SPIRV-Tools/source/opt/instruction.cpp
Arseny Kapoulkine 309be423cc Add folding for redundant add/sub/mul/div/mix operations
This change implements instruction folding for arithmetic operations
that are redundant, specifically:

  x + 0 = 0 + x = x
  x - 0 = x
  0 - x = -x
  x * 0 = 0 * x = 0
  x * 1 = 1 * x = x
  0 / x = 0
  x / 1 = x
  mix(a, b, 0) = a
  mix(a, b, 1) = b

Cache ExtInst import id in feature manager

This allows us to avoid string lookups during optimization; for now we
just cache GLSL std450 import id but I can imagine caching more sets as
they become utilized by the optimizer.

Add tests for add/sub/mul/div/mix folding

The tests cover scalar float/double cases, and some vector cases.

Since most of the code for floating point folding is shared, the tests
for vector folding are not as exhaustive as scalar.

To test sub->negate folding I had to implement a custom fixture.
2018-02-20 18:29:27 -05:00

601 lines
18 KiB
C++

// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "instruction.h"
#include <initializer_list>
#include "disassemble.h"
#include "fold.h"
#include "ir_context.h"
#include "reflect.h"
namespace spvtools {
namespace ir {
namespace {
// Indices used to get particular operands out of instructions using InOperand.
const uint32_t kTypeImageDimIndex = 1;
const uint32_t kLoadBaseIndex = 0;
const uint32_t kVariableStorageClassIndex = 0;
const uint32_t kTypeImageSampledIndex = 5;
} // namespace
Instruction::Instruction(IRContext* c)
: utils::IntrusiveNodeBase<Instruction>(),
context_(c),
opcode_(SpvOpNop),
type_id_(0),
result_id_(0),
unique_id_(c->TakeNextUniqueId()) {}
Instruction::Instruction(IRContext* c, SpvOp op)
: utils::IntrusiveNodeBase<Instruction>(),
context_(c),
opcode_(op),
type_id_(0),
result_id_(0),
unique_id_(c->TakeNextUniqueId()) {}
Instruction::Instruction(IRContext* c, const spv_parsed_instruction_t& inst,
std::vector<Instruction>&& dbg_line)
: context_(c),
opcode_(static_cast<SpvOp>(inst.opcode)),
type_id_(inst.type_id),
result_id_(inst.result_id),
unique_id_(c->TakeNextUniqueId()),
dbg_line_insts_(std::move(dbg_line)) {
assert((!IsDebugLineInst(opcode_) || dbg_line.empty()) &&
"Op(No)Line attaching to Op(No)Line found");
for (uint32_t i = 0; i < inst.num_operands; ++i) {
const auto& current_payload = inst.operands[i];
std::vector<uint32_t> words(
inst.words + current_payload.offset,
inst.words + current_payload.offset + current_payload.num_words);
operands_.emplace_back(current_payload.type, std::move(words));
}
}
Instruction::Instruction(IRContext* c, SpvOp op, uint32_t ty_id,
uint32_t res_id,
const std::vector<Operand>& in_operands)
: utils::IntrusiveNodeBase<Instruction>(),
context_(c),
opcode_(op),
type_id_(ty_id),
result_id_(res_id),
unique_id_(c->TakeNextUniqueId()),
operands_() {
if (type_id_ != 0) {
operands_.emplace_back(spv_operand_type_t::SPV_OPERAND_TYPE_TYPE_ID,
std::initializer_list<uint32_t>{type_id_});
}
if (result_id_ != 0) {
operands_.emplace_back(spv_operand_type_t::SPV_OPERAND_TYPE_RESULT_ID,
std::initializer_list<uint32_t>{result_id_});
}
operands_.insert(operands_.end(), in_operands.begin(), in_operands.end());
}
Instruction::Instruction(Instruction&& that)
: utils::IntrusiveNodeBase<Instruction>(),
opcode_(that.opcode_),
type_id_(that.type_id_),
result_id_(that.result_id_),
unique_id_(that.unique_id_),
operands_(std::move(that.operands_)),
dbg_line_insts_(std::move(that.dbg_line_insts_)) {}
Instruction& Instruction::operator=(Instruction&& that) {
opcode_ = that.opcode_;
type_id_ = that.type_id_;
result_id_ = that.result_id_;
unique_id_ = that.unique_id_;
operands_ = std::move(that.operands_);
dbg_line_insts_ = std::move(that.dbg_line_insts_);
return *this;
}
Instruction* Instruction::Clone(IRContext* c) const {
Instruction* clone = new Instruction(c);
clone->opcode_ = opcode_;
clone->type_id_ = type_id_;
clone->result_id_ = result_id_;
clone->unique_id_ = c->TakeNextUniqueId();
clone->operands_ = operands_;
clone->dbg_line_insts_ = dbg_line_insts_;
return clone;
}
uint32_t Instruction::GetSingleWordOperand(uint32_t index) const {
const auto& words = GetOperand(index).words;
