SPIRV-Tools/source/opt/if_conversion.cpp
Alan Baker 2e93e806e4 Initial implementation of if conversion
* Handles simple cases only
* Identifies phis in blocks with two predecessors and attempts to
convert the phi to an select
 * does not perform code motion currently so the converted values must
 dominate the join point (e.g. can't be defined in the branches)
 * limited for now to two predecessors, but can be extended to handle
 more cases
* Adding if conversion to -O and -Os
2018-01-25 09:42:00 -08:00

189 lines
7.4 KiB
C++

// Copyright (c) 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "if_conversion.h"
namespace spvtools {
namespace opt {
Pass::Status IfConversion::Process(ir::IRContext* c) {
InitializeProcessing(c);
bool modified = false;
std::vector<ir::Instruction*> to_kill;
for (auto& func : *get_module()) {
DominatorAnalysis* dominators =
context()->GetDominatorAnalysis(&func, *cfg());
for (auto& block : func) {
// Check if it is possible for |block| to have phis that can be
// transformed.
ir::BasicBlock* common = nullptr;
if (!CheckBlock(&block, dominators, &common)) continue;
// Get an insertion point.
auto iter = block.begin();
while (iter != block.end() && iter->opcode() == SpvOpPhi) {
++iter;
}
InstructionBuilder<ir::IRContext::kAnalysisDefUse |
ir::IRContext::kAnalysisInstrToBlockMapping>
builder(context(), &*iter);
block.ForEachPhiInst([this, &builder, &modified, &common, &to_kill,
dominators, &block](ir::Instruction* phi) {
// This phi is not compatible, but subsequent phis might be.
if (!CheckType(phi->type_id())) return;
// We cannot transform cases where the phi is used by another phi in the
// same block due to instruction ordering restrictions.
// TODO(alan-baker): If all inappropriate uses could also be
// transformed, we could still remove this phi.
if (!CheckPhiUsers(phi, &block)) return;
// Identify the incoming values associated with the true and false
// branches. If |then_block| dominates |inc0| or if the true edge
// branches straight to this block and |common| is |inc0|, then |inc0|
// is on the true branch. Otherwise the |inc1| is on the true branch.
ir::BasicBlock* inc0 = GetIncomingBlock(phi, 0u);
ir::Instruction* branch = common->terminator();
uint32_t condition = branch->GetSingleWordInOperand(0u);
ir::BasicBlock* then_block =
GetBlock(branch->GetSingleWordInOperand(1u));
ir::Instruction* true_value = nullptr;
ir::Instruction* false_value = nullptr;
if ((then_block == &block && inc0 == common) ||
dominators->Dominates(then_block, inc0)) {
true_value = GetIncomingValue(phi, 0u);
false_value = GetIncomingValue(phi, 1u);
} else {
true_value = GetIncomingValue(phi, 1u);
false_value = GetIncomingValue(phi, 0u);
}
// If either incoming value is defined in a block that does not dominate
// this phi, then we cannot eliminate the phi with a select.
// TODO(alan-baker): Perform code motion where it makes sense to enable
// the transform in this case.
ir::BasicBlock* true_def_block = context()->get_instr_block(true_value);
if (true_def_block && !dominators->Dominates(true_def_block, &block))
return;
ir::BasicBlock* false_def_block =
context()->get_instr_block(false_value);
if (false_def_block && !dominators->Dominates(false_def_block, &block))
return;
analysis::Type* data_ty =
context()->get_type_mgr()->GetType(true_value->type_id());
if (analysis::Vector* vec_data_ty = data_ty->AsVector()) {
condition = SplatCondition(vec_data_ty, condition, &builder);
}
ir::Instruction* select = builder.AddSelect(phi->type_id(), condition,
true_value->result_id(),
false_value->result_id());
context()->ReplaceAllUsesWith(phi->result_id(), select->result_id());
to_kill.push_back(phi);
modified = true;
return;
});
}
}
for (auto inst : to_kill) {
context()->KillInst(inst);
}
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
bool IfConversion::CheckBlock(ir::BasicBlock* block,
DominatorAnalysis* dominators,
ir::BasicBlock** common) {
const std::vector<uint32_t>& preds = cfg()->preds(block->id());
// TODO(alan-baker): Extend to more than two predecessors
if (preds.size() != 2) return false;
ir::BasicBlock* inc0 = context()->get_instr_block(preds[0]);
if (dominators->Dominates(block, inc0)) return false;
ir::BasicBlock* inc1 = context()->get_instr_block(preds[1]);
if (dominators->Dominates(block, inc1)) return false;
// All phis will have the same common dominator, so cache the result
// for this block. If there is no common dominator, then we cannot transform
// any phi in this basic block.
*common = dominators->CommonDominator(inc0, inc1);
if (!*common) return false;
ir::Instruction* branch = (*common)->terminator();
if (branch->opcode() != SpvOpBranchConditional) return false;
return true;
}
bool IfConversion::CheckPhiUsers(ir::Instruction* phi, ir::BasicBlock* block) {
return get_def_use_mgr()->WhileEachUser(phi, [block,
this](ir::Instruction* user) {
if (user->opcode() == SpvOpPhi && context()->get_instr_block(user) == block)
return false;
return true;
});
}
uint32_t IfConversion::SplatCondition(
analysis::Vector* vec_data_ty, uint32_t cond,
InstructionBuilder<ir::IRContext::kAnalysisDefUse |
ir::IRContext::kAnalysisInstrToBlockMapping>* builder) {
// If the data inputs to OpSelect are vectors, the condition for
// OpSelect must be a boolean vector with the same number of
// components. So splat the condition for the branch into a vector
// type.
analysis::Bool bool_ty;
analysis::Vector bool_vec_ty(&bool_ty, vec_data_ty->element_count());
uint32_t bool_vec_id =
context()->get_type_mgr()->GetTypeInstruction(&bool_vec_ty);
std::vector<uint32_t> ids(vec_data_ty->element_count(), cond);
return builder->AddCompositeConstruct(bool_vec_id, ids)->result_id();
}
bool IfConversion::CheckType(uint32_t id) {
ir::Instruction* type = get_def_use_mgr()->GetDef(id);
SpvOp op = type->opcode();
if (spvOpcodeIsScalarType(op) || op == SpvOpTypePointer ||
op == SpvOpTypeVector)
return true;
return false;
}
ir::BasicBlock* IfConversion::GetBlock(uint32_t id) {
return context()->get_instr_block(get_def_use_mgr()->GetDef(id));
}
ir::BasicBlock* IfConversion::GetIncomingBlock(ir::Instruction* phi,
uint32_t predecessor) {
uint32_t in_index = 2 * predecessor + 1;
return GetBlock(phi->GetSingleWordInOperand(in_index));
}
ir::Instruction* IfConversion::GetIncomingValue(ir::Instruction* phi,
uint32_t predecessor) {
uint32_t in_index = 2 * predecessor;
return get_def_use_mgr()->GetDef(phi->GetSingleWordInOperand(in_index));
}
} // namespace opt
} // namespace spvtools