SPIRV-Tools/test/TextToBinary.cpp
Andrew Woloszyn 4c657bfa8f Make everything compile cleanly with -Wpedantic.
This makes SPIRV_WARN_EVERYTHING compile cleanly.
2016-03-21 10:01:13 -04:00

542 lines
22 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and/or associated documentation files (the
// "Materials"), to deal in the Materials without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Materials, and to
// permit persons to whom the Materials are furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Materials.
//
// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
// KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
// SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
// https://www.khronos.org/registry/
//
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
#include <algorithm>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "TestFixture.h"
#include "UnitSPIRV.h"
#include "source/spirv_constant.h"
#include "source/util/bitutils.h"
#include "source/util/hex_float.h"
namespace {
using libspirv::AssemblyContext;
using libspirv::AssemblyGrammar;
using spvtest::AutoText;
using spvtest::Concatenate;
using spvtest::MakeInstruction;
using spvtest::TextToBinaryTest;
using testing::Eq;
// An mask parsing test case.
struct MaskCase {
spv_operand_type_t which_enum;
uint32_t expected_value;
const char* expression;
};
using GoodMaskParseTest = ::testing::TestWithParam<MaskCase>;
TEST_P(GoodMaskParseTest, GoodMaskExpressions) {
spv_context context = spvContextCreate();
uint32_t value;
EXPECT_EQ(SPV_SUCCESS,
AssemblyGrammar(context).parseMaskOperand(
GetParam().which_enum, GetParam().expression, &value));
EXPECT_EQ(GetParam().expected_value, value);
spvContextDestroy(context);
}
INSTANTIATE_TEST_CASE_P(
ParseMask, GoodMaskParseTest,
::testing::ValuesIn(std::vector<MaskCase>{
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 0, "None"},
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 1, "NotNaN"},
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 2, "NotInf"},
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 3, "NotNaN|NotInf"},
// Mask experssions are symmetric.
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 3, "NotInf|NotNaN"},
// Repeating a value has no effect.
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 3, "NotInf|NotNaN|NotInf"},
// Using 3 operands still works.
{SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, 0x13, "NotInf|NotNaN|Fast"},
{SPV_OPERAND_TYPE_SELECTION_CONTROL, 0, "None"},
{SPV_OPERAND_TYPE_SELECTION_CONTROL, 1, "Flatten"},
{SPV_OPERAND_TYPE_SELECTION_CONTROL, 2, "DontFlatten"},
// Weirdly, you can specify to flatten and don't flatten a selection.
{SPV_OPERAND_TYPE_SELECTION_CONTROL, 3, "Flatten|DontFlatten"},
{SPV_OPERAND_TYPE_LOOP_CONTROL, 0, "None"},
{SPV_OPERAND_TYPE_LOOP_CONTROL, 1, "Unroll"},
{SPV_OPERAND_TYPE_LOOP_CONTROL, 2, "DontUnroll"},
// Weirdly, you can specify to unroll and don't unroll a loop.
{SPV_OPERAND_TYPE_LOOP_CONTROL, 3, "Unroll|DontUnroll"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 0, "None"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 1, "Inline"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 2, "DontInline"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 4, "Pure"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 8, "Const"},
{SPV_OPERAND_TYPE_FUNCTION_CONTROL, 0xd, "Inline|Const|Pure"},
}),);
using BadFPFastMathMaskParseTest = ::testing::TestWithParam<const char*>;
TEST_P(BadFPFastMathMaskParseTest, BadMaskExpressions) {
spv_context context = spvContextCreate();
uint32_t value;
EXPECT_NE(SPV_SUCCESS,
AssemblyGrammar(context).parseMaskOperand(
SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, GetParam(), &value));
spvContextDestroy(context);
}
INSTANTIATE_TEST_CASE_P(ParseMask, BadFPFastMathMaskParseTest,
::testing::ValuesIn(std::vector<const char*>{
nullptr, "", "NotValidEnum", "|", "NotInf|",
"|NotInf", "NotInf||NotNaN",
"Unroll" // A good word, but for the wrong enum
}),);
TEST_F(TextToBinaryTest, InvalidText) {
ASSERT_EQ(SPV_ERROR_INVALID_TEXT,
spvTextToBinary(context, nullptr, 0, &binary, &diagnostic));
EXPECT_NE(nullptr, diagnostic);
EXPECT_THAT(diagnostic->error, Eq(std::string("Missing assembly text.")));
}
TEST_F(TextToBinaryTest, InvalidPointer) {
SetText(
"OpEntryPoint Kernel 0 \"\"\nOpExecutionMode 0 LocalSizeHint 1 1 1\n");
ASSERT_EQ(
SPV_ERROR_INVALID_POINTER,
spvTextToBinary(context, text.str, text.length, nullptr, &diagnostic));
}
TEST_F(TextToBinaryTest, InvalidDiagnostic) {
SetText(
"OpEntryPoint Kernel 0 \"\"\nOpExecutionMode 0 LocalSizeHint 1 1 1\n");
ASSERT_EQ(SPV_ERROR_INVALID_DIAGNOSTIC,
spvTextToBinary(context, text.str, text.length, &binary, nullptr));
}
TEST_F(TextToBinaryTest, InvalidPrefix) {
EXPECT_EQ(
"Expected <opcode> or <result-id> at the beginning of an instruction, "
"found 'Invalid'.",
CompileFailure("Invalid"));
}
TEST_F(TextToBinaryTest, EmptyAssemblyString) {
// An empty assembly module is valid!
