SPIRV-Tools/test/val/val_id_test.cpp
David Neto bf68c81426 Support SPV_KHR_storage_buffer_storage_class
Includes interaction with SPV_KHR_variable_pointers

TODO: Update capabilitly dependency tests for new capabilities.
2017-04-07 09:54:38 -04:00

4219 lines
144 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "test_fixture.h"
#include "unit_spirv.h"
#include "val_fixtures.h"
// NOTE: The tests in this file are ONLY testing ID usage, there for the input
// SPIR-V does not follow the logical layout rules from the spec in all cases in
// order to makes the tests smaller. Validation of the whole module is handled
// in stages, ID validation is only one of these stages. All validation stages
// are stand alone.
namespace {
using ::testing::ValuesIn;
using ::testing::HasSubstr;
using spvtest::ScopedContext;
using std::ostringstream;
using std::string;
using std::vector;
using ValidateIdWithMessage = spvtest::ValidateBase<bool>;
string kGLSL450MemoryModel = R"(
OpCapability Shader
OpCapability Linkage
OpCapability Addresses
OpCapability Pipes
OpCapability LiteralSampler
OpCapability DeviceEnqueue
OpCapability Vector16
OpCapability Int8
OpCapability Int16
OpCapability Int64
OpCapability Float64
OpMemoryModel Logical GLSL450
)";
string kOpenCLMemoryModel32 = R"(
OpCapability Addresses
OpCapability Linkage
OpCapability Kernel
%1 = OpExtInstImport "OpenCL.std"
OpMemoryModel Physical32 OpenCL
)";
string kOpenCLMemoryModel64 = R"(
OpCapability Addresses
OpCapability Linkage
OpCapability Kernel
OpCapability Int64
%1 = OpExtInstImport "OpenCL.std"
OpMemoryModel Physical64 OpenCL
)";
string sampledImageSetup = R"(
%void = OpTypeVoid
%typeFuncVoid = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%image_type = OpTypeImage %float 2D 0 0 0 1 Unknown
%_ptr_UniformConstant_img = OpTypePointer UniformConstant %image_type
%tex = OpVariable %_ptr_UniformConstant_img UniformConstant
%sampler_type = OpTypeSampler
%_ptr_UniformConstant_sam = OpTypePointer UniformConstant %sampler_type
%s = OpVariable %_ptr_UniformConstant_sam UniformConstant
%sampled_image_type = OpTypeSampledImage %image_type
%v2float = OpTypeVector %float 2
%float_1 = OpConstant %float 1
%float_2 = OpConstant %float 2
%const_vec_1_1 = OpConstantComposite %v2float %float_1 %float_1
%const_vec_2_2 = OpConstantComposite %v2float %float_2 %float_2
%bool_type = OpTypeBool
%spec_true = OpSpecConstantTrue %bool_type
%main = OpFunction %void None %typeFuncVoid
%label_1 = OpLabel
%image_inst = OpLoad %image_type %tex
%sampler_inst = OpLoad %sampler_type %s
)";
// TODO: OpUndef
TEST_F(ValidateIdWithMessage, OpName) {
string spirv = kGLSL450MemoryModel + R"(
OpName %2 "name"
%1 = OpTypeInt 32 0
%2 = OpTypePointer UniformConstant %1
%3 = OpVariable %2 UniformConstant)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpMemberNameGood) {
string spirv = kGLSL450MemoryModel + R"(
OpMemberName %2 0 "foo"
%1 = OpTypeInt 32 0
%2 = OpTypeStruct %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpMemberNameTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
OpMemberName %1 0 "foo"
%1 = OpTypeInt 32 0)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpMemberName Type <id> '1' is not a struct type."));
}
TEST_F(ValidateIdWithMessage, OpMemberNameMemberBad) {
string spirv = kGLSL450MemoryModel + R"(
OpMemberName %1 1 "foo"
%2 = OpTypeInt 32 0
%1 = OpTypeStruct %2)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpMemberName Member <id> '1' index is larger than "
"Type <id> '1's member count."));
}
TEST_F(ValidateIdWithMessage, OpLineGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpString "/path/to/source.file"
OpLine %1 0 0
%2 = OpTypeInt 32 0
%3 = OpTypePointer Input %2
%4 = OpVariable %3 Input)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpLineFileBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
OpLine %1 0 0
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpLine Target <id> '1' is not an OpString."));
}
TEST_F(ValidateIdWithMessage, OpDecorateGood) {
string spirv = kGLSL450MemoryModel + R"(
OpDecorate %2 GLSLShared
%1 = OpTypeInt 64 0
%2 = OpTypeStruct %1 %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpDecorateBad) {
string spirv = kGLSL450MemoryModel + R"(
OpDecorate %1 GLSLShared)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("forward referenced IDs have not been defined"));
}
TEST_F(ValidateIdWithMessage, OpMemberDecorateGood) {
string spirv = kGLSL450MemoryModel + R"(
OpMemberDecorate %2 0 Uniform
%1 = OpTypeInt 32 0
%2 = OpTypeStruct %1 %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpMemberDecorateBad) {
string spirv = kGLSL450MemoryModel + R"(
OpMemberDecorate %1 0 Uniform
%1 = OpTypeInt 32 0)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"OpMemberDecorate Structure type <id> '1' is not a struct type."));
}
TEST_F(ValidateIdWithMessage, OpMemberDecorateMemberBad) {
string spirv = kGLSL450MemoryModel + R"(
OpMemberDecorate %1 3 Uniform
%int = OpTypeInt 32 0
%1 = OpTypeStruct %int %int)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Index 3 provided in OpMemberDecorate for struct <id> "
"1 is out of bounds. The structure has 2 members. "
"Largest valid index is 1."));
}
TEST_F(ValidateIdWithMessage, OpGroupDecorateGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpDecorationGroup
OpDecorate %1 Uniform
OpDecorate %1 GLSLShared
OpGroupDecorate %1 %3 %4
%2 = OpTypeInt 32 0
%3 = OpConstant %2 42
%4 = OpConstant %2 23)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpGroupDecorateDecorationGroupBad) {
string spirv = R"(
OpCapability Shader
OpCapability Linkage
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpGroupDecorate %1 %2 %3
%2 = OpTypeInt 32 0
%3 = OpConstant %2 42)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpGroupDecorate Decoration group <id> '1' is not a "
"decoration group."));
}
TEST_F(ValidateIdWithMessage, OpGroupDecorateTargetBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpDecorationGroup
OpDecorate %1 Uniform
OpDecorate %1 GLSLShared
OpGroupDecorate %1 %3
%2 = OpTypeInt 32 0)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("forward referenced IDs have not been defined"));
}
TEST_F(ValidateIdWithMessage, OpGroupMemberDecorateDecorationGroupBad) {
string spirv = R"(
OpCapability Shader
OpCapability Linkage
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpGroupMemberDecorate %1 %2 0
%2 = OpTypeInt 32 0)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpGroupMemberDecorate Decoration group <id> '1' is "
"not a decoration group."));
}
TEST_F(ValidateIdWithMessage, OpGroupMemberDecorateIdNotStructBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpDecorationGroup
OpGroupMemberDecorate %1 %2 0
%2 = OpTypeInt 32 0)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpGroupMemberDecorate Structure type <id> '2' is not "
"a struct type."));
}
TEST_F(ValidateIdWithMessage, OpGroupMemberDecorateIndexOutOfBoundBad) {
string spirv = kGLSL450MemoryModel + R"(
OpDecorate %1 Offset 0
%1 = OpDecorationGroup
OpGroupMemberDecorate %1 %struct 3
%float = OpTypeFloat 32
%struct = OpTypeStruct %float %float %float
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Index 3 provided in OpGroupMemberDecorate for struct "
"<id> 2 is out of bounds. The structure has 3 members. "
"Largest valid index is 2."));
}
// TODO: OpExtInst
TEST_F(ValidateIdWithMessage, OpEntryPointGood) {
string spirv = kGLSL450MemoryModel + R"(
OpEntryPoint GLCompute %3 ""
%1 = OpTypeVoid
%2 = OpTypeFunction %1
%3 = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpEntryPointFunctionBad) {
string spirv = kGLSL450MemoryModel + R"(
OpEntryPoint GLCompute %1 ""
%1 = OpTypeVoid)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpEntryPoint Entry Point <id> '1' is not a function."));
}
TEST_F(ValidateIdWithMessage, OpEntryPointParameterCountBad) {
string spirv = kGLSL450MemoryModel + R"(
OpEntryPoint GLCompute %3 ""
%1 = OpTypeVoid
%2 = OpTypeFunction %1 %1
%3 = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpEntryPoint Entry Point <id> '1's function parameter "
"count is not zero"));
}
TEST_F(ValidateIdWithMessage, OpEntryPointReturnTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
OpEntryPoint GLCompute %3 ""
%1 = OpTypeInt 32 0
%2 = OpTypeFunction %1
%3 = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpEntryPoint Entry Point <id> '1's function return "
"type is not void."));
}
TEST_F(ValidateIdWithMessage, OpEntryPointInterfaceIsNotVariableTypeBad) {
string spirv = R"(
OpCapability Shader
OpCapability Geometry
OpMemoryModel Logical GLSL450
OpEntryPoint Geometry %main "main" %ptr_builtin_1
OpMemberDecorate %struct_1 0 BuiltIn InvocationId
%int = OpTypeInt 32 1
%void = OpTypeVoid
%func = OpTypeFunction %void
%struct_1 = OpTypeStruct %int
%ptr_builtin_1 = OpTypePointer Input %struct_1
%main = OpFunction %void None %func
%5 = OpLabel
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Interfaces passed to OpEntryPoint must be of type "
"OpTypeVariable. Found OpTypePointer."));
}
TEST_F(ValidateIdWithMessage, OpEntryPointInterfaceStorageClassBad) {
string spirv = R"(
OpCapability Shader
OpCapability Geometry
OpMemoryModel Logical GLSL450
OpEntryPoint Geometry %main "main" %in_1
OpMemberDecorate %struct_1 0 BuiltIn InvocationId
%int = OpTypeInt 32 1
%void = OpTypeVoid
%func = OpTypeFunction %void
%struct_1 = OpTypeStruct %int
%ptr_builtin_1 = OpTypePointer Uniform %struct_1
%in_1 = OpVariable %ptr_builtin_1 Uniform
%main = OpFunction %void None %func
%5 = OpLabel
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpEntryPoint interfaces must be OpVariables with "
"Storage Class of Input(1) or Output(3). Found Storage "
"Class 2 for Entry Point id 1."));
}
TEST_F(ValidateIdWithMessage, OpExecutionModeGood) {
string spirv = kGLSL450MemoryModel + R"(
OpEntryPoint GLCompute %3 ""
OpExecutionMode %3 LocalSize 1 1 1
%1 = OpTypeVoid
%2 = OpTypeFunction %1
%3 = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpExecutionModeEntryPointMissing) {
string spirv = kGLSL450MemoryModel + R"(
OpExecutionMode %3 LocalSize 1 1 1
%1 = OpTypeVoid
%2 = OpTypeFunction %1
%3 = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpExecutionMode Entry Point <id> '1' is not the Entry "
"Point operand of an OpEntryPoint."));
}
TEST_F(ValidateIdWithMessage, OpExecutionModeEntryPointBad) {
string spirv = kGLSL450MemoryModel + R"(
OpEntryPoint GLCompute %3 "" %a
OpExecutionMode %a LocalSize 1 1 1
%void = OpTypeVoid
%ptr = OpTypePointer Input %void
%a = OpVariable %ptr Input
%2 = OpTypeFunction %void
%3 = OpFunction %void None %2
%4 = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpExecutionMode Entry Point <id> '2' is not the Entry "
"Point operand of an OpEntryPoint."));
}
TEST_F(ValidateIdWithMessage, OpTypeVectorFloat) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeVectorInt) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeVector %1 4)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeVectorUInt) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 64 0
%2 = OpTypeVector %1 4)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeVectorBool) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeBool
%2 = OpTypeVector %1 4)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeVectorComponentTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypePointer UniformConstant %1
%3 = OpTypeVector %2 4)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpTypeVector Component Type <id> '2' is not a scalar type."));
}
TEST_F(ValidateIdWithMessage, OpTypeMatrixGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 2
%3 = OpTypeMatrix %2 3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeMatrixColumnTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeMatrix %1 3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Columns in a matrix must be of type vector."));
}
TEST_F(ValidateIdWithMessage, OpTypeSamplerGood) {
// In Rev31, OpTypeSampler takes no arguments.
string spirv = kGLSL450MemoryModel + R"(
%s = OpTypeSampler)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeArrayGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 1
%3 = OpTypeArray %1 %2)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeArrayElementTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 1
%3 = OpTypeArray %2 %2)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpTypeArray Element Type <id> '2' is not a type."));
}
// Signed or unsigned.
enum Signed { kSigned, kUnsigned };
// Creates an assembly snippet declaring OpTypeArray with the given length.
string MakeArrayLength(const string& len, Signed isSigned, int width) {
ostringstream ss;
ss << R"(
OpCapability Shader
OpCapability Linkage
OpCapability Int16
OpCapability Int64
)";
ss << "OpMemoryModel Logical GLSL450\n";
ss << " %t = OpTypeInt " << width << (isSigned == kSigned ? " 1" : " 0");
ss << " %l = OpConstant %t " << len;
ss << " %a = OpTypeArray %t %l";
return ss.str();
}
// Tests OpTypeArray. Parameter is the width (in bits) of the array-length's
// type.
