mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2024-11-30 06:50:06 +00:00
8d4261bc44
Some transformations (e.g. TransformationAddFunction) rely on running the validator to decide whether the transformation is applicable. A recent change allowed spirv-fuzz to take validator options, to cater for the case where a module should be considered valid under particular conditions. However, validation during the checking of transformations had no access to these validator options. This change introduced TransformationContext, which currently consists of a fact manager and a set of validator options, but could in the future have other fields corresponding to other objects that it is useful to have access to when applying transformations. Now, instead of checking and applying transformations in the context of a FactManager, a TransformationContext is used. This gives access to the fact manager as before, and also access to the validator options when they are needed.
483 lines
21 KiB
C++
483 lines
21 KiB
C++
// Copyright (c) 2019 Google LLC
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "source/fuzz/fuzzer_pass_obfuscate_constants.h"
|
|
|
|
#include <cmath>
|
|
|
|
#include "source/fuzz/instruction_descriptor.h"
|
|
#include "source/fuzz/transformation_replace_boolean_constant_with_constant_binary.h"
|
|
#include "source/fuzz/transformation_replace_constant_with_uniform.h"
|
|
#include "source/opt/ir_context.h"
|
|
|
|
namespace spvtools {
|
|
namespace fuzz {
|
|
|
|
FuzzerPassObfuscateConstants::FuzzerPassObfuscateConstants(
|
|
opt::IRContext* ir_context, TransformationContext* transformation_context,
|
|
FuzzerContext* fuzzer_context,
|
|
protobufs::TransformationSequence* transformations)
|
|
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
|
|
transformations) {}
|
|
|
|
FuzzerPassObfuscateConstants::~FuzzerPassObfuscateConstants() = default;
|
|
|
|
void FuzzerPassObfuscateConstants::ObfuscateBoolConstantViaConstantPair(
|
|
uint32_t depth, const protobufs::IdUseDescriptor& bool_constant_use,
|
|
const std::vector<SpvOp>& greater_than_opcodes,
|
|
const std::vector<SpvOp>& less_than_opcodes, uint32_t constant_id_1,
|
|
uint32_t constant_id_2, bool first_constant_is_larger) {
|
|
auto bool_constant_opcode = GetIRContext()
|
|
->get_def_use_mgr()
|
|
->GetDef(bool_constant_use.id_of_interest())
|
|
->opcode();
|
|
assert((bool_constant_opcode == SpvOpConstantFalse ||
|
|
bool_constant_opcode == SpvOpConstantTrue) &&
|
|
"Precondition: this must be a usage of a boolean constant.");
|
|
|
|
// Pick an opcode at random. First randomly decide whether to generate
|
|
// a 'greater than' or 'less than' kind of opcode, and then select a
|
|
// random opcode from the resulting subset.
|
|
SpvOp comparison_opcode;
|
|
if (GetFuzzerContext()->ChooseEven()) {
|
|
comparison_opcode = greater_than_opcodes[GetFuzzerContext()->RandomIndex(
|
|
greater_than_opcodes)];
|
|
} else {
|
|
comparison_opcode =
|
|
less_than_opcodes[GetFuzzerContext()->RandomIndex(less_than_opcodes)];
|
|
}
|
|
|
|
// We now need to decide how to order constant_id_1 and constant_id_2 such
|
|
// that 'constant_id_1 comparison_opcode constant_id_2' evaluates to the
|
|
// boolean constant.
|
|
const bool is_greater_than_opcode =
|
|
std::find(greater_than_opcodes.begin(), greater_than_opcodes.end(),
|
|
comparison_opcode) != greater_than_opcodes.end();
|
|
uint32_t lhs_id;
|
|
uint32_t rhs_id;
|
|
if ((bool_constant_opcode == SpvOpConstantTrue &&
|
|
first_constant_is_larger == is_greater_than_opcode) ||
|
|
(bool_constant_opcode == SpvOpConstantFalse &&
|
|
first_constant_is_larger != is_greater_than_opcode)) {
|
|
lhs_id = constant_id_1;
|
|
rhs_id = constant_id_2;
|
|
} else {
|
|
lhs_id = constant_id_2;
|
|
rhs_id = constant_id_1;
|
|
}
|
|
|
|
// We can now make a transformation that will replace |bool_constant_use|
|
|
// with an expression of the form (written using infix notation):
|
|
// |lhs_id| |comparison_opcode| |rhs_id|
|
|
auto transformation = TransformationReplaceBooleanConstantWithConstantBinary(
|
|
bool_constant_use, lhs_id, rhs_id, comparison_opcode,
|
|
GetFuzzerContext()->GetFreshId());
|
|
// The transformation should be applicable by construction.
