IRContext*, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>&) {
|
|
assert(inst->opcode() == SpvOpEntryPoint &&
|
|
"Wrong opcode. Should be OpEntryPoint.");
|
|
bool has_redundant_operand = false;
|
|
std::unordered_set<uint32_t> seen_operands;
|
|
std::vector<Operand> new_operands;
|
|
|
|
new_operands.emplace_back(inst->GetOperand(0));
|
|
new_operands.emplace_back(inst->GetOperand(1));
|
|
new_operands.emplace_back(inst->GetOperand(2));
|
|
for (uint32_t i = 3; i < inst->NumOperands(); ++i) {
|
|
if (seen_operands.insert(inst->GetSingleWordOperand(i)).second) {
|
|
new_operands.emplace_back(inst->GetOperand(i));
|
|
} else {
|
|
has_redundant_operand = true;
|
|
}
|
|
}
|
|
|
|
if (!has_redundant_operand) {
|
|
return false;
|
|
}
|
|
|
|
inst->SetInOperands(std::move(new_operands));
|
|
return true;
|
|
};
|
|
}
|
|
|
|
// If an image instruction's operand is a constant, updates the image operand
|
|
// flag from Offset to ConstOffset.
|
|
FoldingRule UpdateImageOperands() {
|
|
return [](IRContext*, Instruction* inst,
|
|
const std::vector<const analysis::Constant*>& constants) {
|
|
const auto opcode = inst->opcode();
|
|
(void)opcode;
|
|
assert((opcode == SpvOpImageSampleImplicitLod ||
|
|
opcode == SpvOpImageSampleExplicitLod ||
|
|
opcode == SpvOpImageSampleDrefImplicitLod ||
|
|
opcode == SpvOpImageSampleDrefExplicitLod ||
|
|
opcode == SpvOpImageSampleProjImplicitLod ||
|
|
opcode == SpvOpImageSampleProjExplicitLod ||
|
|
opcode == SpvOpImageSampleProjDrefImplicitLod ||
|
|
opcode == SpvOpImageSampleProjDrefExplicitLod ||
|
|
opcode == SpvOpImageFetch || opcode == SpvOpImageGather ||
|
|
opcode == SpvOpImageDrefGather || opcode == SpvOpImageRead ||
|
|
opcode == SpvOpImageWrite ||
|
|
opcode == SpvOpImageSparseSampleImplicitLod ||
|
|
opcode == SpvOpImageSparseSampleExplicitLod ||
|
|
opcode == SpvOpImageSparseSampleDrefImplicitLod ||
|
|
opcode == SpvOpImageSparseSampleDrefExplicitLod ||
|
|
opcode == SpvOpImageSparseSampleProjImplicitLod ||
|
|
opcode == SpvOpImageSparseSampleProjExplicitLod ||
|
|
opcode == SpvOpImageSparseSampleProjDrefImplicitLod ||
|
|
opcode == SpvOpImageSparseSampleProjDrefExplicitLod ||
|
|
opcode == SpvOpImageSparseFetch ||
|
|
opcode == SpvOpImageSparseGather ||
|
|
opcode == SpvOpImageSparseDrefGather ||
|
|
opcode == SpvOpImageSparseRead) &&
|
|
"Wrong opcode. Should be an image instruction.");
|
|
|
|
int32_t operand_index = ImageOperandsMaskInOperandIndex(inst);
|
|
if (operand_index >= 0) {
|
|
auto image_operands = inst->GetSingleWordInOperand(operand_index);
|
|
if (image_operands & SpvImageOperandsOffsetMask) {
|
|
uint32_t offset_operand_index = operand_index + 1;
|
|
if (image_operands & SpvImageOperandsBiasMask) offset_operand_index++;
|
|
if (image_operands & SpvImageOperandsLodMask) offset_operand_index++;
|
|
if (image_operands & SpvImageOperandsGradMask)
|
|
offset_operand_index += 2;
|
|
assert(((image_operands & SpvImageOperandsConstOffsetMask) == 0) &&
|
|
"Offset and ConstOffset may not be used together");
|
|
if (offset_operand_index < inst->NumOperands()) {
|
|
if (constants[offset_operand_index]) {
|
|
image_operands = image_operands | SpvImageOperandsConstOffsetMask;
|
|
image_operands = image_operands & ~SpvImageOperandsOffsetMask;
|
|
inst->SetInOperand(operand_index, {image_operands});
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
};
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void FoldingRules::AddFoldingRules() {
|
|
// Add all folding rules to the list for the opcodes to which they apply.
|
|
// Note that the order in which rules are added to the list matters. If a rule
|
|
// applies to the instruction, the rest of the rules will not be attempted.
|
|
// Take that into consideration.