class OpTypeArrayLengthTest
: public spvtest::TextToBinaryTestBase<::testing::TestWithParam<int>> {
protected:
OpTypeArrayLengthTest()
: position_(spv_position_t{0, 0, 0}),
diagnostic_(spvDiagnosticCreate(&position_, "")) {}
~OpTypeArrayLengthTest() { spvDiagnosticDestroy(diagnostic_); }
// Runs spvValidate() on v, printing any errors via spvDiagnosticPrint().
spv_result_t Val(const SpirvVector& v, const std::string &expected_err = "") {
spv_const_binary_t cbinary{v.data(), v.size()};
const auto status =
spvValidate(ScopedContext().context, &cbinary, &diagnostic_);
if (status != SPV_SUCCESS) {
spvDiagnosticPrint(diagnostic_);
EXPECT_THAT(std::string(diagnostic_->error), HasSubstr(expected_err));
}
return status;
}
private:
spv_position_t position_; // For creating diagnostic_.
spv_diagnostic diagnostic_;
};
TEST_P(OpTypeArrayLengthTest, LengthPositive) {
const int width = GetParam();
EXPECT_EQ(SPV_SUCCESS,
Val(CompileSuccessfully(MakeArrayLength("1", kSigned, width))));
EXPECT_EQ(SPV_SUCCESS,
Val(CompileSuccessfully(MakeArrayLength("1", kUnsigned, width))));
EXPECT_EQ(SPV_SUCCESS,
Val(CompileSuccessfully(MakeArrayLength("2", kSigned, width))));
EXPECT_EQ(SPV_SUCCESS,
Val(CompileSuccessfully(MakeArrayLength("2", kUnsigned, width))));
EXPECT_EQ(SPV_SUCCESS,
Val(CompileSuccessfully(MakeArrayLength("55", kSigned, width))));
EXPECT_EQ(SPV_SUCCESS,
Val(CompileSuccessfully(MakeArrayLength("55", kUnsigned, width))));
const string fpad(width / 4 - 1, 'F');
EXPECT_EQ(
SPV_SUCCESS,
Val(CompileSuccessfully(MakeArrayLength("0x7" + fpad, kSigned, width))));
EXPECT_EQ(SPV_SUCCESS, Val(CompileSuccessfully(
MakeArrayLength("0xF" + fpad, kUnsigned, width))));
}
TEST_P(OpTypeArrayLengthTest, LengthZero) {
const int width = GetParam();
EXPECT_EQ(
SPV_ERROR_INVALID_ID,
Val(CompileSuccessfully(MakeArrayLength("0", kSigned, width)),
"OpTypeArray Length <id> '2' default value must be at least 1."));
EXPECT_EQ(
SPV_ERROR_INVALID_ID,
Val(CompileSuccessfully(MakeArrayLength("0", kUnsigned, width)),
"OpTypeArray Length <id> '2' default value must be at least 1."));
}
TEST_P(OpTypeArrayLengthTest, LengthNegative) {
const int width = GetParam();
EXPECT_EQ(
SPV_ERROR_INVALID_ID,
Val(CompileSuccessfully(MakeArrayLength("-1", kSigned, width)),
"OpTypeArray Length <id> '2' default value must be at least 1."));
EXPECT_EQ(
SPV_ERROR_INVALID_ID,
Val(CompileSuccessfully(MakeArrayLength("-2", kSigned, width)),
"OpTypeArray Length <id> '2' default value must be at least 1."));
EXPECT_EQ(
SPV_ERROR_INVALID_ID,
Val(CompileSuccessfully(MakeArrayLength("-123", kSigned, width)),
"OpTypeArray Length <id> '2' default value must be at least 1."));
const string neg_max = "0x8" + string(width / 4 - 1, '0');
EXPECT_EQ(
SPV_ERROR_INVALID_ID,
Val(CompileSuccessfully(MakeArrayLength(neg_max, kSigned, width)),
"OpTypeArray Length <id> '2' default value must be at least 1."));
}
// The only valid widths for integers are 8, 16, 32, and 64.
// Since the Int8 capability requires the Kernel capability, and the Kernel
// capability prohibits usage of signed integers, we can skip 8-bit integers
// here since the purpose of these tests is to check the validity of
// OpTypeArray, not OpTypeInt.
INSTANTIATE_TEST_CASE_P(Widths, OpTypeArrayLengthTest,
ValuesIn(vector<int>{16, 32, 64}));
TEST_F(ValidateIdWithMessage, OpTypeArrayLengthNull) {
string spirv = kGLSL450MemoryModel + R"(
%i32 = OpTypeInt 32 0
%len = OpConstantNull %i32
%ary = OpTypeArray %i32 %len)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"OpTypeArray Length <id> '2' default value must be at least 1."));
}
TEST_F(ValidateIdWithMessage, OpTypeArrayLengthSpecConst) {
string spirv = kGLSL450MemoryModel + R"(
%i32 = OpTypeInt 32 0
%len = OpSpecConstant %i32 2
%ary = OpTypeArray %i32 %len)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeArrayLengthSpecConstOp) {
string spirv = kGLSL450MemoryModel + R"(
%i32 = OpTypeInt 32 0
%c1 = OpConstant %i32 1
%c2 = OpConstant %i32 2
%len = OpSpecConstantOp %i32 IAdd %c1 %c2
%ary = OpTypeArray %i32 %len)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeRuntimeArrayGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeRuntimeArray %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeRuntimeArrayBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 0
%3 = OpTypeRuntimeArray %2)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpTypeRuntimeArray Element Type <id> '2' is not a type."));
}
// TODO: Object of this type can only be created with OpVariable using the
// Unifrom Storage Class
TEST_F(ValidateIdWithMessage, OpTypeStructGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeFloat 64
%3 = OpTypePointer Input %1
%4 = OpTypeStruct %1 %2 %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeStructMemberTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeFloat 64
%3 = OpConstant %2 0.0
%4 = OpTypeStruct %1 %2 %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpTypeStruct Member Type <id> '3' is not a type."));
}
TEST_F(ValidateIdWithMessage, OpTypePointerGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypePointer Input %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypePointerBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 0
%3 = OpTypePointer Input %2)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpTypePointer Type <id> '2' is not a type."));
}
TEST_F(ValidateIdWithMessage, OpTypeFunctionGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeFunction %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpTypeFunctionReturnTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 0
%3 = OpTypeFunction %2)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpTypeFunction Return Type <id> '2' is not a type."));
}
TEST_F(ValidateIdWithMessage, OpTypeFunctionParameterBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpConstant %2 0
%4 = OpTypeFunction %1 %2 %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpTypeFunction Parameter Type <id> '3' is not a type."));
}
TEST_F(ValidateIdWithMessage, OpTypePipeGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 16
%3 = OpTypePipe ReadOnly)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantTrueGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeBool
%2 = OpConstantTrue %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantTrueBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpConstantTrue %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpConstantTrue Result Type <id> '1' is not a boolean type."));
}
TEST_F(ValidateIdWithMessage, OpConstantFalseGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeBool
%2 = OpConstantTrue %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantFalseBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpConstantFalse %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpConstantFalse Result Type <id> '1' is not a boolean type."));
}
TEST_F(ValidateIdWithMessage, OpConstantGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpConstant !1 !0)";
// The expected failure code is implementation dependent (currently
// INVALID_BINARY because the binary parser catches these cases) and may
// change over time, but this must always fail.
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_BINARY, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeVectorGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpConstant %1 3.14
%4 = OpConstantComposite %2 %3 %3 %3 %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeVectorWithUndefGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpConstant %1 3.14
%9 = OpUndef %1
%4 = OpConstantComposite %2 %3 %3 %3 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeVectorResultTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpConstant %1 3.14
%4 = OpConstantComposite %1 %3 %3 %3 %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"OpConstantComposite Result Type <id> '1' is not a composite type."));
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeVectorConstituentTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%4 = OpTypeInt 32 0
%3 = OpConstant %1 3.14
%5 = OpConstant %4 42 ; bad type for constant value
%6 = OpConstantComposite %2 %3 %5 %3 %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpConstantComposite Constituent <id> '5's type does not match "
"Result Type <id> '2's vector element type."));
}
TEST_F(ValidateIdWithMessage,
OpConstantCompositeVectorConstituentUndefTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%4 = OpTypeInt 32 0
%3 = OpConstant %1 3.14
%5 = OpUndef %4 ; bad type for undef value
%6 = OpConstantComposite %2 %3 %5 %3 %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpConstantComposite Constituent <id> '5's type does not match "
"Result Type <id> '2's vector element type."));
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeMatrixGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpTypeMatrix %2 4
%4 = OpConstant %1 1.0
%5 = OpConstant %1 0.0
%6 = OpConstantComposite %2 %4 %5 %5 %5
%7 = OpConstantComposite %2 %5 %4 %5 %5
%8 = OpConstantComposite %2 %5 %5 %4 %5
%9 = OpConstantComposite %2 %5 %5 %5 %4
%10 = OpConstantComposite %3 %6 %7 %8 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeMatrixUndefGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpTypeMatrix %2 4
%4 = OpConstant %1 1.0
%5 = OpConstant %1 0.0
%6 = OpConstantComposite %2 %4 %5 %5 %5
%7 = OpConstantComposite %2 %5 %4 %5 %5
%8 = OpConstantComposite %2 %5 %5 %4 %5
%9 = OpUndef %2
%10 = OpConstantComposite %3 %6 %7 %8 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeMatrixConstituentTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%11 = OpTypeVector %1 3
%3 = OpTypeMatrix %2 4
%4 = OpConstant %1 1.0
%5 = OpConstant %1 0.0
%6 = OpConstantComposite %2 %4 %5 %5 %5
%7 = OpConstantComposite %2 %5 %4 %5 %5
%8 = OpConstantComposite %2 %5 %5 %4 %5
%9 = OpConstantComposite %11 %5 %5 %5
%10 = OpConstantComposite %3 %6 %7 %8 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpConstantComposite Constituent <id> '10' vector "
"component count does not match Result Type <id> '4's "
"vector component count."));
}
TEST_F(ValidateIdWithMessage,
OpConstantCompositeMatrixConstituentUndefTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%11 = OpTypeVector %1 3
%3 = OpTypeMatrix %2 4
%4 = OpConstant %1 1.0
%5 = OpConstant %1 0.0
%6 = OpConstantComposite %2 %4 %5 %5 %5
%7 = OpConstantComposite %2 %5 %4 %5 %5
%8 = OpConstantComposite %2 %5 %5 %4 %5
%9 = OpUndef %11
%10 = OpConstantComposite %3 %6 %7 %8 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpConstantComposite Constituent <id> '10' vector "
"component count does not match Result Type <id> '4's "
"vector component count."));
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeMatrixColumnTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeFloat 32
%3 = OpTypeVector %1 2
%4 = OpTypeVector %3 2
%5 = OpTypeMatrix %2 2
%6 = OpConstant %1 42
%7 = OpConstant %2 3.14
%8 = OpConstantComposite %3 %6 %6
%9 = OpConstantComposite %4 %7 %7
%10 = OpConstantComposite %5 %8 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Columns in a matrix must be of type vector."));
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeArrayGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 4
%3 = OpTypeArray %1 %2
%4 = OpConstantComposite %3 %2 %2 %2 %2)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeArrayWithUndefGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 4
%9 = OpUndef %1
%3 = OpTypeArray %1 %2
%4 = OpConstantComposite %3 %2 %2 %2 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeArrayConstConstituentBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 4
%3 = OpTypeArray %1 %2
%4 = OpConstantComposite %3 %2 %2 %2 %1)"; // Uses a type as operand
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpConstantComposite Constituent <id> '1' is not a "
"constant or undef."));
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeArrayConstituentTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 4
%3 = OpTypeArray %1 %2
%5 = OpTypeFloat 32
%6 = OpConstant %5 3.14 ; bad type for const value
%4 = OpConstantComposite %3 %2 %2 %2 %6)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpConstantComposite Constituent <id> '5's type does "
"not match Result Type <id> '3's array element type."));
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeArrayConstituentUndefTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 4
%3 = OpTypeArray %1 %2
%5 = OpTypeFloat 32
%6 = OpUndef %5 ; bad type for undef
%4 = OpConstantComposite %3 %2 %2 %2 %6)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpConstantComposite Constituent <id> '5's type does "
"not match Result Type <id> '3's array element type."));
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeStructGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeInt 64 0
%3 = OpTypeStruct %1 %1 %2
%4 = OpConstant %1 42
%5 = OpConstant %2 4300000000
%6 = OpConstantComposite %3 %4 %4 %5)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeStructUndefGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeInt 64 0
%3 = OpTypeStruct %1 %1 %2
%4 = OpConstant %1 42
%5 = OpUndef %2
%6 = OpConstantComposite %3 %4 %4 %5)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeStructMemberTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeInt 64 0
%3 = OpTypeStruct %1 %1 %2
%4 = OpConstant %1 42
%5 = OpConstant %2 4300000000
%6 = OpConstantComposite %3 %4 %5 %4)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpConstantComposite Constituent <id> '5' type does "
"not match the Result Type <id> '3's member type."));
}
TEST_F(ValidateIdWithMessage, OpConstantCompositeStructMemberUndefTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeInt 64 0
%3 = OpTypeStruct %1 %1 %2
%4 = OpConstant %1 42
%5 = OpUndef %2
%6 = OpConstantComposite %3 %4 %5 %4)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpConstantComposite Constituent <id> '5' type does "
"not match the Result Type <id> '3's member type."));
}
TEST_F(ValidateIdWithMessage, OpConstantSamplerGood) {
string spirv = kGLSL450MemoryModel + R"(
%float = OpTypeFloat 32
%samplerType = OpTypeSampler
%3 = OpConstantSampler %samplerType ClampToEdge 0 Nearest)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantSamplerResultTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpConstantSampler %1 Clamp 0 Nearest)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"OpConstantSampler Result Type <id> '1' is not a sampler type."));
}
TEST_F(ValidateIdWithMessage, OpConstantNullGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeBool
%2 = OpConstantNull %1
%3 = OpTypeInt 32 0
%4 = OpConstantNull %3
%5 = OpTypeFloat 32
%6 = OpConstantNull %5
%7 = OpTypePointer UniformConstant %3
%8 = OpConstantNull %7
%9 = OpTypeEvent
%10 = OpConstantNull %9
%11 = OpTypeDeviceEvent
%12 = OpConstantNull %11
%13 = OpTypeReserveId
%14 = OpConstantNull %13
%15 = OpTypeQueue
%16 = OpConstantNull %15
%17 = OpTypeVector %5 2
%18 = OpConstantNull %17
%19 = OpTypeMatrix %17 2
%20 = OpConstantNull %19
%25 = OpConstant %3 8
%21 = OpTypeArray %3 %25
%22 = OpConstantNull %21
%23 = OpTypeStruct %3 %5 %1
%24 = OpConstantNull %23
%26 = OpTypeArray %17 %25
%27 = OpConstantNull %26
%28 = OpTypeStruct %7 %26 %26 %1
%29 = OpConstantNull %28
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpConstantNullBasicBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpConstantNull %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"OpConstantNull Result Type <id> '1' cannot have a null value."));
}
TEST_F(ValidateIdWithMessage, OpConstantNullArrayBad) {
string spirv = kGLSL450MemoryModel + R"(
%2 = OpTypeInt 32 0
%3 = OpTypeSampler
%4 = OpConstant %2 4
%5 = OpTypeArray %3 %4
%6 = OpConstantNull %5)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"OpConstantNull Result Type <id> '4' cannot have a null value."));
}
TEST_F(ValidateIdWithMessage, OpConstantNullStructBad) {
string spirv = kGLSL450MemoryModel + R"(
%2 = OpTypeSampler
%3 = OpTypeStruct %2 %2
%4 = OpConstantNull %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"OpConstantNull Result Type <id> '2' cannot have a null value."));
}
TEST_F(ValidateIdWithMessage, OpConstantNullRuntimeArrayBad) {
string spirv = kGLSL450MemoryModel + R"(
%bool = OpTypeBool
%array = OpTypeRuntimeArray %bool
%null = OpConstantNull %array)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"OpConstantNull Result Type <id> '2' cannot have a null value."));
}
TEST_F(ValidateIdWithMessage, OpSpecConstantTrueGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeBool
%2 = OpSpecConstantTrue %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpSpecConstantTrueBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpSpecConstantTrue %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Specialization constant must be a boolean type."));
}
TEST_F(ValidateIdWithMessage, OpSpecConstantFalseGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeBool
%2 = OpSpecConstantFalse %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpSpecConstantFalseBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpSpecConstantFalse %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Specialization constant must be a boolean type."));
}
TEST_F(ValidateIdWithMessage, OpSpecConstantGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpSpecConstant %1 42)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpSpecConstantBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpSpecConstant !1 !4)";
// The expected failure code is implementation dependent (currently
// INVALID_BINARY because the binary parser catches these cases) and may
// change over time, but this must always fail.