|
|
assert(
|
|
transformation.IsApplicable(GetIRContext(), *GetTransformationContext()));
|
|
|
|
// Applying this transformation yields a pointer to the new instruction that
|
|
// computes the result of the binary expression.
|
|
auto binary_operator_instruction = transformation.ApplyWithResult(
|
|
GetIRContext(), GetTransformationContext());
|
|
|
|
// Add this transformation to the sequence of transformations that have been
|
|
// applied.
|
|
*GetTransformations()->add_transformation() = transformation.ToMessage();
|
|
|
|
// Having made a binary expression, there may now be opportunities to further
|
|
// obfuscate the constants used as the LHS and RHS of the expression (e.g. by
|
|
// replacing them with loads from known uniforms).
|
|
//
|
|
// We thus consider operands 0 and 1 (LHS and RHS in turn).
|
|
for (uint32_t index : {0u, 1u}) {
|
|
// We randomly decide, based on the current depth of obfuscation, whether
|
|
// to further obfuscate this operand.
|
|
if (GetFuzzerContext()->GoDeeperInConstantObfuscation(depth)) {
|
|
auto in_operand_use = MakeIdUseDescriptor(
|
|
binary_operator_instruction->GetSingleWordInOperand(index),
|
|
MakeInstructionDescriptor(binary_operator_instruction->result_id(),
|
|
binary_operator_instruction->opcode(), 0),
|
|
index);
|
|
ObfuscateConstant(depth + 1, in_operand_use);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FuzzerPassObfuscateConstants::ObfuscateBoolConstantViaFloatConstantPair(
|
|
uint32_t depth, const protobufs::IdUseDescriptor& bool_constant_use,
|
|
uint32_t float_constant_id_1, uint32_t float_constant_id_2) {
|
|
auto float_constant_1 = GetIRContext()
|
|
->get_constant_mgr()
|
|
->FindDeclaredConstant(float_constant_id_1)
|
|
->AsFloatConstant();
|
|
auto float_constant_2 = GetIRContext()
|
|
->get_constant_mgr()
|
|
->FindDeclaredConstant(float_constant_id_2)
|
|
->AsFloatConstant();
|
|
assert(float_constant_1->words() != float_constant_2->words() &&
|
|
"The constants should not be identical.");
|
|
assert(std::isfinite(float_constant_1->GetValueAsDouble()) &&
|
|
"The constants must be finite numbers.");
|
|
assert(std::isfinite(float_constant_2->GetValueAsDouble()) &&
|
|
"The constants must be finite numbers.");
|
|
bool first_constant_is_larger;
|
|
assert(float_constant_1->type()->AsFloat()->width() ==
|
|
float_constant_2->type()->AsFloat()->width() &&
|
|
"First and second floating-point constants must have the same width.");
|
|
if (float_constant_1->type()->AsFloat()->width() == 32) {
|
|
first_constant_is_larger =
|
|
float_constant_1->GetFloat() > float_constant_2->GetFloat();
|
|
} else {
|
|
assert(float_constant_1->type()->AsFloat()->width() == 64 &&
|
|
"Supported floating-point widths are 32 and 64.");
|
|
first_constant_is_larger =
|
|
float_constant_1->GetDouble() > float_constant_2->GetDouble();
|
|
}
|
|
std::vector<SpvOp> greater_than_opcodes{
|
|
SpvOpFOrdGreaterThan, SpvOpFOrdGreaterThanEqual, SpvOpFUnordGreaterThan,
|
|
SpvOpFUnordGreaterThanEqual};
|
|
std::vector<SpvOp> less_than_opcodes{
|
|
SpvOpFOrdGreaterThan, SpvOpFOrdGreaterThanEqual, SpvOpFUnordGreaterThan,