// It should produce a valid module with zero instructions.
EXPECT_THAT(CompiledInstructions(""), Eq(std::vector<uint32_t>{}));
}
TEST_F(TextToBinaryTest, StringSpace) {
const std::string code = ("OpSourceExtension \"string with spaces\"\n");
EXPECT_EQ(code, EncodeAndDecodeSuccessfully(code));
}
TEST_F(TextToBinaryTest, UnknownBeginningOfInstruction) {
EXPECT_EQ(
"Expected <opcode> or <result-id> at the beginning of an instruction, "
"found 'Google'.",
CompileFailure(
"\nOpSource OpenCL_C 12\nOpMemoryModel Physical64 OpenCL\nGoogle\n"));
EXPECT_EQ(4u, diagnostic->position.line + 1);
EXPECT_EQ(1u, diagnostic->position.column + 1);
}
TEST_F(TextToBinaryTest, NoEqualSign) {
EXPECT_EQ("Expected '=', found end of stream.",
CompileFailure("\nOpSource OpenCL_C 12\n"
"OpMemoryModel Physical64 OpenCL\n%2\n"));
EXPECT_EQ(5u, diagnostic->position.line + 1);
EXPECT_EQ(1u, diagnostic->position.column + 1);
}
TEST_F(TextToBinaryTest, NoOpCode) {
EXPECT_EQ("Expected opcode, found end of stream.",
CompileFailure("\nOpSource OpenCL_C 12\n"
"OpMemoryModel Physical64 OpenCL\n%2 =\n"));
EXPECT_EQ(5u, diagnostic->position.line + 1);
EXPECT_EQ(1u, diagnostic->position.column + 1);
}
TEST_F(TextToBinaryTest, WrongOpCode) {
EXPECT_EQ("Invalid Opcode prefix 'Wahahaha'.",
CompileFailure("\nOpSource OpenCL_C 12\n"
"OpMemoryModel Physical64 OpenCL\n%2 = Wahahaha\n"));
EXPECT_EQ(4u, diagnostic->position.line + 1);
EXPECT_EQ(6u, diagnostic->position.column + 1);
}
using TextToBinaryFloatValueTest = spvtest::TextToBinaryTestBase<
::testing::TestWithParam<std::pair<std::string, uint32_t>>>;
TEST_P(TextToBinaryFloatValueTest, Samples) {
const std::string input =
"%1 = OpTypeFloat 32\n%2 = OpConstant %1 " + GetParam().first;
EXPECT_THAT(CompiledInstructions(input),
Eq(Concatenate({MakeInstruction(SpvOpTypeFloat, {1, 32}),
MakeInstruction(SpvOpConstant,
{1, 2, GetParam().second})})));
}
INSTANTIATE_TEST_CASE_P(
FloatValues, TextToBinaryFloatValueTest,
::testing::ValuesIn(std::vector<std::pair<std::string, uint32_t>>{
{"0.0", 0x00000000}, // +0
{"!0x00000001", 0x00000001}, // +denorm
{"!0x00800000", 0x00800000}, // +norm
{"1.5", 0x3fc00000},
{"!0x7f800000", 0x7f800000}, // +inf
{"!0x7f800001", 0x7f800001}, // NaN
{"-0.0", 0x80000000}, // -0
{"!0x80000001", 0x80000001}, // -denorm
{"!0x80800000", 0x80800000}, // -norm
{"-2.5", 0xc0200000},
{"!0xff800000", 0xff800000}, // -inf
{"!0xff800001", 0xff800001}, // NaN
}),);
using TextToBinaryHalfValueTest = spvtest::TextToBinaryTestBase<
::testing::TestWithParam<std::pair<std::string, uint32_t>>>;
TEST_P(TextToBinaryHalfValueTest, Samples) {
const std::string input =
"%1 = OpTypeFloat 16\n%2 = OpConstant %1 " + GetParam().first;
EXPECT_THAT(CompiledInstructions(input),
Eq(Concatenate({MakeInstruction(SpvOpTypeFloat, {1, 16}),
MakeInstruction(SpvOpConstant,
{1, 2, GetParam().second})})));
}
INSTANTIATE_TEST_CASE_P(
HalfValues, TextToBinaryHalfValueTest,
::testing::ValuesIn(std::vector<std::pair<std::string, uint32_t>>{
{"0.0", 0x00000000},
{"1.0", 0x00003c00},
{"1.000844", 0x00003c00}, // Truncate to 1.0
{"1.000977", 0x00003c01}, // Don't have to truncate
{"1.001465", 0x00003c01}, // Truncate to 1.0000977
{"1.5", 0x00003e00},
{"-1.0", 0x0000bc00},
{"2.0", 0x00004000},
{"-2.0", 0x0000c000},