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_BINARY, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Type Id 1 is not a scalar numeric type"));
}
// Valid: SpecConstantComposite specializes to a vector.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeVectorGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpSpecConstant %1 3.14
%4 = OpConstant %1 3.14
%5 = OpSpecConstantComposite %2 %3 %3 %4 %4)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Valid: Vector of floats and Undefs.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeVectorWithUndefGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpSpecConstant %1 3.14
%5 = OpConstant %1 3.14
%9 = OpUndef %1
%4 = OpSpecConstantComposite %2 %3 %5 %3 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: result type is float.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeVectorResultTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpSpecConstant %1 3.14
%4 = OpSpecConstantComposite %1 %3 %3 %3 %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr("is not a composite type"));
}
// Invalid: Vector contains a mix of Int and Float.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeVectorConstituentTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%4 = OpTypeInt 32 0
%3 = OpSpecConstant %1 3.14
%5 = OpConstant %4 42 ; bad type for constant value
%6 = OpSpecConstantComposite %2 %3 %5 %3 %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '5's type "
"does not match Result Type <id> '2's vector element "
"type."));
}
// Invalid: Constituent is not a constant
TEST_F(ValidateIdWithMessage,
OpSpecConstantCompositeVectorConstituentNotConstantBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpTypeInt 32 0
%4 = OpSpecConstant %1 3.14
%6 = OpSpecConstantComposite %2 %3 %4 %4 %4)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '3' is not a "
"constant or undef."));
}
// Invalid: Vector contains a mix of Undef-int and Float.
TEST_F(ValidateIdWithMessage,
OpSpecConstantCompositeVectorConstituentUndefTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%4 = OpTypeInt 32 0
%3 = OpSpecConstant %1 3.14
%5 = OpUndef %4 ; bad type for undef value
%6 = OpSpecConstantComposite %2 %3 %5 %3 %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '5's type "
"does not match Result Type <id> '2's vector element "
"type."));
}
// Invalid: Vector expects 3 components, but 4 specified.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeVectorNumComponentsBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 3
%3 = OpConstant %1 3.14
%5 = OpSpecConstant %1 4.0
%6 = OpSpecConstantComposite %2 %3 %5 %3 %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> count does "
"not match Result Type <id> '2's vector component "
"count."));
}
// Valid: 4x4 matrix of floats
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeMatrixGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpTypeMatrix %2 4
%4 = OpConstant %1 1.0
%5 = OpSpecConstant %1 0.0
%6 = OpSpecConstantComposite %2 %4 %5 %5 %5
%7 = OpSpecConstantComposite %2 %5 %4 %5 %5
%8 = OpSpecConstantComposite %2 %5 %5 %4 %5
%9 = OpSpecConstantComposite %2 %5 %5 %5 %4
%10 = OpSpecConstantComposite %3 %6 %7 %8 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Valid: Matrix in which one column is Undef
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeMatrixUndefGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpTypeMatrix %2 4
%4 = OpConstant %1 1.0
%5 = OpSpecConstant %1 0.0
%6 = OpSpecConstantComposite %2 %4 %5 %5 %5
%7 = OpSpecConstantComposite %2 %5 %4 %5 %5
%8 = OpSpecConstantComposite %2 %5 %5 %4 %5
%9 = OpUndef %2
%10 = OpSpecConstantComposite %3 %6 %7 %8 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: Matrix in which the sizes of column vectors are not equal.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeMatrixConstituentTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpTypeVector %1 3
%4 = OpTypeMatrix %2 4
%5 = OpSpecConstant %1 1.0
%6 = OpConstant %1 0.0
%7 = OpSpecConstantComposite %2 %5 %6 %6 %6
%8 = OpSpecConstantComposite %2 %6 %5 %6 %6
%9 = OpSpecConstantComposite %2 %6 %6 %5 %6
%10 = OpSpecConstantComposite %3 %6 %6 %6
%11 = OpSpecConstantComposite %4 %7 %8 %9 %10)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '10' vector "
"component count does not match Result Type <id> '4's "
"vector component count."));
}
// Invalid: Matrix type expects 4 columns but only 3 specified.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeMatrixNumColsBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpTypeMatrix %2 4
%4 = OpSpecConstant %1 1.0
%5 = OpConstant %1 0.0
%6 = OpSpecConstantComposite %2 %4 %5 %5 %5
%7 = OpSpecConstantComposite %2 %5 %4 %5 %5
%8 = OpSpecConstantComposite %2 %5 %5 %4 %5
%10 = OpSpecConstantComposite %3 %6 %7 %8)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> count does "
"not match Result Type <id> '3's matrix column count."));
}
// Invalid: Composite contains a non-const/undef component
TEST_F(ValidateIdWithMessage,
OpSpecConstantCompositeMatrixConstituentNotConstBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpConstant %1 0.0
%3 = OpTypeVector %1 4
%4 = OpTypeMatrix %3 4
%5 = OpSpecConstantComposite %3 %2 %2 %2 %2
%6 = OpSpecConstantComposite %4 %5 %5 %5 %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '1' is not a "
"constant composite or undef."));
}
// Invalid: Composite contains a column that is *not* a vector (it's an array)
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeMatrixColTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeInt 32 0
%3 = OpSpecConstant %2 4
%4 = OpConstant %1 0.0
%5 = OpTypeVector %1 4
%6 = OpTypeArray %2 %3
%7 = OpTypeMatrix %5 4
%8 = OpSpecConstantComposite %6 %3 %3 %3 %3
%9 = OpSpecConstantComposite %5 %4 %4 %4 %4
%10 = OpSpecConstantComposite %7 %9 %9 %9 %8)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '8' type "
"does not match Result Type <id> '7's matrix column "
"type."));
}
// Invalid: Matrix with an Undef column of the wrong size.
TEST_F(ValidateIdWithMessage,
OpSpecConstantCompositeMatrixConstituentUndefTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
%3 = OpTypeVector %1 3
%4 = OpTypeMatrix %2 4
%5 = OpSpecConstant %1 1.0
%6 = OpSpecConstant %1 0.0
%7 = OpSpecConstantComposite %2 %5 %6 %6 %6
%8 = OpSpecConstantComposite %2 %6 %5 %6 %6
%9 = OpSpecConstantComposite %2 %6 %6 %5 %6
%10 = OpUndef %3
%11 = OpSpecConstantComposite %4 %7 %8 %9 %10)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '10' vector "
"component count does not match Result Type <id> '4's "
"vector component count."));
}
// Invalid: Matrix in which some columns are Int and some are Float.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeMatrixColumnTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeFloat 32
%3 = OpTypeVector %1 2
%4 = OpTypeVector %2 2
%5 = OpTypeMatrix %4 2
%6 = OpSpecConstant %1 42
%7 = OpConstant %2 3.14
%8 = OpSpecConstantComposite %3 %6 %6
%9 = OpSpecConstantComposite %4 %7 %7
%10 = OpSpecConstantComposite %5 %8 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '8' "
"component type does not match Result Type <id> '5's "
"matrix column component type."));
}
// Valid: Array of integers
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeArrayGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpSpecConstant %1 4
%5 = OpConstant %1 5
%3 = OpTypeArray %1 %2
%6 = OpTypeArray %1 %5
%4 = OpSpecConstantComposite %3 %2 %2 %2 %2
%7 = OpSpecConstantComposite %3 %5 %5 %5 %5)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: Expecting an array of 4 components, but 3 specified.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeArrayNumComponentsBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpSpecConstant %1 4
%3 = OpTypeArray %1 %2
%4 = OpSpecConstantComposite %3 %2 %2 %2)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent count does not "
"match Result Type <id> '3's array length."));
}
// Valid: Array of Integers and Undef-int
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeArrayWithUndefGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpSpecConstant %1 4
%9 = OpUndef %1
%3 = OpTypeArray %1 %2
%4 = OpSpecConstantComposite %3 %2 %2 %2 %9)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: Array uses a type as operand.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeArrayConstConstituentBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 4
%3 = OpTypeArray %1 %2
%4 = OpSpecConstantComposite %3 %2 %2 %2 %1)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '1' is not a "
"constant or undef."));
}
// Invalid: Array has a mix of Int and Float components.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeArrayConstituentTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpConstant %1 4
%3 = OpTypeArray %1 %2
%4 = OpTypeFloat 32
%5 = OpSpecConstant %4 3.14 ; bad type for const value
%6 = OpSpecConstantComposite %3 %2 %2 %2 %5)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '5's type "
"does not match Result Type <id> '3's array element "
"type."));
}
// Invalid: Array has a mix of Int and Undef-float.
TEST_F(ValidateIdWithMessage,
OpSpecConstantCompositeArrayConstituentUndefTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpSpecConstant %1 4
%3 = OpTypeArray %1 %2
%5 = OpTypeFloat 32
%6 = OpUndef %5 ; bad type for undef
%4 = OpSpecConstantComposite %3 %2 %2 %2 %6)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '5's type "
"does not match Result Type <id> '3's array element "
"type."));
}
// Valid: Struct of {Int32,Int32,Int64}.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeStructGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeInt 64 0
%3 = OpTypeStruct %1 %1 %2
%4 = OpConstant %1 42
%5 = OpSpecConstant %2 4300000000
%6 = OpSpecConstantComposite %3 %4 %4 %5)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: missing one int32 struct member.
TEST_F(ValidateIdWithMessage,
OpSpecConstantCompositeStructMissingComponentBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%3 = OpTypeStruct %1 %1 %1
%4 = OpConstant %1 42
%5 = OpSpecConstant %1 430
%6 = OpSpecConstantComposite %3 %4 %5)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '2' count "
"does not match Result Type <id> '2's struct member "
"count."));
}
// Valid: Struct uses Undef-int64.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeStructUndefGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeInt 64 0
%3 = OpTypeStruct %1 %1 %2
%4 = OpSpecConstant %1 42
%5 = OpUndef %2
%6 = OpSpecConstantComposite %3 %4 %4 %5)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: Composite contains non-const/undef component.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeStructNonConstBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeInt 64 0
%3 = OpTypeStruct %1 %1 %2
%4 = OpSpecConstant %1 42
%5 = OpUndef %2
%6 = OpSpecConstantComposite %3 %4 %1 %5)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '1' is not a "
"constant or undef."));
}
// Invalid: Struct component type does not match expected specialization type.
// Second component was expected to be Int32, but got Int64.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeStructMemberTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeInt 64 0
%3 = OpTypeStruct %1 %1 %2
%4 = OpConstant %1 42
%5 = OpSpecConstant %2 4300000000
%6 = OpSpecConstantComposite %3 %4 %5 %4)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '5' type "
"does not match the Result Type <id> '3's member "
"type."));
}
// Invalid: Undef-int64 used when Int32 was expected.