|
|
SpvOpFUnordGreaterThanEqual};
|
|
|
|
ObfuscateBoolConstantViaConstantPair(
|
|
depth, bool_constant_use, greater_than_opcodes, less_than_opcodes,
|
|
float_constant_id_1, float_constant_id_2, first_constant_is_larger);
|
|
}
|
|
|
|
void FuzzerPassObfuscateConstants::
|
|
ObfuscateBoolConstantViaSignedIntConstantPair(
|
|
uint32_t depth, const protobufs::IdUseDescriptor& bool_constant_use,
|
|
uint32_t signed_int_constant_id_1, uint32_t signed_int_constant_id_2) {
|
|
auto signed_int_constant_1 =
|
|
GetIRContext()
|
|
->get_constant_mgr()
|
|
->FindDeclaredConstant(signed_int_constant_id_1)
|
|
->AsIntConstant();
|
|
auto signed_int_constant_2 =
|
|
GetIRContext()
|
|
->get_constant_mgr()
|
|
->FindDeclaredConstant(signed_int_constant_id_2)
|
|
->AsIntConstant();
|
|
assert(signed_int_constant_1->words() != signed_int_constant_2->words() &&
|
|
"The constants should not be identical.");
|
|
bool first_constant_is_larger;
|
|
assert(signed_int_constant_1->type()->AsInteger()->width() ==
|
|
signed_int_constant_2->type()->AsInteger()->width() &&
|
|
"First and second floating-point constants must have the same width.");
|
|
assert(signed_int_constant_1->type()->AsInteger()->IsSigned());
|
|
assert(signed_int_constant_2->type()->AsInteger()->IsSigned());
|
|
if (signed_int_constant_1->type()->AsFloat()->width() == 32) {
|
|
first_constant_is_larger =
|
|
signed_int_constant_1->GetS32() > signed_int_constant_2->GetS32();
|
|
} else {
|
|
assert(signed_int_constant_1->type()->AsFloat()->width() == 64 &&
|
|
"Supported integer widths are 32 and 64.");
|
|
first_constant_is_larger =
|
|
signed_int_constant_1->GetS64() > signed_int_constant_2->GetS64();
|
|
}
|
|
std::vector<SpvOp> greater_than_opcodes{SpvOpSGreaterThan,
|
|
SpvOpSGreaterThanEqual};
|
|
std::vector<SpvOp> less_than_opcodes{SpvOpSLessThan, SpvOpSLessThanEqual};
|
|
|
|
ObfuscateBoolConstantViaConstantPair(
|
|
depth, bool_constant_use, greater_than_opcodes, less_than_opcodes,
|
|
signed_int_constant_id_1, signed_int_constant_id_2,
|
|
first_constant_is_larger);
|
|
}
|
|
|
|
void FuzzerPassObfuscateConstants::
|
|
ObfuscateBoolConstantViaUnsignedIntConstantPair(
|
|
uint32_t depth, const protobufs::IdUseDescriptor& bool_constant_use,
|
|
uint32_t unsigned_int_constant_id_1,
|
|
uint32_t unsigned_int_constant_id_2) {
|
|
auto unsigned_int_constant_1 =
|
|
GetIRContext()
|
|
->get_constant_mgr()
|
|
->FindDeclaredConstant(unsigned_int_constant_id_1)
|
|
->AsIntConstant();
|
|
auto unsigned_int_constant_2 =
|
|
GetIRContext()
|
|
->get_constant_mgr()
|
|
->FindDeclaredConstant(unsigned_int_constant_id_2)
|
|
->AsIntConstant();
|
|
assert(unsigned_int_constant_1->words() != unsigned_int_constant_2->words() &&
|
|
"The constants should not be identical.");
|
|
bool first_constant_is_larger;
|
|
assert(unsigned_int_constant_1->type()->AsInteger()->width() ==
|
|
unsigned_int_constant_2->type()->AsInteger()->width() &&
|
|
"First and second floating-point constants must have the same width.");
|
|
assert(!unsigned_int_constant_1->type()->AsInteger()->IsSigned());