{"0x1p1", 0x00004000},
{"-0x1p1", 0x0000c000},
{"0x1.8p1", 0x00004200},
{"0x1.8p4", 0x00004e00},
{"0x1.801p4", 0x00004e00},
{"0x1.804p4", 0x00004e01},
}),);
TEST(AssemblyContextParseNarrowSignedIntegers, Sample) {
AssemblyContext context(AutoText(""), nullptr);
const spv_result_t ec = SPV_FAILED_MATCH;
int16_t i16;
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("", ec, &i16, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("0=", ec, &i16, ""));
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0", ec, &i16, ""));
EXPECT_EQ(0, i16);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("32767", ec, &i16, ""));
EXPECT_EQ(32767, i16);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-32768", ec, &i16, ""));
EXPECT_EQ(-32768, i16);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-0", ec, &i16, ""));
EXPECT_EQ(0, i16);
// These are out of range, so they should return an error.
// The error code depends on whether this is an optional value.
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("32768", ec, &i16, ""));
EXPECT_EQ(SPV_ERROR_INVALID_TEXT,
context.parseNumber("65535", SPV_ERROR_INVALID_TEXT, &i16, ""));
// Check hex parsing.
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0x7fff", ec, &i16, ""));
EXPECT_EQ(32767, i16);
// This is out of range.
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("0xffff", ec, &i16, ""));
}
TEST(AssemblyContextParseNarrowUnsignedIntegers, Sample) {
AssemblyContext context(AutoText(""), nullptr);
const spv_result_t ec = SPV_FAILED_MATCH;
uint16_t u16;
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("", ec, &u16, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("0=", ec, &u16, ""));
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0", ec, &u16, ""));
EXPECT_EQ(0, u16);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("65535", ec, &u16, ""));
EXPECT_EQ(65535, u16);
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("65536", ec, &u16, ""));
// We don't care about -0 since it's rejected at a higher level.
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("-1", ec, &u16, ""));
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0xffff", ec, &u16, ""));
EXPECT_EQ(0xffff, u16);
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("0x10000", ec, &u16, ""));
}
TEST(AssemblyContextParseSignedIntegers, Sample) {
AssemblyContext context(AutoText(""), nullptr);
const spv_result_t ec = SPV_FAILED_MATCH;
int32_t i32;
// Invalid parse.
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("", ec, &i32, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("0=", ec, &i32, ""));
// Decimal values.
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0", ec, &i32, ""));
EXPECT_EQ(0, i32);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("2147483647", ec, &i32, ""));
EXPECT_EQ(std::numeric_limits<int32_t>::max(), i32);
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("2147483648", ec, &i32, ""));
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-0", ec, &i32, ""));
EXPECT_EQ(0, i32);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-1", ec, &i32, ""));
EXPECT_EQ(-1, i32);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-2147483648", ec, &i32, ""));
EXPECT_EQ(std::numeric_limits<int32_t>::min(), i32);
// Hex values.