TEST_F(ValidateIdWithMessage, OpSpecConstantCompositeStructMemberUndefTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypeInt 64 0
%3 = OpTypeStruct %1 %1 %2
%4 = OpSpecConstant %1 42
%5 = OpUndef %2
%6 = OpSpecConstantComposite %3 %4 %5 %4)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantComposite Constituent <id> '5' type "
"does not match the Result Type <id> '3's member "
"type."));
}
// TODO: OpSpecConstantOp
TEST_F(ValidateIdWithMessage, OpVariableGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypePointer Input %1
%3 = OpVariable %2 Input)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpVariableInitializerConstantGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypePointer Input %1
%3 = OpConstant %1 42
%4 = OpVariable %2 Input %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpVariableInitializerGlobalVariableGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypePointer Uniform %1
%3 = OpVariable %2 Uniform
%4 = OpTypePointer Uniform %2 ; pointer to pointer
%5 = OpVariable %4 Uniform %3)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// TODO: Positive test OpVariable with OpConstantNull of OpTypePointer
TEST_F(ValidateIdWithMessage, OpVariableResultTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpVariable %1 Input)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpVariable Result Type <id> '1' is not a pointer type."));
}
TEST_F(ValidateIdWithMessage, OpVariableInitializerIsTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeInt 32 0
%2 = OpTypePointer Input %1
%3 = OpVariable %2 Input %2)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpVariable Initializer <id> '2' is not a constant or "
"module-scope variable"));
}
TEST_F(ValidateIdWithMessage, OpVariableInitializerIsFunctionVarBad) {
string spirv = kGLSL450MemoryModel + R"(
%int = OpTypeInt 32 0
%ptrint = OpTypePointer Function %int
%ptrptrint = OpTypePointer Function %ptrint
%void = OpTypeVoid
%fnty = OpTypeFunction %void
%main = OpFunction %void None %fnty
%entry = OpLabel
%var = OpVariable %ptrint Function
%varinit = OpVariable %ptrptrint Function %var ; Can't initialize function variable.
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpVariable Initializer <id> '8' is not a constant or "
"module-scope variable"));
}
TEST_F(ValidateIdWithMessage, OpVariableInitializerIsModuleVarGood) {
string spirv = kGLSL450MemoryModel + R"(
%int = OpTypeInt 32 0
%ptrint = OpTypePointer Uniform %int
%mvar = OpVariable %ptrint Uniform
%ptrptrint = OpTypePointer Function %ptrint
%void = OpTypeVoid
%fnty = OpTypeFunction %void
%main = OpFunction %void None %fnty
%entry = OpLabel
%goodvar = OpVariable %ptrptrint Function %mvar ; This is ok
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpLoadGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpVariable %3 UniformConstant
%6 = OpFunction %1 None %4
%7 = OpLabel
%8 = OpLoad %2 %5
%9 = OpReturn
%10 = OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// TODO: Add tests that exercise VariablePointersStorageBuffer instead of
// VariablePointers.
void createVariablePointerSpirvProgram(std::ostringstream* spirv,
std::string result_strategy,
bool use_varptr_cap,
bool add_helper_function) {
*spirv << "OpCapability Shader ";
if (use_varptr_cap) {
*spirv << "OpCapability VariablePointers ";
*spirv << "OpExtension \"SPV_KHR_variable_pointers\" ";
}
*spirv << R"(
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main"
%void = OpTypeVoid
%voidf = OpTypeFunction %void
%bool = OpTypeBool
%i32 = OpTypeInt 32 1
%f32 = OpTypeFloat 32
%f32ptr = OpTypePointer Uniform %f32
%i = OpConstant %i32 1
%zero = OpConstant %i32 0
%float_1 = OpConstant %f32 1.0
%ptr1 = OpVariable %f32ptr Uniform
%ptr2 = OpVariable %f32ptr Uniform
)";
if (add_helper_function) {
*spirv << R"(
; ////////////////////////////////////////////////////////////
;;;; Function that returns a pointer
; ////////////////////////////////////////////////////////////
%selector_func_type = OpTypeFunction %f32ptr %bool %f32ptr %f32ptr
%choose_input_func = OpFunction %f32ptr None %selector_func_type
%is_neg_param = OpFunctionParameter %bool
%first_ptr_param = OpFunctionParameter %f32ptr
%second_ptr_param = OpFunctionParameter %f32ptr
%selector_func_begin = OpLabel
%result_ptr = OpSelect %f32ptr %is_neg_param %first_ptr_param %second_ptr_param
OpReturnValue %result_ptr
OpFunctionEnd
)";
}
*spirv << R"(
%main = OpFunction %void None %voidf
%label = OpLabel
)";
*spirv << result_strategy;
*spirv << R"(
OpReturn
OpFunctionEnd
)";
}
// With the VariablePointer Capability, OpLoad should allow loading a
// VaiablePointer. In this test the variable pointer is obtained by an OpSelect
TEST_F(ValidateIdWithMessage, OpLoadVarPtrOpSelectGood) {
std::string result_strategy = R"(
%isneg = OpSLessThan %bool %i %zero
%varptr = OpSelect %f32ptr %isneg %ptr1 %ptr2
%result = OpLoad %f32 %varptr
)";
std::ostringstream spirv;
createVariablePointerSpirvProgram(&spirv, result_strategy,
true /* Add VariablePointers Capability? */,
false /* Use Helper Function? */);
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Without the VariablePointers Capability, OpLoad will not allow loading
// through a variable pointer.
TEST_F(ValidateIdWithMessage, OpLoadVarPtrOpSelectBad) {
std::string result_strategy = R"(
%isneg = OpSLessThan %bool %i %zero
%varptr = OpSelect %f32ptr %isneg %ptr1 %ptr2
%result = OpLoad %f32 %varptr
)";
std::ostringstream spirv;
createVariablePointerSpirvProgram(&spirv, result_strategy,
false /* Add VariablePointers Capability?*/,
false /* Use Helper Function? */);
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr("is not a logical pointer."));
}
// With the VariablePointer Capability, OpLoad should allow loading a
// VaiablePointer. In this test the variable pointer is obtained by an OpPhi
TEST_F(ValidateIdWithMessage, OpLoadVarPtrOpPhiGood) {
std::string result_strategy = R"(
%is_neg = OpSLessThan %bool %i %zero
OpSelectionMerge %end_label None
OpBranchConditional %is_neg %take_ptr_1 %take_ptr_2
%take_ptr_1 = OpLabel
OpBranch %end_label
%take_ptr_2 = OpLabel
OpBranch %end_label
%end_label = OpLabel
%varptr = OpPhi %f32ptr %ptr1 %take_ptr_1 %ptr2 %take_ptr_2
%result = OpLoad %f32 %varptr
)";
std::ostringstream spirv;
createVariablePointerSpirvProgram(&spirv, result_strategy,
true /* Add VariablePointers Capability?*/,
false /* Use Helper Function? */);
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Without the VariablePointers Capability, OpLoad will not allow loading
// through a variable pointer.
TEST_F(ValidateIdWithMessage, OpLoadVarPtrOpPhiBad) {
std::string result_strategy = R"(
%is_neg = OpSLessThan %bool %i %zero
OpSelectionMerge %end_label None
OpBranchConditional %is_neg %take_ptr_1 %take_ptr_2
%take_ptr_1 = OpLabel
OpBranch %end_label
%take_ptr_2 = OpLabel
OpBranch %end_label
%end_label = OpLabel
%varptr = OpPhi %f32ptr %ptr1 %take_ptr_1 %ptr2 %take_ptr_2
%result = OpLoad %f32 %varptr
)";
std::ostringstream spirv;
createVariablePointerSpirvProgram(&spirv, result_strategy,
false /* Add VariablePointers Capability?*/,
false /* Use Helper Function? */);
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr("is not a logical pointer"));
}
// With the VariablePointer Capability, OpLoad should allow loading through a
// VaiablePointer. In this test the variable pointer is obtained from an
// OpFunctionCall (return value from a function)
TEST_F(ValidateIdWithMessage, OpLoadVarPtrOpFunctionCallGood) {
std::ostringstream spirv;
std::string result_strategy = R"(
%isneg = OpSLessThan %bool %i %zero
%varptr = OpFunctionCall %f32ptr %choose_input_func %isneg %ptr1 %ptr2
%result = OpLoad %f32 %varptr
)";
createVariablePointerSpirvProgram(&spirv,
result_strategy,
true /* Add VariablePointers Capability?*/,
true /* Use Helper Function? */);
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpLoadResultTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpVariable %3 UniformConstant
%6 = OpFunction %1 None %4
%7 = OpLabel
%8 = OpLoad %3 %5
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpLoad Result Type <id> '3' does not match Pointer "
"<id> '5's type."));
}
TEST_F(ValidateIdWithMessage, OpLoadPointerBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpFunction %1 None %4
%6 = OpLabel
%7 = OpLoad %2 %8
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
// Prove that SSA checks trigger for a bad Id value.
// The next test case show the not-a-logical-pointer case.
EXPECT_THAT(getDiagnosticString(),
HasSubstr("ID 8 has not been defined"));
}
TEST_F(ValidateIdWithMessage, OpLoadLogicalPointerBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFloat 32
%4 = OpTypePointer UniformConstant %2
%5 = OpTypePointer UniformConstant %3
%6 = OpTypeFunction %1
%7 = OpFunction %1 None %6
%8 = OpLabel
%9 = OpBitcast %5 %4 ; Not valid in logical addressing
%10 = OpLoad %3 %9 ; Should trigger message
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
// Once we start checking bitcasts, we might catch that
// as the error first, instead of catching it here.
// I don't know if it's possible to generate a bad case
// if/when the validator is complete.
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpLoad Pointer <id> '9' is not a logical pointer."));
}
TEST_F(ValidateIdWithMessage, OpStoreGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
OpStore %6 %5
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpStorePointerBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
OpStore %3 %5
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpStore Pointer <id> '3' is not a logical pointer."));
}
TEST_F(ValidateIdWithMessage, OpStoreLogicalPointerBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFloat 32
%4 = OpTypePointer UniformConstant %2
%5 = OpTypePointer UniformConstant %3
%6 = OpTypeFunction %1
%7 = OpConstantNull %5
%8 = OpFunction %1 None %6
%9 = OpLabel
%10 = OpBitcast %5 %4 ; Not valid in logical addressing
%11 = OpStore %10 %7 ; Should trigger message
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpStore Pointer <id> '10' is not a logical pointer."));
}
// Without the VariablePointer Capability, OpStore should may not store
// through a variable pointer.
TEST_F(ValidateIdWithMessage, OpStoreVarPtrBad) {
std::string result_strategy = R"(
%isneg = OpSLessThan %bool %i %zero
%varptr = OpSelect %f32ptr %isneg %ptr1 %ptr2
OpStore %varptr %float_1
)";
std::ostringstream spirv;
createVariablePointerSpirvProgram(
&spirv, result_strategy, false /* Add VariablePointers Capability? */,
false /* Use Helper Function? */);
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr("is not a logical pointer."));
}
// With the VariablePointer Capability, OpStore should allow storing through a
// variable pointer.