|
|
assert(!unsigned_int_constant_2->type()->AsInteger()->IsSigned());
|
|
if (unsigned_int_constant_1->type()->AsFloat()->width() == 32) {
|
|
first_constant_is_larger =
|
|
unsigned_int_constant_1->GetU32() > unsigned_int_constant_2->GetU32();
|
|
} else {
|
|
assert(unsigned_int_constant_1->type()->AsFloat()->width() == 64 &&
|
|
"Supported integer widths are 32 and 64.");
|
|
first_constant_is_larger =
|
|
unsigned_int_constant_1->GetU64() > unsigned_int_constant_2->GetU64();
|
|
}
|
|
std::vector<SpvOp> greater_than_opcodes{SpvOpUGreaterThan,
|
|
SpvOpUGreaterThanEqual};
|
|
std::vector<SpvOp> less_than_opcodes{SpvOpULessThan, SpvOpULessThanEqual};
|
|
|
|
ObfuscateBoolConstantViaConstantPair(
|
|
depth, bool_constant_use, greater_than_opcodes, less_than_opcodes,
|
|
unsigned_int_constant_id_1, unsigned_int_constant_id_2,
|
|
first_constant_is_larger);
|
|
}
|
|
|
|
void FuzzerPassObfuscateConstants::ObfuscateBoolConstant(
|
|
uint32_t depth, const protobufs::IdUseDescriptor& constant_use) {
|
|
// We want to replace the boolean constant use with a binary expression over
|
|
// scalar constants, but only if we can then potentially replace the constants
|
|
// with uniforms of the same value.
|
|
|
|
auto available_types_with_uniforms =
|
|
GetTransformationContext()
|
|
->GetFactManager()
|
|
->GetTypesForWhichUniformValuesAreKnown();
|
|
if (available_types_with_uniforms.empty()) {
|
|
// Do not try to obfuscate if we do not have access to any uniform
|
|
// elements with known values.
|
|
return;
|
|
}
|
|
auto chosen_type_id =
|
|
available_types_with_uniforms[GetFuzzerContext()->RandomIndex(
|
|
available_types_with_uniforms)];
|
|
auto available_constants = GetTransformationContext()
|
|
->GetFactManager()
|
|
->GetConstantsAvailableFromUniformsForType(
|
|
GetIRContext(), chosen_type_id);
|
|
if (available_constants.size() == 1) {
|
|
// TODO(afd): for now we only obfuscate a boolean if there are at least
|
|
// two constants available from uniforms, so that we can do a
|
|
// comparison between them. It would be good to be able to do the
|
|
// obfuscation even if there is only one such constant, if there is
|
|
// also another regular constant available.
|
|
return;
|
|
}
|
|
|
|
// We know we have at least two known-to-be-constant uniforms of the chosen
|
|
// type. Pick one of them at random.
|
|
auto constant_index_1 = GetFuzzerContext()->RandomIndex(available_constants);
|
|
uint32_t constant_index_2;
|
|
|
|
// Now choose another one distinct from the first one.
|
|
do {
|
|
constant_index_2 = GetFuzzerContext()->RandomIndex(available_constants);
|
|
} while (constant_index_1 == constant_index_2);
|
|
|
|
auto constant_id_1 = available_constants[constant_index_1];
|
|
auto constant_id_2 = available_constants[constant_index_2];
|
|
|
|
assert(constant_id_1 != 0 && constant_id_2 != 0 &&
|
|
"We should not find an available constant with an id of 0.");
|
|
|
|
// Now perform the obfuscation, according to whether the type of the constants
|
|
// is float, signed int, or unsigned int.