|
|
rules_[SpvOpBitcast].push_back(BitCastScalarOrVector());
|
|
|
|
rules_[SpvOpCompositeConstruct].push_back(CompositeExtractFeedingConstruct);
|
|
|
|
rules_[SpvOpCompositeExtract].push_back(InsertFeedingExtract());
|
|
rules_[SpvOpCompositeExtract].push_back(CompositeConstructFeedingExtract());
|
|
rules_[SpvOpCompositeExtract].push_back(VectorShuffleFeedingExtract());
|
|
rules_[SpvOpCompositeExtract].push_back(FMixFeedingExtract());
|
|
|
|
rules_[SpvOpDot].push_back(DotProductDoingExtract());
|
|
|
|
rules_[SpvOpEntryPoint].push_back(RemoveRedundantOperands());
|
|
|
|
rules_[SpvOpFAdd].push_back(RedundantFAdd());
|
|
rules_[SpvOpFAdd].push_back(MergeAddNegateArithmetic());
|
|
rules_[SpvOpFAdd].push_back(MergeAddAddArithmetic());
|
|
rules_[SpvOpFAdd].push_back(MergeAddSubArithmetic());
|
|
rules_[SpvOpFAdd].push_back(MergeGenericAddSubArithmetic());
|
|
rules_[SpvOpFAdd].push_back(FactorAddMuls());
|
|
|
|
rules_[SpvOpFDiv].push_back(RedundantFDiv());
|
|
rules_[SpvOpFDiv].push_back(ReciprocalFDiv());
|
|
rules_[SpvOpFDiv].push_back(MergeDivDivArithmetic());
|
|
rules_[SpvOpFDiv].push_back(MergeDivMulArithmetic());
|
|
rules_[SpvOpFDiv].push_back(MergeDivNegateArithmetic());
|
|
|
|
rules_[SpvOpFMul].push_back(RedundantFMul());
|
|
rules_[SpvOpFMul].push_back(MergeMulMulArithmetic());
|
|
rules_[SpvOpFMul].push_back(MergeMulDivArithmetic());
|
|
rules_[SpvOpFMul].push_back(MergeMulNegateArithmetic());
|
|
|
|
rules_[SpvOpFNegate].push_back(MergeNegateArithmetic());
|
|
rules_[SpvOpFNegate].push_back(MergeNegateAddSubArithmetic());
|
|
rules_[SpvOpFNegate].push_back(MergeNegateMulDivArithmetic());
|
|
|
|
rules_[SpvOpFSub].push_back(RedundantFSub());
|
|
rules_[SpvOpFSub].push_back(MergeSubNegateArithmetic());
|
|
rules_[SpvOpFSub].push_back(MergeSubAddArithmetic());
|
|
rules_[SpvOpFSub].push_back(MergeSubSubArithmetic());
|
|
|
|
rules_[SpvOpIAdd].push_back(RedundantIAdd());
|
|
rules_[SpvOpIAdd].push_back(MergeAddNegateArithmetic());
|
|
rules_[SpvOpIAdd].push_back(MergeAddAddArithmetic());
|
|
rules_[SpvOpIAdd].push_back(MergeAddSubArithmetic());
|
|
rules_[SpvOpIAdd].push_back(MergeGenericAddSubArithmetic());
|
|
rules_[SpvOpIAdd].push_back(FactorAddMuls());
|
|
|
|
rules_[SpvOpIMul].push_back(IntMultipleBy1());
|
|
rules_[SpvOpIMul].push_back(MergeMulMulArithmetic());
|
|
rules_[SpvOpIMul].push_back(MergeMulNegateArithmetic());
|
|
|
|
rules_[SpvOpISub].push_back(MergeSubNegateArithmetic());
|
|
rules_[SpvOpISub].push_back(MergeSubAddArithmetic());
|
|
rules_[SpvOpISub].push_back(MergeSubSubArithmetic());
|
|
|
|
rules_[SpvOpPhi].push_back(RedundantPhi());
|
|
|
|
rules_[SpvOpSDiv].push_back(MergeDivNegateArithmetic());
|
|
|
|
rules_[SpvOpSNegate].push_back(MergeNegateArithmetic());
|
|
rules_[SpvOpSNegate].push_back(MergeNegateMulDivArithmetic());
|
|
rules_[SpvOpSNegate].push_back(MergeNegateAddSubArithmetic());
|
|
|
|
rules_[SpvOpSelect].push_back(RedundantSelect());
|
|
|
|
rules_[SpvOpStore].push_back(StoringUndef());
|
|
|
|
rules_[SpvOpUDiv].push_back(MergeDivNegateArithmetic());
|
|
|
|
rules_[SpvOpVectorShuffle].push_back(VectorShuffleFeedingShuffle());
|
|
|
|
rules_[SpvOpImageSampleImplicitLod].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSampleExplicitLod].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSampleDrefImplicitLod].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSampleDrefExplicitLod].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSampleProjImplicitLod].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSampleProjExplicitLod].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSampleProjDrefImplicitLod].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSampleProjDrefExplicitLod].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageFetch].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageGather].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageDrefGather].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageRead].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageWrite].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSparseSampleImplicitLod].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSparseSampleExplicitLod].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSparseSampleDrefImplicitLod].push_back(
|
|
UpdateImageOperands());
|
|
rules_[SpvOpImageSparseSampleDrefExplicitLod].push_back(
|
|
UpdateImageOperands());
|
|
rules_[SpvOpImageSparseSampleProjImplicitLod].push_back(
|
|
UpdateImageOperands());
|
|
rules_[SpvOpImageSparseSampleProjExplicitLod].push_back(
|
|
UpdateImageOperands());
|
|
rules_[SpvOpImageSparseSampleProjDrefImplicitLod].push_back(
|
|
UpdateImageOperands());
|
|
rules_[SpvOpImageSparseSampleProjDrefExplicitLod].push_back(
|
|
UpdateImageOperands());
|
|
rules_[SpvOpImageSparseFetch].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSparseGather].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSparseDrefGather].push_back(UpdateImageOperands());
|
|
rules_[SpvOpImageSparseRead].push_back(UpdateImageOperands());
|
|
|
|
FeatureManager* feature_manager = context_->get_feature_mgr();
|
|
// Add rules for GLSLstd450
|
|
uint32_t ext_inst_glslstd450_id =
|
|
feature_manager->GetExtInstImportId_GLSLstd450();
|
|
if (ext_inst_glslstd450_id != 0) {
|
|
ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FMix}].push_back(
|
|
RedundantFMix());
|
|
}
|
|
}
|
|
} // namespace opt
|
|
} // namespace spvtools
|