TEST_F(ValidateIdWithMessage, OpStoreVarPtrGood) {
std::string result_strategy = R"(
%isneg = OpSLessThan %bool %i %zero
%varptr = OpSelect %f32ptr %isneg %ptr1 %ptr2
OpStore %varptr %float_1
)";
std::ostringstream spirv;
createVariablePointerSpirvProgram(&spirv, result_strategy,
true /* Add VariablePointers Capability? */,
false /* Use Helper Function? */);
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpStoreObjectGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
OpStore %6 %7
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpStore Object <id> '7's type is void."));
}
TEST_F(ValidateIdWithMessage, OpStoreTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%9 = OpTypeFloat 32
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%5 = OpConstant %9 3.14
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
OpStore %6 %5
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpStore Pointer <id> '7's type does not match Object "
"<id> '3's type."));
}
TEST_F(ValidateIdWithMessage, OpStoreVoid) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
%9 = OpFunctionCall %1 %7
OpStore %6 %9
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpStore Object <id> '8's type is void."));
}
TEST_F(ValidateIdWithMessage, OpStoreLabel) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %1
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %1 None %4
%8 = OpLabel
OpStore %6 %8
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpStore Object <id> '7' is not an object."));
}
// TODO: enable when this bug is fixed:
// https://cvs.khronos.org/bugzilla/show_bug.cgi?id=15404
TEST_F(ValidateIdWithMessage, DISABLED_OpStoreFunction) {
string spirv = kGLSL450MemoryModel + R"(
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypeFunction %2
%5 = OpConstant %2 123
%6 = OpVariable %3 UniformConstant
%7 = OpFunction %2 None %4
%8 = OpLabel
OpStore %6 %7
OpReturnValue %5
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpCopyMemoryGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpConstant %2 42
%5 = OpVariable %3 UniformConstant %4
%6 = OpTypePointer Function %2
%7 = OpTypeFunction %1
%8 = OpFunction %1 None %7
%9 = OpLabel
%10 = OpVariable %6 Function
OpCopyMemory %10 %5 None
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpCopyMemoryBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpConstant %2 42
%5 = OpVariable %3 UniformConstant %4
%11 = OpTypeFloat 32
%6 = OpTypePointer Function %11
%7 = OpTypeFunction %1
%8 = OpFunction %1 None %7
%9 = OpLabel
%10 = OpVariable %6 Function
OpCopyMemory %10 %5 None
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpCopyMemory Target <id> '5's type does not match "
"Source <id> '2's type."));
}
// TODO: OpCopyMemorySized
TEST_F(ValidateIdWithMessage, OpCopyMemorySizedGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypePointer Function %2
%5 = OpConstant %2 4
%6 = OpVariable %3 UniformConstant %5
%7 = OpTypeFunction %1
%8 = OpFunction %1 None %7
%9 = OpLabel
%10 = OpVariable %4 Function
OpCopyMemorySized %10 %6 %5 None
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpCopyMemorySizedTargetBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypePointer Function %2
%5 = OpConstant %2 4
%6 = OpVariable %3 UniformConstant %5
%7 = OpTypeFunction %1
%8 = OpFunction %1 None %7
%9 = OpLabel
OpCopyMemorySized %9 %6 %5 None
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpCopyMemorySized Target <id> '9' is not a pointer."));
}
TEST_F(ValidateIdWithMessage, OpCopyMemorySizedSourceBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypePointer Function %2
%5 = OpConstant %2 4
%6 = OpTypeFunction %1
%7 = OpFunction %1 None %6
%8 = OpLabel
%9 = OpVariable %4 Function
OpCopyMemorySized %9 %6 %5 None
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpCopyMemorySized Source <id> '6' is not a pointer."));
}
TEST_F(ValidateIdWithMessage, OpCopyMemorySizedSizeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypePointer Function %2
%5 = OpConstant %2 4
%6 = OpVariable %3 UniformConstant %5
%7 = OpTypeFunction %1
%8 = OpFunction %1 None %7
%9 = OpLabel
%10 = OpVariable %4 Function
OpCopyMemorySized %10 %6 %6 None
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpCopyMemorySized Size <id> '6's variable type is not "
"an integer type."));
}
TEST_F(ValidateIdWithMessage, OpCopyMemorySizedSizeTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer UniformConstant %2
%4 = OpTypePointer Function %2
%5 = OpConstant %2 4
%6 = OpVariable %3 UniformConstant %5
%7 = OpTypeFunction %1
%11 = OpTypeFloat 32
%12 = OpConstant %11 1.0
%8 = OpFunction %1 None %7
%9 = OpLabel
%10 = OpVariable %4 Function
OpCopyMemorySized %10 %6 %12 None
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"OpCopyMemorySized Size <id> '9's type is not an integer type."));
}
const char kDeeplyNestedStructureSetup[] = R"(
%void = OpTypeVoid
%void_f = OpTypeFunction %void
%int = OpTypeInt 32 0
%float = OpTypeFloat 32
%v3float = OpTypeVector %float 3
%mat4x3 = OpTypeMatrix %v3float 4
%_ptr_Private_mat4x3 = OpTypePointer Private %mat4x3
%_ptr_Private_float = OpTypePointer Private %float
%my_matrix = OpVariable %_ptr_Private_mat4x3 Private
%my_float_var = OpVariable %_ptr_Private_float Private
%_ptr_Function_float = OpTypePointer Function %float
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%int_2 = OpConstant %int 2
%int_3 = OpConstant %int 3
%int_5 = OpConstant %int 5
; Making the following nested structures.
;
; struct S {
; bool b;
; vec4 v[5];
; int i;
; mat4x3 m[5];
; }
; uniform blockName {
; S s;
; bool cond;
; RunTimeArray arr;
; }
%f32arr = OpTypeRuntimeArray %float
%bool = OpTypeBool
%v4float = OpTypeVector %float 4
%array5_mat4x3 = OpTypeArray %mat4x3 %int_5
%array5_vec4 = OpTypeArray %v4float %int_5
%_ptr_Uniform_float = OpTypePointer Uniform %float
%_ptr_Function_vec4 = OpTypePointer Function %v4float
%_ptr_Uniform_vec4 = OpTypePointer Uniform %v4float
%struct_s = OpTypeStruct %bool %array5_vec4 %int %array5_mat4x3
%struct_blockName = OpTypeStruct %struct_s %bool %f32arr
%_ptr_Uniform_blockName = OpTypePointer Uniform %struct_blockName
%_ptr_Uniform_struct_s = OpTypePointer Uniform %struct_s
%_ptr_Uniform_array5_mat4x3 = OpTypePointer Uniform %array5_mat4x3
%_ptr_Uniform_mat4x3 = OpTypePointer Uniform %mat4x3
%_ptr_Uniform_v3float = OpTypePointer Uniform %v3float
%blockName_var = OpVariable %_ptr_Uniform_blockName Uniform
%spec_int = OpSpecConstant %int 2
%func = OpFunction %void None %void_f
%my_label = OpLabel
)";
// In what follows, Access Chain Instruction refers to one of the following:
// OpAccessChain, OpInBoundsAccessChain, OpPtrAccessChain, and
// OpInBoundsPtrAccessChain
using AccessChainInstructionTest = spvtest::ValidateBase<std::string>;
// Determines whether the access chain instruction requires the 'element id'
// argument.
bool AccessChainRequiresElemId(const std::string& instr) {
return (instr == "OpPtrAccessChain" || instr == "OpInBoundsPtrAccessChain");
}
// Valid: Access a float in a matrix using an access chain instruction.
TEST_P(AccessChainInstructionTest, AccessChainGood) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup +
"%float_entry = " + instr +
R"( %_ptr_Private_float %my_matrix )" + elem + R"(%int_0 %int_1
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid. The result type of an access chain instruction must be a pointer.
TEST_P(AccessChainInstructionTest, AccessChainResultTypeBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%float_entry = )" +
instr + R"( %float %my_matrix )" + elem + R"(%int_0 %int_1
OpReturn
OpFunctionEnd
)";
const std::string expected_err = "The Result Type of " + instr +
" <id> '36' must be "
"OpTypePointer. Found OpTypeFloat.";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Invalid. The base type of an access chain instruction must be a pointer.
TEST_P(AccessChainInstructionTest, AccessChainBaseTypeVoidBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%float_entry = )" +
instr + " %_ptr_Private_float %void " + elem + R"(%int_0 %int_1
OpReturn
OpFunctionEnd
)";
const std::string expected_err = "The Base <id> '1' in " + instr +
" instruction must "
"be a pointer.";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Invalid. The base type of an access chain instruction must be a pointer.
TEST_P(AccessChainInstructionTest, AccessChainBaseTypeNonPtrVariableBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%entry = )" + instr +
R"( %_ptr_Private_float %_ptr_Private_float )" + elem +
R"(%int_0 %int_1
OpReturn
OpFunctionEnd
)";
const std::string expected_err = "The Base <id> '8' in " + instr +
" instruction must "
"be a pointer.";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Invalid: The storage class of Base and Result do not match.
TEST_P(AccessChainInstructionTest,
AccessChainResultAndBaseStorageClassDoesntMatchBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%entry = )" + instr +
R"( %_ptr_Function_float %my_matrix )" + elem +
R"(%int_0 %int_1
OpReturn
OpFunctionEnd
)";
const std::string expected_err =
"The result pointer storage class and base pointer storage class in " +
instr + " do not match.";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Invalid. The base type of an access chain instruction must point to a
// composite object.
TEST_P(AccessChainInstructionTest,
AccessChainBasePtrNotPointingToCompositeBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%entry = )" + instr +
R"( %_ptr_Private_float %my_float_var )" + elem + R"(%int_0
OpReturn
OpFunctionEnd
)";
const std::string expected_err = instr +
" reached non-composite type while "
"indexes still remain to be traversed.";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Valid. No Indexes were passed to the access chain instruction. The Result
// Type is the same as the Base type.
TEST_P(AccessChainInstructionTest, AccessChainNoIndexesGood) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%entry = )" + instr +
R"( %_ptr_Private_float %my_float_var )" + elem + R"(
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid. No Indexes were passed to the access chain instruction, but the
// Result Type is different from the Base type.
TEST_P(AccessChainInstructionTest, AccessChainNoIndexesBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%entry = )" + instr +
R"( %_ptr_Private_mat4x3 %my_float_var )" + elem + R"(
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("result type (OpTypeMatrix) does not match the type that "
"results from indexing into the base <id> (OpTypeFloat)."));
}
// Valid: 255 indexes passed to the access chain instruction. Limit is 255.
TEST_P(AccessChainInstructionTest, AccessChainTooManyIndexesGood) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? " %int_0 " : "";
int depth = 255;
std::string header = kGLSL450MemoryModel + kDeeplyNestedStructureSetup;
header.erase(header.find("%func"));
std::ostringstream spirv;
spirv << header << "\n";
// Build nested structures. Struct 'i' contains struct 'i-1'
spirv << "%s_depth_1 = OpTypeStruct %float\n";
for (int i = 2; i <= depth; ++i) {
spirv << "%s_depth_" << i << " = OpTypeStruct %s_depth_" << i - 1 << "\n";
}
// Define Pointer and Variable to use for the AccessChain instruction.
spirv << "%_ptr_Uniform_deep_struct = OpTypePointer Uniform %s_depth_"
<< depth << "\n";
spirv << "%deep_var = OpVariable %_ptr_Uniform_deep_struct Uniform\n";
// Function Start
spirv << R"(
%func = OpFunction %void None %void_f
%my_label = OpLabel
)";
// AccessChain with 'n' indexes (n = depth)
spirv << "%entry = " << instr << " %_ptr_Uniform_float %deep_var" << elem;
for (int i = 0; i < depth; ++i) {
spirv << " %int_0";
}
// Function end
spirv << R"(
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: 256 indexes passed to the access chain instruction. Limit is 255.
TEST_P(AccessChainInstructionTest, AccessChainTooManyIndexesBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? " %int_0 " : "";
std::ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup;
spirv << "%entry = " << instr << " %_ptr_Private_float %my_matrix" << elem;
for (int i = 0; i < 256; ++i) {
spirv << " %int_0";
}
spirv << R"(
OpReturn
OpFunctionEnd
)";
const std::string expected_err = "The number of indexes in " + instr +
" may not exceed 255. Found 256 indexes.";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Valid: 10 indexes passed to the access chain instruction. (Custom limit: 10)
TEST_P(AccessChainInstructionTest, CustomizedAccessChainTooManyIndexesGood) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? " %int_0 " : "";
int depth = 10;
std::string header = kGLSL450MemoryModel + kDeeplyNestedStructureSetup;
header.erase(header.find("%func"));
std::ostringstream spirv;
spirv << header << "\n";
// Build nested structures. Struct 'i' contains struct 'i-1'
spirv << "%s_depth_1 = OpTypeStruct %float\n";
for (int i = 2; i <= depth; ++i) {
spirv << "%s_depth_" << i << " = OpTypeStruct %s_depth_" << i - 1 << "\n";
}
// Define Pointer and Variable to use for the AccessChain instruction.
spirv << "%_ptr_Uniform_deep_struct = OpTypePointer Uniform %s_depth_"
<< depth << "\n";
spirv << "%deep_var = OpVariable %_ptr_Uniform_deep_struct Uniform\n";
// Function Start
spirv << R"(
%func = OpFunction %void None %void_f
%my_label = OpLabel
)";
// AccessChain with 'n' indexes (n = depth)
spirv << "%entry = " << instr << " %_ptr_Uniform_float %deep_var" << elem;
for (int i = 0; i < depth; ++i) {
spirv << " %int_0";
}
// Function end
spirv << R"(
OpReturn
OpFunctionEnd
)";
spvValidatorOptionsSetUniversalLimit(
options_, spv_validator_limit_max_access_chain_indexes, 10u);
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: 11 indexes passed to the access chain instruction. Custom Limit:10
TEST_P(AccessChainInstructionTest, CustomizedAccessChainTooManyIndexesBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? " %int_0 " : "";
std::ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup;
spirv << "%entry = " << instr << " %_ptr_Private_float %my_matrix" << elem;
for (int i = 0; i < 11; ++i) {
spirv << " %int_0";
}
spirv << R"(
OpReturn
OpFunctionEnd
)";
const std::string expected_err = "The number of indexes in " + instr +
" may not exceed 10. Found 11 indexes.";
spvValidatorOptionsSetUniversalLimit(
options_, spv_validator_limit_max_access_chain_indexes, 10u);
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Invalid: Index passed to the access chain instruction is float (must be
// integer).
TEST_P(AccessChainInstructionTest, AccessChainUndefinedIndexBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%entry = )" + instr +
R"( %_ptr_Private_float %my_matrix )" + elem + R"(%float %int_1
OpReturn
OpFunctionEnd
)";
const std::string expected_err =
"Indexes passed to " + instr + " must be of type integer.";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Invalid: The index argument that indexes into a struct must be of type
// OpConstant.
TEST_P(AccessChainInstructionTest, AccessChainStructIndexNotConstantBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%f = )" + instr + R"( %_ptr_Uniform_float %blockName_var )" +
elem + R"(%int_0 %spec_int %int_2
OpReturn
OpFunctionEnd
)";
const std::string expected_err =
"The <id> passed to " + instr +
" to index into a structure must be an OpConstant.";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Invalid: Indexing up to a vec4 granularity, but result type expected float.
TEST_P(AccessChainInstructionTest,
AccessChainStructResultTypeDoesntMatchIndexedTypeBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%entry = )" + instr +
R"( %_ptr_Uniform_float %blockName_var )" + elem +
R"(%int_0 %int_1 %int_2
OpReturn
OpFunctionEnd
)";
const std::string expected_err = instr +
" result type (OpTypeFloat) does not match "
"the type that results from indexing into "
"the base <id> (OpTypeVector).";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Invalid: Reach non-composite type (bool) when unused indexes remain.
TEST_P(AccessChainInstructionTest, AccessChainStructTooManyIndexesBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%entry = )" + instr +
R"( %_ptr_Uniform_float %blockName_var )" + elem +
R"(%int_0 %int_2 %int_2
OpReturn
OpFunctionEnd
)";
const std::string expected_err = instr +
" reached non-composite type while "
"indexes still remain to be traversed.";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Invalid: Trying to find index 3 of the struct that has only 3 members.