|
|
auto chosen_type = GetIRContext()->get_type_mgr()->GetType(chosen_type_id);
|
|
if (chosen_type->AsFloat()) {
|
|
ObfuscateBoolConstantViaFloatConstantPair(depth, constant_use,
|
|
constant_id_1, constant_id_2);
|
|
} else {
|
|
assert(chosen_type->AsInteger() &&
|
|
"We should only have uniform facts about ints and floats.");
|
|
if (chosen_type->AsInteger()->IsSigned()) {
|
|
ObfuscateBoolConstantViaSignedIntConstantPair(
|
|
depth, constant_use, constant_id_1, constant_id_2);
|
|
} else {
|
|
ObfuscateBoolConstantViaUnsignedIntConstantPair(
|
|
depth, constant_use, constant_id_1, constant_id_2);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FuzzerPassObfuscateConstants::ObfuscateScalarConstant(
|
|
uint32_t /*depth*/, const protobufs::IdUseDescriptor& constant_use) {
|
|
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/2670): consider
|
|
// additional ways to obfuscate scalar constants.
|
|
|
|
// Check whether we know that any uniforms are guaranteed to be equal to the
|
|
// scalar constant associated with |constant_use|.
|
|
auto uniform_descriptors =
|
|
GetTransformationContext()
|
|
->GetFactManager()
|
|
->GetUniformDescriptorsForConstant(GetIRContext(),
|
|
constant_use.id_of_interest());
|
|
if (uniform_descriptors.empty()) {
|
|
// No relevant uniforms, so do not obfuscate.
|
|
return;
|
|
}
|
|
|
|
// Choose a random available uniform known to be equal to the constant.
|
|
protobufs::UniformBufferElementDescriptor uniform_descriptor =
|
|
uniform_descriptors[GetFuzzerContext()->RandomIndex(uniform_descriptors)];
|
|
// Create, apply and record a transformation to replace the constant use with
|
|
// the result of a load from the chosen uniform.
|
|
auto transformation = TransformationReplaceConstantWithUniform(
|
|
constant_use, uniform_descriptor, GetFuzzerContext()->GetFreshId(),
|
|
GetFuzzerContext()->GetFreshId());
|
|
// Transformation should be applicable by construction.
|
|
assert(
|
|
transformation.IsApplicable(GetIRContext(), *GetTransformationContext()));
|
|
transformation.Apply(GetIRContext(), GetTransformationContext());
|
|
*GetTransformations()->add_transformation() = transformation.ToMessage();
|
|
}
|
|
|
|
void FuzzerPassObfuscateConstants::ObfuscateConstant(
|
|
uint32_t depth, const protobufs::IdUseDescriptor& constant_use) {
|
|
switch (GetIRContext()
|
|
->get_def_use_mgr()
|
|
->GetDef(constant_use.id_of_interest())
|
|
->opcode()) {
|
|
case SpvOpConstantTrue:
|
|
case SpvOpConstantFalse:
|
|
ObfuscateBoolConstant(depth, constant_use);
|
|
break;
|
|
case SpvOpConstant:
|
|
ObfuscateScalarConstant(depth, constant_use);
|
|
break;
|
|
default:
|
|
assert(false && "The opcode should be one of the above.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void FuzzerPassObfuscateConstants::MaybeAddConstantIdUse(
|
|
const opt::Instruction& inst, uint32_t in_operand_index,
|
|
uint32_t base_instruction_result_id,
|
|
const std::map<SpvOp, uint32_t>& skipped_opcode_count,
|
|
std::vector<protobufs::IdUseDescriptor>* constant_uses) {
|
|
if (inst.GetInOperand(in_operand_index).type != SPV_OPERAND_TYPE_ID) {
|
|
// The operand is not an id, so it cannot be a constant id.
|
|
return;
|
|
}
|
|
auto operand_id = inst.GetSingleWordInOperand(in_operand_index);
|
|
auto operand_definition =
|
|
GetIRContext()->get_def_use_mgr()->GetDef(operand_id);
|
|
switch (operand_definition->opcode()) {
|
|
case SpvOpConstantFalse:
|
|
case SpvOpConstantTrue:
|
|
case SpvOpConstant: {
|
|
// The operand is a constant id, so make an id use descriptor and record
|
|
// it.