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0x7fffffff", ec, &i32, ""));
EXPECT_EQ(std::numeric_limits<int32_t>::max(), i32);
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("0x80000000", ec, &i32, ""));
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-0x000", ec, &i32, ""));
EXPECT_EQ(0, i32);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-0x001", ec, &i32, ""));
EXPECT_EQ(-1, i32);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-0x80000000", ec, &i32, ""));
EXPECT_EQ(std::numeric_limits<int32_t>::min(), i32);
}
TEST(AssemblyContextParseUnsignedIntegers, Sample) {
AssemblyContext context(AutoText(""), nullptr);
const spv_result_t ec = SPV_FAILED_MATCH;
uint32_t u32;
// Invalid parse.
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("", ec, &u32, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("0=", ec, &u32, ""));
// Valid values.
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0", ec, &u32, ""));
EXPECT_EQ(0u, u32);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("4294967295", ec, &u32, ""));
EXPECT_EQ(std::numeric_limits<uint32_t>::max(), u32);
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("4294967296", ec, &u32, ""));
// Hex values.
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0xffffffff", ec, &u32, ""));
EXPECT_EQ(std::numeric_limits<uint32_t>::max(), u32);
// We don't care about -0 since it's rejected at a higher level.
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("-1", ec, &u32, ""));
}
TEST(AssemblyContextParseWideSignedIntegers, Sample) {
AssemblyContext context(AutoText(""), nullptr);
const spv_result_t ec = SPV_FAILED_MATCH;
int64_t i64;
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("", ec, &i64, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("0=", ec, &i64, ""));
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0", ec, &i64, ""));
EXPECT_EQ(0, i64);
EXPECT_EQ(SPV_SUCCESS,
context.parseNumber("0x7fffffffffffffff", ec, &i64, ""));
EXPECT_EQ(0x7fffffffffffffff, i64);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-0", ec, &i64, ""));
EXPECT_EQ(0, i64);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-1", ec, &i64, ""));
EXPECT_EQ(-1, i64);
}
TEST(AssemblyContextParseWideUnsignedIntegers, Sample) {
AssemblyContext context(AutoText(""), nullptr);
const spv_result_t ec = SPV_FAILED_MATCH;
uint64_t u64;
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("", ec, &u64, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("0=", ec, &u64, ""));
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0", ec, &u64, ""));
EXPECT_EQ(0u, u64);
EXPECT_EQ(SPV_SUCCESS,
context.parseNumber("0xffffffffffffffff", ec, &u64, ""));
EXPECT_EQ(0xffffffffffffffffULL, u64);
// We don't care about -0 since it's rejected at a higher level.
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("-1", ec, &u64, ""));
}
TEST(AssemblyContextParseFloat, Sample) {
AssemblyContext context(AutoText(""), nullptr);
const spv_result_t ec = SPV_FAILED_MATCH;
float f;
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("", ec, &f, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("0=", ec, &f, ""));
// These values are exactly representatble.
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0", ec, &f, ""));
EXPECT_EQ(0.0f, f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("42", ec, &f, ""));
EXPECT_EQ(42.0f, f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("2.5", ec, &f, ""));
EXPECT_EQ(2.5f, f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-32.5", ec, &f, ""));
EXPECT_EQ(-32.5f, f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("1e38", ec, &f, ""));
EXPECT_EQ(1e38f, f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-1e38", ec, &f, ""));
EXPECT_EQ(-1e38f, f);
}
TEST(AssemblyContextParseFloat, Overflow) {
// The assembler parses using HexFloat<FloatProxy<float>>. Make
// sure that succeeds for in-range values, and fails for out of
// range values. When it does overflow, the value is set to the
// nearest finite value, matching C++11 behavior for operator>>
// on floating point.
AssemblyContext context(AutoText(""), nullptr);
const spv_result_t ec = SPV_FAILED_MATCH;
spvutils::HexFloat<spvutils::FloatProxy<float>> f(0.0f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("1e38", ec, &f, ""));
EXPECT_EQ(1e38f, f.value().getAsFloat());
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-1e38", ec, &f, ""));
EXPECT_EQ(-1e38f, f.value().getAsFloat());
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("1e40", ec, &f, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("-1e40", ec, &f, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("1e400", ec, &f, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("-1e400", ec, &f, ""));
}
TEST(AssemblyContextParseDouble, Sample) {
AssemblyContext context(AutoText(""), nullptr);
const spv_result_t ec = SPV_FAILED_MATCH;
double f;
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("", ec, &f, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("0=", ec, &f, ""));
// These values are exactly representatble.