TEST_P(AccessChainInstructionTest, AccessChainStructIndexOutOfBoundBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%entry = )" + instr +
R"( %_ptr_Uniform_float %blockName_var )" + elem +
R"(%int_3 %int_2 %int_2
OpReturn
OpFunctionEnd
)";
const std::string expected_err = "Index is out of bounds: " + instr +
" can not find index 3 into the structure "
"<id> '26'. This structure has 3 members. "
"Largest valid index is 2.";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Valid: Tests that we can index into Struct, Array, Matrix, and Vector!
TEST_P(AccessChainInstructionTest, AccessChainIndexIntoAllTypesGood) {
// indexes that we are passing are: 0, 3, 1, 2, 0
// 0 will select the struct_s within the base struct (blockName)
// 3 will select the Array that contains 5 matrices
// 1 will select the Matrix that is at index 1 of the array
// 2 will select the column (which is a vector) within the matrix at index 2
// 0 will select the element at the index 0 of the vector. (which is a float).
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << std::endl;
spirv << "%ss = " << instr << " %_ptr_Uniform_struct_s %blockName_var "
<< elem << "%int_0" << std::endl;
spirv << "%sa = " << instr << " %_ptr_Uniform_array5_mat4x3 %blockName_var "
<< elem << "%int_0 %int_3" << std::endl;
spirv << "%sm = " << instr << " %_ptr_Uniform_mat4x3 %blockName_var " << elem
<< "%int_0 %int_3 %int_1" << std::endl;
spirv << "%sc = " << instr << " %_ptr_Uniform_v3float %blockName_var " << elem
<< "%int_0 %int_3 %int_1 %int_2" << std::endl;
spirv << "%entry = " << instr << " %_ptr_Uniform_float %blockName_var "
<< elem << "%int_0 %int_3 %int_1 %int_2 %int_0" << std::endl;
spirv << R"(
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Valid: Access an element of OpTypeRuntimeArray.
TEST_P(AccessChainInstructionTest, AccessChainIndexIntoRuntimeArrayGood) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%runtime_arr_entry = )" +
instr +
R"( %_ptr_Uniform_float %blockName_var )" + elem +
R"(%int_2 %int_0
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: Unused index when accessing OpTypeRuntimeArray.
TEST_P(AccessChainInstructionTest, AccessChainIndexIntoRuntimeArrayBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%runtime_arr_entry = )" +
instr +
R"( %_ptr_Uniform_float %blockName_var )" + elem +
R"(%int_2 %int_0 %int_1
OpReturn
OpFunctionEnd
)";
const std::string expected_err =
instr +
" reached non-composite type while indexes still remain to be traversed.";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Invalid: Reached scalar type before arguments to the access chain instruction
// finished.
TEST_P(AccessChainInstructionTest, AccessChainMatrixMoreArgsThanNeededBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%entry = )" + instr +
R"( %_ptr_Private_float %my_matrix )" + elem +
R"(%int_0 %int_1 %int_0
OpReturn
OpFunctionEnd
)";
const std::string expected_err = instr +
" reached non-composite type while "
"indexes still remain to be traversed.";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Invalid: The result type and the type indexed into do not match.
TEST_P(AccessChainInstructionTest,
AccessChainResultTypeDoesntMatchIndexedTypeBad) {
const std::string instr = GetParam();
const std::string elem = AccessChainRequiresElemId(instr) ? "%int_0 " : "";
string spirv = kGLSL450MemoryModel + kDeeplyNestedStructureSetup + R"(
%entry = )" + instr +
R"( %_ptr_Private_mat4x3 %my_matrix )" + elem +
R"(%int_0 %int_1
OpReturn
OpFunctionEnd
)";
const std::string expected_err = instr +
" result type (OpTypeMatrix) does not match "
"the type that results from indexing into "
"the base <id> (OpTypeFloat).";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(expected_err));
}
// Run tests for Access Chain Instructions.
INSTANTIATE_TEST_CASE_P(
CheckAccessChainInstructions, AccessChainInstructionTest,
::testing::Values("OpAccessChain", "OpInBoundsAccessChain",
"OpPtrAccessChain", "OpInBoundsPtrAccessChain"));
// TODO: OpArrayLength
// TODO: OpImagePointer
// TODO: OpGenericPtrMemSemantics
TEST_F(ValidateIdWithMessage, OpFunctionGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %1 %2 %2
%4 = OpFunction %1 None %3
%5 = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpFunctionResultTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpConstant %2 42
%4 = OpTypeFunction %1 %2 %2
%5 = OpFunction %2 None %4
%6 = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpFunction Result Type <id> '2' does not match the "
"Function Type <id> '2's return type."));
}
TEST_F(ValidateIdWithMessage, OpFunctionFunctionTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%4 = OpFunction %1 None %2
%5 = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpFunction Function Type <id> '2' is not a function type."));
}
TEST_F(ValidateIdWithMessage, OpFunctionParameterGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %1 %2
%4 = OpFunction %1 None %3
%5 = OpFunctionParameter %2
%6 = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpFunctionParameterMultipleGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %1 %2 %2
%4 = OpFunction %1 None %3
%5 = OpFunctionParameter %2
%6 = OpFunctionParameter %2
%7 = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpFunctionParameterResultTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %1 %2
%4 = OpFunction %1 None %3
%5 = OpFunctionParameter %1
%6 = OpLabel
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpFunctionParameter Result Type <id> '1' does not match the "
"OpTypeFunction parameter type of the same index."));
}
TEST_F(ValidateIdWithMessage, OpFunctionCallGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2 %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42 ;21
%6 = OpFunction %2 None %3
%7 = OpFunctionParameter %2
%8 = OpLabel
OpReturnValue %7
OpFunctionEnd
%10 = OpFunction %1 None %4
%11 = OpLabel
%12 = OpFunctionCall %2 %6 %5
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpFunctionCallResultTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2 %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42 ;21
%6 = OpFunction %2 None %3
%7 = OpFunctionParameter %2
%8 = OpLabel
%9 = OpIAdd %2 %7 %7
OpReturnValue %9
OpFunctionEnd
%10 = OpFunction %1 None %4
%11 = OpLabel
%12 = OpFunctionCall %1 %6 %5
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpFunctionCall Result Type <id> '1's type does not "
"match Function <id> '2's return type."));
}
TEST_F(ValidateIdWithMessage, OpFunctionCallFunctionBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2 %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42 ;21
%10 = OpFunction %1 None %4
%11 = OpLabel
%12 = OpFunctionCall %2 %5 %5
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpFunctionCall Function <id> '5' is not a function."));
}
TEST_F(ValidateIdWithMessage, OpFunctionCallArgumentTypeBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2 %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42
%13 = OpTypeFloat 32
%14 = OpConstant %13 3.14
%6 = OpFunction %2 None %3
%7 = OpFunctionParameter %2
%8 = OpLabel
%9 = OpIAdd %2 %7 %7
OpReturnValue %9
OpFunctionEnd
%10 = OpFunction %1 None %4
%11 = OpLabel
%12 = OpFunctionCall %2 %6 %14
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpFunctionCall Argument <id> '7's type does not match "
"Function <id> '2's parameter type."));
}
// Valid: OpSampledImage result <id> is used in the same block by
// OpImageSampleImplictLod
TEST_F(ValidateIdWithMessage, OpSampledImageGood) {
string spirv = kGLSL450MemoryModel + sampledImageSetup + R"(
%smpld_img = OpSampledImage %sampled_image_type %image_inst %sampler_inst
%si_lod = OpImageSampleImplicitLod %v4float %smpld_img %const_vec_1_1
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: OpSampledImage result <id> is defined in one block and used in a
// different block.
TEST_F(ValidateIdWithMessage, OpSampledImageUsedInDifferentBlockBad) {
string spirv = kGLSL450MemoryModel + sampledImageSetup + R"(
%smpld_img = OpSampledImage %sampled_image_type %image_inst %sampler_inst
OpBranch %label_2
%label_2 = OpLabel
%si_lod = OpImageSampleImplicitLod %v4float %smpld_img %const_vec_1_1
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("All OpSampledImage instructions must be in the same block in "
"which their Result <id> are consumed. OpSampledImage Result "
"Type <id> '23' has a consumer in a different basic block. The "
"consumer instruction <id> is '25'."));
}
// Invalid: OpSampledImage result <id> is used by OpSelect
// Note: According to the Spec, OpSelect parameters must be either a scalar or a
// vector. Therefore, OpTypeSampledImage is an illegal parameter for OpSelect.
// However, the OpSelect validation does not catch this today. Therefore, it is
// caught by the OpSampledImage validation. If the OpSelect validation code is
// updated, the error message for this test may change.
TEST_F(ValidateIdWithMessage, OpSampledImageUsedInOpSelectBad) {
string spirv = kGLSL450MemoryModel + sampledImageSetup + R"(
%smpld_img = OpSampledImage %sampled_image_type %image_inst %sampler_inst
%select_img = OpSelect %sampled_image_type %spec_true %smpld_img %smpld_img
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Result <id> from OpSampledImage instruction must not "
"appear as operands of OpSelect. Found result <id> "
"'23' as an operand of <id> '24'."));
}
// Invalid: OpSampledImage result <id> is used by OpPhi
TEST_F(ValidateIdWithMessage, OpSampledImageUsedInOpPhiBad) {
string spirv = kGLSL450MemoryModel + sampledImageSetup + R"(
%smpld_img = OpSampledImage %sampled_image_type %image_inst %sampler_inst
%phi_result = OpPhi %sampled_image_type %smpld_img %label_1
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Result <id> from OpSampledImage instruction must not "
"appear as operands of OpPhi. Found result <id> '23' "
"as an operand of <id> '24'."));
}
// Valid: Get a float in a matrix using CompositeExtract.
// Valid: Insert float into a matrix using CompositeInsert.
TEST_F(ValidateIdWithMessage, CompositeExtractInsertGood) {
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%float_entry = OpCompositeExtract %float %matrix 0 1" << std::endl;
// To test CompositeInsert, insert the object back in after extraction.
spirv << "%new_composite = OpCompositeInsert %mat4x3 %float_entry %matrix 0 1"
<< std::endl;
spirv << R"(OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Valid. Tests both CompositeExtract and CompositeInsert with 255 indexes.
TEST_F(ValidateIdWithMessage, CompositeExtractInsertLimitsGood) {
int depth = 255;
std::string header = kGLSL450MemoryModel + kDeeplyNestedStructureSetup;
header.erase(header.find("%func"));
std::ostringstream spirv;
spirv << header << std::endl;
// Build nested structures. Struct 'i' contains struct 'i-1'
spirv << "%s_depth_1 = OpTypeStruct %float\n";
for (int i = 2; i <= depth; ++i) {
spirv << "%s_depth_" << i << " = OpTypeStruct %s_depth_" << i - 1 << "\n";
}
// Define Pointer and Variable to use for CompositeExtract/Insert.
spirv << "%_ptr_Uniform_deep_struct = OpTypePointer Uniform %s_depth_"
<< depth << "\n";
spirv << "%deep_var = OpVariable %_ptr_Uniform_deep_struct Uniform\n";
// Function Start
spirv << R"(
%func = OpFunction %void None %void_f
%my_label = OpLabel
)";
// OpCompositeExtract/Insert with 'n' indexes (n = depth)
spirv << "%deep = OpLoad %s_depth_" << depth << " %deep_var" << std::endl;
spirv << "%entry = OpCompositeExtract %float %deep";
for (int i = 0; i < depth; ++i) {
spirv << " 0";
}
spirv << std::endl;
spirv << "%new_composite = OpCompositeInsert %s_depth_" << depth
<< " %entry %deep";
for (int i = 0; i < depth; ++i) {
spirv << " 0";
}
spirv << std::endl;
// Function end
spirv << R"(
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: 256 indexes passed to OpCompositeExtract. Limit is 255.
TEST_F(ValidateIdWithMessage, CompositeExtractArgCountExceededLimitBad) {
std::ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%entry = OpCompositeExtract %float %matrix";
for (int i = 0; i < 256; ++i) {
spirv << " 0";
}
spirv << R"(
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The number of indexes in OpCompositeExtract may not "
"exceed 255. Found 256 indexes."));
}
// Invalid: 256 indexes passed to OpCompositeInsert. Limit is 255.
TEST_F(ValidateIdWithMessage, CompositeInsertArgCountExceededLimitBad) {
std::ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%new_composite = OpCompositeInsert %mat4x3 %int_0 %matrix";
for (int i = 0; i < 256; ++i) {
spirv << " 0";
}
spirv << R"(
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The number of indexes in OpCompositeInsert may not "
"exceed 255. Found 256 indexes."));
}
// Invalid: In OpCompositeInsert, result type must be the same as composite type
TEST_F(ValidateIdWithMessage, CompositeInsertWrongResultTypeBad) {
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%float_entry = OpCompositeExtract %float %matrix 0 1" << std::endl;
spirv << "%new_composite = OpCompositeInsert %float %float_entry %matrix 0 1"
<< std::endl;
spirv << R"(OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The Result Type must be the same as Composite type"));
}
// Valid: No Indexes were passed to OpCompositeExtract, and the Result Type is
// the same as the Base Composite type.
TEST_F(ValidateIdWithMessage, CompositeExtractNoIndexesGood) {
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%float_entry = OpCompositeExtract %mat4x3 %matrix" << std::endl;
spirv << R"(OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: No Indexes were passed to OpCompositeExtract, but the Result Type is
// different from the Base Composite type.