|
|
protobufs::IdUseDescriptor id_use_descriptor;
|
|
id_use_descriptor.set_id_of_interest(operand_id);
|
|
id_use_descriptor.mutable_enclosing_instruction()
|
|
->set_target_instruction_opcode(inst.opcode());
|
|
id_use_descriptor.mutable_enclosing_instruction()
|
|
->set_base_instruction_result_id(base_instruction_result_id);
|
|
id_use_descriptor.mutable_enclosing_instruction()
|
|
->set_num_opcodes_to_ignore(
|
|
skipped_opcode_count.find(inst.opcode()) ==
|
|
skipped_opcode_count.end()
|
|
? 0
|
|
: skipped_opcode_count.at(inst.opcode()));
|
|
id_use_descriptor.set_in_operand_index(in_operand_index);
|
|
constant_uses->push_back(id_use_descriptor);
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void FuzzerPassObfuscateConstants::Apply() {
|
|
// First, gather up all the constant uses available in the module, by going
|
|
// through each block in each function.
|
|
std::vector<protobufs::IdUseDescriptor> constant_uses;
|
|
for (auto& function : *GetIRContext()->module()) {
|
|
for (auto& block : function) {
|
|
// For each constant use we encounter we are going to make an id use
|
|
// descriptor. An id use is described with respect to a base instruction;
|
|
// if there are instructions at the start of the block without result ids,
|
|
// the base instruction will have to be the block's label.
|
|
uint32_t base_instruction_result_id = block.id();
|
|
|
|
// An id use descriptor also records how many instructions of a particular
|
|
// opcode need to be skipped in order to find the instruction of interest
|
|
// from the base instruction. We maintain a mapping that records a skip
|
|
// count for each relevant opcode.
|
|
std::map<SpvOp, uint32_t> skipped_opcode_count;
|
|
|
|
// Go through each instruction in the block.
|
|
for (auto& inst : block) {
|
|
if (inst.HasResultId()) {
|
|
// The instruction has a result id, so can be used as the base
|
|
// instruction from now on, until another instruction with a result id
|
|
// is encountered.
|
|
base_instruction_result_id = inst.result_id();
|
|
// Opcode skip counts were with respect to the previous base
|
|
// instruction and are now irrelevant.
|
|
skipped_opcode_count.clear();
|
|
}
|
|
|
|
switch (inst.opcode()) {
|
|
case SpvOpPhi:
|
|
// The instruction must not be an OpPhi, as we cannot insert
|
|
// instructions before an OpPhi.
|
|
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/2902):
|
|
// there is scope for being less conservative.
|
|
break;
|
|
case SpvOpVariable:
|
|
// The instruction must not be an OpVariable, the only id that an
|
|
// OpVariable uses is an initializer id, which has to remain
|
|
// constant.
|
|
break;
|
|
default:
|
|
// Consider each operand of the instruction, and add a constant id
|
|
// use for the operand if relevant.
|
|
for (uint32_t in_operand_index = 0;
|
|
in_operand_index < inst.NumInOperands(); in_operand_index++) {
|
|
MaybeAddConstantIdUse(inst, in_operand_index,
|
|
base_instruction_result_id,
|
|
skipped_opcode_count, &constant_uses);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!inst.HasResultId()) {
|
|
// The instruction has no result id, so in order to identify future id
|
|
// uses for instructions with this opcode from the existing base
|
|
// instruction, we need to increase the skip count for this opcode.
|
|
skipped_opcode_count[inst.opcode()] =
|
|
skipped_opcode_count.find(inst.opcode()) ==
|
|
skipped_opcode_count.end()
|
|
? 1
|
|
: skipped_opcode_count[inst.opcode()] + 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Go through the constant uses in a random order by repeatedly pulling out a
|
|
// constant use at a random index.
|
|
while (!constant_uses.empty()) {
|
|
auto index = GetFuzzerContext()->RandomIndex(constant_uses);
|
|
auto constant_use = std::move(constant_uses[index]);
|
|
constant_uses.erase(constant_uses.begin() + index);
|
|
// Decide probabilistically whether to skip or obfuscate this constant use.
|
|
if (!GetFuzzerContext()->ChoosePercentage(
|
|
GetFuzzerContext()->GetChanceOfObfuscatingConstant())) {
|
|
continue;
|
|
}
|
|
ObfuscateConstant(0, constant_use);
|
|
}
|
|
}
|
|
|
|
} // namespace fuzz
|
|
} // namespace spvtools
|