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("0", ec, &f, ""));
EXPECT_EQ(0.0, f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("42", ec, &f, ""));
EXPECT_EQ(42.0, f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("2.5", ec, &f, ""));
EXPECT_EQ(2.5, f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-32.5", ec, &f, ""));
EXPECT_EQ(-32.5, f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("1e38", ec, &f, ""));
EXPECT_EQ(1e38, f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-1e38", ec, &f, ""));
EXPECT_EQ(-1e38, f);
// These are out of range for 32-bit float, but in range for 64-bit float.
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("1e40", ec, &f, ""));
EXPECT_EQ(1e40, f);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-1e40", ec, &f, ""));
EXPECT_EQ(-1e40, f);
}
TEST(AssemblyContextParseDouble, Overflow) {
// The assembler parses using HexFloat<FloatProxy<double>>. Make
// sure that succeeds for in-range values, and fails for out of
// range values. When it does overflow, the value is set to the
// nearest finite value, matching C++11 behavior for operator>>
// on floating point.
AssemblyContext context(AutoText(""), nullptr);
const spv_result_t ec = SPV_FAILED_MATCH;
spvutils::HexFloat<spvutils::FloatProxy<double>> f(0.0);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("1e38", ec, &f, ""));
EXPECT_EQ(1e38, f.value().getAsFloat());
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-1e38", ec, &f, ""));
EXPECT_EQ(-1e38, f.value().getAsFloat());
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("1e40", ec, &f, ""));
EXPECT_EQ(1e40, f.value().getAsFloat());
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-1e40", ec, &f, ""));
EXPECT_EQ(-1e40, f.value().getAsFloat());
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("1e400", ec, &f, ""));
EXPECT_EQ(SPV_FAILED_MATCH, context.parseNumber("-1e400", ec, &f, ""));
}
TEST(AssemblyContextParseFloat16, Overflow) {
// The assembler parses using HexFloat<FloatProxy<Float16>>. Make
// sure that succeeds for in-range values, and fails for out of
// range values. When it does overflow, the value is set to the
// nearest finite value, matching C++11 behavior for operator>>
// on floating point.
AssemblyContext context(AutoText(""), nullptr);
const spv_result_t ec = SPV_FAILED_MATCH;
spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>> f(0);
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("-0.0", ec, &f, ""));
EXPECT_EQ(uint16_t{0x8000}, f.value().getAsFloat().get_value());
EXPECT_EQ(SPV_SUCCESS, context.parseNumber("1.0", ec, &f, ""));
EXPECT_EQ(uint16_t{0x3c00}, f.value().getAsFloat().get_value());
// Overflows 16-bit but not 32-bit
EXPECT_EQ(ec, context.parseNumber("1e38", ec, &f, ""));
EXPECT_EQ(ec, context.parseNumber("-1e38", ec, &f, ""));
// Overflows 32-bit but not 64-bit
EXPECT_EQ(ec, context.parseNumber("1e40", ec, &f, ""));
EXPECT_EQ(ec, context.parseNumber("-1e40", ec, &f, ""));
// Overflows 64-bit
EXPECT_EQ(ec, context.parseNumber("1e400", ec, &f, ""));
EXPECT_EQ(ec, context.parseNumber("-1e400", ec, &f, ""));
}
TEST(AssemblyContextParseMessages, Errors) {
spv_diagnostic diag = nullptr;
const spv_result_t ec = SPV_FAILED_MATCH;
AssemblyContext context(AutoText(""), &diag);
int16_t i16;
// No message is generated for a failure to parse an optional value.
EXPECT_EQ(SPV_FAILED_MATCH,
context.parseNumber("abc", ec, &i16, "bad narrow int: "));
EXPECT_EQ(nullptr, diag);
// For a required value, use the message fragment.
EXPECT_EQ(SPV_ERROR_INVALID_TEXT,
context.parseNumber("abc", SPV_ERROR_INVALID_TEXT, &i16,
"bad narrow int: "));
ASSERT_NE(nullptr, diag);
EXPECT_EQ("bad narrow int: abc", std::string(diag->error));
// Don't leak.
spvDiagnosticDestroy(diag);
}
} // anonymous namespace