TEST_F(ValidateIdWithMessage, CompositeExtractNoIndexesBad) {
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%float_entry = OpCompositeExtract %float %matrix" << std::endl;
spirv << R"(OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpCompositeExtract result type (OpTypeFloat) does not "
"match the type that results from indexing into the "
"composite (OpTypeMatrix)."));
}
// Valid: No Indexes were passed to OpCompositeInsert, and the type of the
// Object<id> argument matches the Composite type.
TEST_F(ValidateIdWithMessage, CompositeInsertMissingIndexesGood) {
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%matrix_2 = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%new_composite = OpCompositeInsert %mat4x3 %matrix_2 %matrix";
spirv << R"(
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid: No Indexes were passed to OpCompositeInsert, but the type of the
// Object<id> argument does not match the Composite type.
TEST_F(ValidateIdWithMessage, CompositeInsertMissingIndexesBad) {
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << std::endl;
spirv << "%matrix = OpLoad %mat4x3 %my_matrix" << std::endl;
spirv << "%new_composite = OpCompositeInsert %mat4x3 %int_0 %matrix";
spirv << R"(
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("The Object type (OpTypeInt) in OpCompositeInsert does "
"not match the type that results from indexing into "
"the Composite (OpTypeMatrix)."));
}
// Valid: Tests that we can index into Struct, Array, Matrix, and Vector!
TEST_F(ValidateIdWithMessage, CompositeExtractInsertIndexIntoAllTypesGood) {
// indexes that we are passing are: 0, 3, 1, 2, 0
// 0 will select the struct_s within the base struct (blockName)
// 3 will select the Array that contains 5 matrices
// 1 will select the Matrix that is at index 1 of the array
// 2 will select the column (which is a vector) within the matrix at index 2
// 0 will select the element at the index 0 of the vector. (which is a float).
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%ss = OpCompositeExtract %struct_s %myblock 0
%sa = OpCompositeExtract %array5_mat4x3 %myblock 0 3
%sm = OpCompositeExtract %mat4x3 %myblock 0 3 1
%sc = OpCompositeExtract %v3float %myblock 0 3 1 2
%fl = OpCompositeExtract %float %myblock 0 3 1 2 0
;
; Now let's insert back at different levels...
;
%b1 = OpCompositeInsert %struct_blockName %ss %myblock 0
%b2 = OpCompositeInsert %struct_blockName %sa %myblock 0 3
%b3 = OpCompositeInsert %struct_blockName %sm %myblock 0 3 1
%b4 = OpCompositeInsert %struct_blockName %sc %myblock 0 3 1 2
%b5 = OpCompositeInsert %struct_blockName %fl %myblock 0 3 1 2 0
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Invalid. More indexes are provided than needed for OpCompositeExtract.
TEST_F(ValidateIdWithMessage, CompositeExtractReachedScalarBad) {
// indexes that we are passing are: 0, 3, 1, 2, 0
// 0 will select the struct_s within the base struct (blockName)
// 3 will select the Array that contains 5 matrices
// 1 will select the Matrix that is at index 1 of the array
// 2 will select the column (which is a vector) within the matrix at index 2
// 0 will select the element at the index 0 of the vector. (which is a float).
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%fl = OpCompositeExtract %float %myblock 0 3 1 2 0 1
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpCompositeExtract reached non-composite type while "
"indexes still remain to be traversed."));
}
// Invalid. More indexes are provided than needed for OpCompositeInsert.
TEST_F(ValidateIdWithMessage, CompositeInsertReachedScalarBad) {
// indexes that we are passing are: 0, 3, 1, 2, 0
// 0 will select the struct_s within the base struct (blockName)
// 3 will select the Array that contains 5 matrices
// 1 will select the Matrix that is at index 1 of the array
// 2 will select the column (which is a vector) within the matrix at index 2
// 0 will select the element at the index 0 of the vector. (which is a float).
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%fl = OpCompositeExtract %float %myblock 0 3 1 2 0
%b5 = OpCompositeInsert %struct_blockName %fl %myblock 0 3 1 2 0 1
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpCompositeInsert reached non-composite type while "
"indexes still remain to be traversed."));
}
// Invalid. Result type doesn't match the type we get from indexing into
// the composite.
TEST_F(ValidateIdWithMessage,
CompositeExtractResultTypeDoesntMatchIndexedTypeBad) {
// indexes that we are passing are: 0, 3, 1, 2, 0
// 0 will select the struct_s within the base struct (blockName)
// 3 will select the Array that contains 5 matrices
// 1 will select the Matrix that is at index 1 of the array
// 2 will select the column (which is a vector) within the matrix at index 2
// 0 will select the element at the index 0 of the vector. (which is a float).
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%fl = OpCompositeExtract %int %myblock 0 3 1 2 0
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpCompositeExtract result type (OpTypeInt) does not "
"match the type that results from indexing into the "
"composite (OpTypeFloat)."));
}
// Invalid. Given object type doesn't match the type we get from indexing into
// the composite.
TEST_F(ValidateIdWithMessage,
CompositeInsertObjectTypeDoesntMatchIndexedTypeBad) {
// indexes that we are passing are: 0, 3, 1, 2, 0
// 0 will select the struct_s within the base struct (blockName)
// 3 will select the Array that contains 5 matrices
// 1 will select the Matrix that is at index 1 of the array
// 2 will select the column (which is a vector) within the matrix at index 2
// 0 will select the element at the index 0 of the vector. (which is a float).
// We are trying to insert an integer where we should be inserting a float.
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%b5 = OpCompositeInsert %struct_blockName %int_0 %myblock 0 3 1 2 0
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("he Object type (OpTypeInt) in OpCompositeInsert does "
"not match the type that results from indexing into "
"the Composite (OpTypeFloat)."));
}
// Invalid. Index into a struct is larger than the number of struct members.
TEST_F(ValidateIdWithMessage, CompositeExtractStructIndexOutOfBoundBad) {
// struct_blockName has 3 members (index 0,1,2). We'll try to access index 3.
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%ss = OpCompositeExtract %struct_s %myblock 3
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Index is out of bounds: OpCompositeExtract can not "
"find index 3 into the structure <id> '26'. This "
"structure has 3 members. Largest valid index is 2."));
}
// Invalid. Index into a struct is larger than the number of struct members.
TEST_F(ValidateIdWithMessage, CompositeInsertStructIndexOutOfBoundBad) {
// struct_blockName has 3 members (index 0,1,2). We'll try to access index 3.
ostringstream spirv;
spirv << kGLSL450MemoryModel << kDeeplyNestedStructureSetup << R"(
%myblock = OpLoad %struct_blockName %blockName_var
%ss = OpCompositeExtract %struct_s %myblock 0
%new_composite = OpCompositeInsert %struct_blockName %ss %myblock 3
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Index is out of bounds: OpCompositeInsert can not find "
"index 3 into the structure <id> '26'. This structure "
"has 3 members. Largest valid index is 2."));
}
#if 0
TEST_F(ValidateIdWithMessage, OpFunctionCallArgumentCountBar) {
const char *spirv = R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2 %2
%4 = OpTypeFunction %1
%5 = OpConstant %2 42 ;21
%6 = OpFunction %2 None %3
%7 = OpFunctionParameter %2
%8 = OpLabel
%9 = OpLoad %2 %7
OpReturnValue %9
OpFunctionEnd
%10 = OpFunction %1 None %4
%11 = OpLabel
OpReturn
%12 = OpFunctionCall %2 %6 %5
OpFunctionEnd)";
CHECK(spirv, SPV_ERROR_INVALID_ID);
}
#endif
// TODO: The many things that changed with how images are used.
// TODO: OpTextureSample
// TODO: OpTextureSampleDref
// TODO: OpTextureSampleLod
// TODO: OpTextureSampleProj
// TODO: OpTextureSampleGrad
// TODO: OpTextureSampleOffset
// TODO: OpTextureSampleProjLod
// TODO: OpTextureSampleProjGrad
// TODO: OpTextureSampleLodOffset
// TODO: OpTextureSampleProjOffset
// TODO: OpTextureSampleGradOffset
// TODO: OpTextureSampleProjLodOffset
// TODO: OpTextureSampleProjGradOffset
// TODO: OpTextureFetchTexelLod
// TODO: OpTextureFetchTexelOffset
// TODO: OpTextureFetchSample
// TODO: OpTextureFetchTexel
// TODO: OpTextureGather
// TODO: OpTextureGatherOffset
// TODO: OpTextureGatherOffsets
// TODO: OpTextureQuerySizeLod
// TODO: OpTextureQuerySize
// TODO: OpTextureQueryLevels
// TODO: OpTextureQuerySamples
// TODO: OpConvertUToF
// TODO: OpConvertFToS
// TODO: OpConvertSToF
// TODO: OpConvertUToF
// TODO: OpUConvert
// TODO: OpSConvert
// TODO: OpFConvert
// TODO: OpConvertPtrToU
// TODO: OpConvertUToPtr
// TODO: OpPtrCastToGeneric
// TODO: OpGenericCastToPtr
// TODO: OpBitcast
// TODO: OpGenericCastToPtrExplicit
// TODO: OpSatConvertSToU
// TODO: OpSatConvertUToS
// TODO: OpVectorExtractDynamic
// TODO: OpVectorInsertDynamic
// TODO: OpVectorShuffle
// TODO: OpCompositeConstruct
// TODO: OpCompositeExtract
// TODO: OpCompositeInsert
// TODO: OpCopyObject
// TODO: OpTranspose
// TODO: OpSNegate
// TODO: OpFNegate
// TODO: OpNot
// TODO: OpIAdd
// TODO: OpFAdd
// TODO: OpISub
// TODO: OpFSub
// TODO: OpIMul
// TODO: OpFMul
// TODO: OpUDiv
// TODO: OpSDiv
// TODO: OpFDiv
// TODO: OpUMod
// TODO: OpSRem
// TODO: OpSMod
// TODO: OpFRem
// TODO: OpFMod
// TODO: OpVectorTimesScalar
// TODO: OpMatrixTimesScalar
// TODO: OpVectorTimesMatrix
// TODO: OpMatrixTimesVector
// TODO: OpMatrixTimesMatrix
// TODO: OpOuterProduct
// TODO: OpDot
// TODO: OpShiftRightLogical
// TODO: OpShiftRightArithmetic
// TODO: OpShiftLeftLogical
// TODO: OpBitwiseOr
// TODO: OpBitwiseXor
// TODO: OpBitwiseAnd
// TODO: OpAny
// TODO: OpAll
// TODO: OpIsNan
// TODO: OpIsInf
// TODO: OpIsFinite
// TODO: OpIsNormal
// TODO: OpSignBitSet
// TODO: OpLessOrGreater
// TODO: OpOrdered
// TODO: OpUnordered
// TODO: OpLogicalOr
// TODO: OpLogicalXor
// TODO: OpLogicalAnd
// TODO: OpSelect
// TODO: OpIEqual
// TODO: OpFOrdEqual
// TODO: OpFUnordEqual
// TODO: OpINotEqual
// TODO: OpFOrdNotEqual
// TODO: OpFUnordNotEqual
// TODO: OpULessThan
// TODO: OpSLessThan
// TODO: OpFOrdLessThan
// TODO: OpFUnordLessThan
// TODO: OpUGreaterThan
// TODO: OpSGreaterThan
// TODO: OpFOrdGreaterThan
// TODO: OpFUnordGreaterThan
// TODO: OpULessThanEqual
// TODO: OpSLessThanEqual
// TODO: OpFOrdLessThanEqual
// TODO: OpFUnordLessThanEqual
// TODO: OpUGreaterThanEqual
// TODO: OpSGreaterThanEqual
// TODO: OpFOrdGreaterThanEqual
// TODO: OpFUnordGreaterThanEqual
// TODO: OpDPdx
// TODO: OpDPdy
// TODO: OpFWidth
// TODO: OpDPdxFine
// TODO: OpDPdyFine
// TODO: OpFwidthFine
// TODO: OpDPdxCoarse
// TODO: OpDPdyCoarse
// TODO: OpFwidthCoarse
// TODO: OpPhi
// TODO: OpLoopMerge
// TODO: OpSelectionMerge
// TODO: OpBranch
// TODO: OpBranchConditional
// TODO: OpSwitch
TEST_F(ValidateIdWithMessage, OpReturnValueConstantGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2
%4 = OpConstant %2 42
%5 = OpFunction %2 None %3
%6 = OpLabel
OpReturnValue %4
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpReturnValueVariableGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0 ;10
%3 = OpTypeFunction %2
%8 = OpTypePointer Function %2 ;18
%4 = OpConstant %2 42 ;22
%5 = OpFunction %2 None %3 ;27
%6 = OpLabel ;29
%7 = OpVariable %8 Function %4 ;34
%9 = OpLoad %2 %7
OpReturnValue %9 ;36
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpReturnValueExpressionGood) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2
%4 = OpConstant %2 42
%5 = OpFunction %2 None %3
%6 = OpLabel
%7 = OpIAdd %2 %4 %4
OpReturnValue %7
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpReturnValueIsType) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2
%5 = OpFunction %2 None %3
%6 = OpLabel
OpReturnValue %1
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpReturnValue Value <id> '1' does not represent a value."));
}
TEST_F(ValidateIdWithMessage, OpReturnValueIsLabel) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2
%5 = OpFunction %2 None %3
%6 = OpLabel
OpReturnValue %6
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpReturnValue Value <id> '5' does not represent a value."));
}
TEST_F(ValidateIdWithMessage, OpReturnValueIsVoid) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %1
%5 = OpFunction %1 None %3
%6 = OpLabel
%7 = OpFunctionCall %1 %5
OpReturnValue %7
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpReturnValue value's type <id> '1' is missing or void."));
}
TEST_F(ValidateIdWithMessage, OpReturnValueIsVariableInPhysical) {
// It's valid to return a pointer in a physical addressing model.
string spirv = kGLSL450MemoryModel + R"(
OpMemoryModel Physical32 OpenCL
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer Private %2
%4 = OpTypeFunction %3
%5 = OpFunction %3 None %4
%6 = OpLabel
%7 = OpVariable %3 Function
OpReturnValue %7
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpReturnValueIsVariableInLogical) {
// It's invalid to return a pointer in a physical addressing model.
string spirv = kGLSL450MemoryModel + R"(
OpMemoryModel Logical GLSL450
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypePointer Private %2
%4 = OpTypeFunction %3
%5 = OpFunction %3 None %4
%6 = OpLabel
%7 = OpVariable %3 Function
OpReturnValue %7
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpReturnValue value's type <id> '3' is a pointer, "
"which is invalid in the Logical addressing model."));
}
// With the VariablePointer Capability, the return value of a function is
// allowed to be a pointer.
TEST_F(ValidateIdWithMessage, OpReturnValueVarPtrGood) {
std::ostringstream spirv;
createVariablePointerSpirvProgram(&spirv,
"" /* Instructions to add to "main" */,
true /* Add VariablePointers Capability?*/,
true /* Use Helper Function? */);
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
// Without the VariablePointer Capability, the return value of a function is
// *not* allowed to be a pointer.
TEST_F(ValidateIdWithMessage, OpReturnValueVarPtrBad) {
std::ostringstream spirv;
createVariablePointerSpirvProgram(&spirv,
"" /* Instructions to add to "main" */,
false /* Add VariablePointers Capability?*/,
true /* Use Helper Function? */);
CompileSuccessfully(spirv.str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpReturnValue value's type <id> '7' is a pointer, "
"which is invalid in the Logical addressing model."));
}
// TODO: enable when this bug is fixed:
// https://cvs.khronos.org/bugzilla/show_bug.cgi?id=15404
TEST_F(ValidateIdWithMessage, DISABLED_OpReturnValueIsFunction) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeInt 32 0
%3 = OpTypeFunction %2
%5 = OpFunction %2 None %3
%6 = OpLabel
OpReturnValue %5
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, UndefinedTypeId) {
string spirv = kGLSL450MemoryModel + R"(
%s = OpTypeStruct %i32
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Forward reference operands in an OpTypeStruct must "
"first be declared using OpTypeForwardPointer."));
}
TEST_F(ValidateIdWithMessage, UndefinedIdScope) {
string spirv = kGLSL450MemoryModel + R"(
%u32 = OpTypeInt 32 0
%memsem = OpConstant %u32 0
%void = OpTypeVoid
%void_f = OpTypeFunction %void
%f = OpFunction %void None %void_f
%l = OpLabel
OpMemoryBarrier %undef %memsem
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr("ID 7 has not been defined"));
}
TEST_F(ValidateIdWithMessage, UndefinedIdMemSem) {
string spirv = kGLSL450MemoryModel + R"(
%u32 = OpTypeInt 32 0
%scope = OpConstant %u32 0
%void = OpTypeVoid
%void_f = OpTypeFunction %void
%f = OpFunction %void None %void_f
%l = OpLabel
OpMemoryBarrier %scope %undef
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr("ID 7 has not been defined"));
}
TEST_F(ValidateIdWithMessage,
KernelOpEntryPointAndOpInBoundsPtrAccessChainGood) {
string spirv = kOpenCLMemoryModel32 + R"(
OpEntryPoint Kernel %2 "simple_kernel"
OpSource OpenCL_C 200000
OpDecorate %3 BuiltIn GlobalInvocationId
OpDecorate %3 Constant
OpDecorate %4 FuncParamAttr NoCapture
OpDecorate %3 LinkageAttributes "__spirv_GlobalInvocationId" Import
%5 = OpTypeInt 32 0
%6 = OpTypeVector %5 3
%7 = OpTypePointer UniformConstant %6
%3 = OpVariable %7 UniformConstant
%8 = OpTypeVoid
%9 = OpTypeStruct %5
%10 = OpTypePointer CrossWorkgroup %9
%11 = OpTypeFunction %8 %10
%12 = OpConstant %5 0
%13 = OpTypePointer CrossWorkgroup %5
%14 = OpConstant %5 42
%2 = OpFunction %8 None %11
%4 = OpFunctionParameter %10
%15 = OpLabel
%16 = OpLoad %6 %3 Aligned 0
%17 = OpCompositeExtract %5 %16 0
%18 = OpInBoundsPtrAccessChain %13 %4 %17 %12
OpStore %18 %14 Aligned 4
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpPtrAccessChainGood) {
string spirv = kOpenCLMemoryModel64 + R"(
OpEntryPoint Kernel %2 "another_kernel"
OpSource OpenCL_C 200000
OpDecorate %3 BuiltIn GlobalInvocationId
OpDecorate %3 Constant
OpDecorate %4 FuncParamAttr NoCapture
OpDecorate %3 LinkageAttributes "__spirv_GlobalInvocationId" Import
%5 = OpTypeInt 64 0
%6 = OpTypeVector %5 3
%7 = OpTypePointer UniformConstant %6
%3 = OpVariable %7 UniformConstant
%8 = OpTypeVoid
%9 = OpTypeInt 32 0
%10 = OpTypeStruct %9
%11 = OpTypePointer CrossWorkgroup %10
%12 = OpTypeFunction %8 %11
%13 = OpConstant %5 4294967295
%14 = OpConstant %9 0
%15 = OpTypePointer CrossWorkgroup %9
%16 = OpConstant %9 42
%2 = OpFunction %8 None %12
%4 = OpFunctionParameter %11
%17 = OpLabel
%18 = OpLoad %6 %3 Aligned 0
%19 = OpCompositeExtract %5 %18 0
%20 = OpBitwiseAnd %5 %19 %13
%21 = OpPtrAccessChain %15 %4 %20 %14
OpStore %21 %16 Aligned 4
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpLoadBitcastPointerGood) {
string spirv = kOpenCLMemoryModel64 + R"(
%2 = OpTypeVoid
%3 = OpTypeInt 32 0
%4 = OpTypeFloat 32
%5 = OpTypePointer UniformConstant %3
%6 = OpTypePointer UniformConstant %4
%7 = OpVariable %5 UniformConstant
%8 = OpTypeFunction %2
%9 = OpFunction %2 None %8
%10 = OpLabel
%11 = OpBitcast %6 %7
%12 = OpLoad %4 %11
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpLoadBitcastNonPointerBad) {
string spirv = kOpenCLMemoryModel64 + R"(
%2 = OpTypeVoid
%3 = OpTypeInt 32 0
%4 = OpTypeFloat 32
%5 = OpTypePointer UniformConstant %3
%6 = OpTypeFunction %2
%7 = OpVariable %5 UniformConstant
%8 = OpFunction %2 None %6
%9 = OpLabel
%10 = OpLoad %3 %7
%11 = OpBitcast %4 %10
%12 = OpLoad %3 %11
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpLoad type for pointer <id> '11' is not a pointer type."));
}
TEST_F(ValidateIdWithMessage, OpStoreBitcastPointerGood) {
string spirv = kOpenCLMemoryModel64 + R"(
%2 = OpTypeVoid
%3 = OpTypeInt 32 0
%4 = OpTypeFloat 32
%5 = OpTypePointer Function %3
%6 = OpTypePointer Function %4
%7 = OpTypeFunction %2
%8 = OpConstant %3 42
%9 = OpFunction %2 None %7
%10 = OpLabel
%11 = OpVariable %6 Function
%12 = OpBitcast %5 %11
OpStore %12 %8
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateIdWithMessage, OpStoreBitcastNonPointerBad) {
string spirv = kOpenCLMemoryModel64 + R"(
%2 = OpTypeVoid
%3 = OpTypeInt 32 0
%4 = OpTypeFloat 32
%5 = OpTypePointer Function %4
%6 = OpTypeFunction %2
%7 = OpConstant %4 42
%8 = OpFunction %2 None %6
%9 = OpLabel
%10 = OpVariable %5 Function
%11 = OpBitcast %3 %7
OpStore %11 %7
OpReturn
OpFunctionEnd)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpStore type for pointer <id> '11' is not a pointer type."));
}
// Result <id> resulting from an instruction within a function may not be used
// outside that function.
TEST_F(ValidateIdWithMessage, ResultIdUsedOutsideOfFunctionBad) {
string spirv = kGLSL450MemoryModel + R"(
%1 = OpTypeVoid
%2 = OpTypeFunction %1
%3 = OpTypeInt 32 0
%4 = OpTypePointer Function %3
%5 = OpFunction %1 None %2
%6 = OpLabel
%7 = OpVariable %4 Function
OpReturn
OpFunctionEnd
%8 = OpFunction %1 None %2
%9 = OpLabel
%10 = OpLoad %3 %7
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"ID 7 defined in block 6 does not dominate its use in block 9"));
}
TEST_F(ValidateIdWithMessage, SpecIdTargetNotSpecializationConstant) {
string spirv = kGLSL450MemoryModel + R"(
OpDecorate %1 SpecId 200
%void = OpTypeVoid
%2 = OpTypeFunction %void
%int = OpTypeInt 32 0
%1 = OpConstant %int 3
%main = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpDecorate SpectId decoration target <id> '1' is not a "
"scalar specialization constant."));
}
TEST_F(ValidateIdWithMessage, SpecIdTargetOpSpecConstantOpBad) {
string spirv = kGLSL450MemoryModel + R"(
OpDecorate %1 SpecId 200
%void = OpTypeVoid
%2 = OpTypeFunction %void
%int = OpTypeInt 32 0
%3 = OpConstant %int 1
%4 = OpConstant %int 2
%1 = OpSpecConstantOp %int IAdd %3 %4
%main = OpFunction %1 None %2
%6 = OpLabel
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpDecorate SpectId decoration target <id> '1' is not a "
"scalar specialization constant."));
}
TEST_F(ValidateIdWithMessage, SpecIdTargetOpSpecConstantCompositeBad) {
string spirv = kGLSL450MemoryModel + R"(
OpDecorate %1 SpecId 200
%void = OpTypeVoid
%2 = OpTypeFunction %void
%int = OpTypeInt 32 0
%1 = OpSpecConstantComposite %int
%main = OpFunction %1 None %2
%4 = OpLabel
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpDecorate SpectId decoration target <id> '1' is not a "
"scalar specialization constant."));
}
TEST_F(ValidateIdWithMessage, SpecIdTargetGood) {
string spirv = kGLSL450MemoryModel + R"(
OpDecorate %3 SpecId 200
OpDecorate %4 SpecId 201
OpDecorate %5 SpecId 202
%1 = OpTypeVoid
%2 = OpTypeFunction %1
%int = OpTypeInt 32 0
%bool = OpTypeBool
%3 = OpSpecConstant %int 3
%4 = OpSpecConstantTrue %bool
%5 = OpSpecConstantFalse %bool
%main = OpFunction %1 None %2
%6 = OpLabel
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateAndRetrieveValidationState());
}
// TODO: OpLifetimeStart
// TODO: OpLifetimeStop
// TODO: OpAtomicInit
// TODO: OpAtomicLoad
// TODO: OpAtomicStore
// TODO: OpAtomicExchange
// TODO: OpAtomicCompareExchange
// TODO: OpAtomicCompareExchangeWeak
// TODO: OpAtomicIIncrement
// TODO: OpAtomicIDecrement
// TODO: OpAtomicIAdd
// TODO: OpAtomicISub
// TODO: OpAtomicUMin
// TODO: OpAtomicUMax
// TODO: OpAtomicAnd
// TODO: OpAtomicOr
// TODO: OpAtomicXor
// TODO: OpAtomicIMin
// TODO: OpAtomicIMax
// TODO: OpEmitStreamVertex
// TODO: OpEndStreamPrimitive
// TODO: OpAsyncGroupCopy
// TODO: OpWaitGroupEvents
// TODO: OpGroupAll
// TODO: OpGroupAny
// TODO: OpGroupBroadcast
// TODO: OpGroupIAdd
// TODO: OpGroupFAdd
// TODO: OpGroupFMin
// TODO: OpGroupUMin
// TODO: OpGroupSMin
// TODO: OpGroupFMax
// TODO: OpGroupUMax
// TODO: OpGroupSMax
// TODO: OpEnqueueMarker
// TODO: OpEnqueueKernel
// TODO: OpGetKernelNDrangeSubGroupCount
// TODO: OpGetKernelNDrangeMaxSubGroupSize
// TODO: OpGetKernelWorkGroupSize
// TODO: OpGetKernelPreferredWorkGroupSizeMultiple
// TODO: OpRetainEvent
// TODO: OpReleaseEvent
// TODO: OpCreateUserEvent
// TODO: OpIsValidEvent
// TODO: OpSetUserEventStatus
// TODO: OpCaptureEventProfilingInfo
// TODO: OpGetDefaultQueue
// TODO: OpBuildNDRange
// TODO: OpReadPipe
// TODO: OpWritePipe
// TODO: OpReservedReadPipe
// TODO: OpReservedWritePipe
// TODO: OpReserveReadPipePackets
// TODO: OpReserveWritePipePackets
// TODO: OpCommitReadPipe
// TODO: OpCommitWritePipe
// TODO: OpIsValidReserveId
// TODO: OpGetNumPipePackets
// TODO: OpGetMaxPipePackets
// TODO: OpGroupReserveReadPipePackets
// TODO: OpGroupReserveWritePipePackets
// TODO: OpGroupCommitReadPipe
// TODO: OpGroupCommitWritePipe
} // anonymous namespace