assert(words.size() == 1 && "expected the operand only taking one word");
return words.front();
}
uint32_t Instruction::NumInOperandWords() const {
uint32_t size = 0;
for (uint32_t i = TypeResultIdCount(); i < operands_.size(); ++i)
size += static_cast<uint32_t>(operands_[i].words.size());
return size;
}
void Instruction::ToBinaryWithoutAttachedDebugInsts(
std::vector<uint32_t>* binary) const {
const uint32_t num_words = 1 + NumOperandWords();
binary->push_back((num_words << 16) | static_cast<uint16_t>(opcode_));
for (const auto& operand : operands_)
binary->insert(binary->end(), operand.words.begin(), operand.words.end());
}
void Instruction::ReplaceOperands(const std::vector<Operand>& new_operands) {
operands_.clear();
operands_.insert(operands_.begin(), new_operands.begin(), new_operands.end());
operands_.shrink_to_fit();
}
bool Instruction::IsReadOnlyLoad() const {
if (IsLoad()) {
ir::Instruction* address_def = GetBaseAddress();
if (!address_def || address_def->opcode() != SpvOpVariable) {
return false;
}
return address_def->IsReadOnlyVariable();
}
return false;
}
Instruction* Instruction::GetBaseAddress() const {
assert((IsLoad() || opcode() == SpvOpStore || opcode() == SpvOpAccessChain ||
opcode() == SpvOpInBoundsAccessChain ||
opcode() == SpvOpCopyObject) &&
"GetBaseAddress should only be called on instructions that take a "
"pointer or image.");
uint32_t base = GetSingleWordInOperand(kLoadBaseIndex);
ir::Instruction* base_inst = context()->get_def_use_mgr()->GetDef(base);
bool done = false;
while (!done) {
switch (base_inst->opcode()) {
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
case SpvOpPtrAccessChain:
case SpvOpInBoundsPtrAccessChain:
case SpvOpImageTexelPointer:
case SpvOpCopyObject:
// All of these instructions have the base pointer use a base pointer
// in in-operand 0.
base = base_inst->GetSingleWordInOperand(0);
base_inst = context()->get_def_use_mgr()->GetDef(base);
break;
default:
done = true;
break;
}
}
switch (opcode()) {
case SpvOpLoad:
case SpvOpStore:
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
case SpvOpCopyObject:
// A load or store through a pointer.
assert(base_inst->IsValidBasePointer() &&
"We cannot have a base pointer come from this load");
break;
default:
// A load or store of an image.
assert(base_inst->IsValidBaseImage() && "We are expecting an image.");
break;
}
return base_inst;
}
bool Instruction::IsReadOnlyVariable() const {
if (context()->get_feature_mgr()->HasCapability(SpvCapabilityShader))
return IsReadOnlyVariableShaders();
else
return IsReadOnlyVariableKernel();
}
bool Instruction::IsVulkanStorageImage() const {
if (opcode() != SpvOpTypePointer) {
return false;
}
uint32_t storage_class = GetSingleWordInOperand(kVariableStorageClassIndex);
if (storage_class != SpvStorageClassUniformConstant) {
return false;
}
ir::Instruction* base_type =
context()->get_def_use_mgr()->GetDef(GetSingleWordInOperand(1));
if (base_type->opcode() != SpvOpTypeImage) {
return false;
}
if (base_type->GetSingleWordInOperand(kTypeImageDimIndex) == SpvDimBuffer) {
return false;
}
// Check if the image is sampled. If we do not know for sure that it is,
// then assume it is a storage image.
auto s = base_type->GetSingleWordInOperand(kTypeImageSampledIndex);
return s != 1;
}
bool Instruction::IsVulkanSampledImage() const {
if (opcode() != SpvOpTypePointer) {
return false;
}
uint32_t storage_class = GetSingleWordInOperand(kVariableStorageClassIndex);
if (storage_class != SpvStorageClassUniformConstant) {
return false;
}
ir::Instruction* base_type =
context()->get_def_use_mgr()->GetDef(GetSingleWordInOperand(1));
if (base_type->opcode() != SpvOpTypeImage) {
return false;
}
if (base_type->GetSingleWordInOperand(kTypeImageDimIndex) == SpvDimBuffer) {
return false;
}
// Check if the image is sampled. If we know for sure that it is,
// then return true.
auto s = base_type->GetSingleWordInOperand(kTypeImageSampledIndex);
return s == 1;
}
bool Instruction::IsVulkanStorageTexelBuffer() const {
if (opcode() != SpvOpTypePointer) {
return false;
}
uint32_t storage_class = GetSingleWordInOperand(kVariableStorageClassIndex);
if (storage_class != SpvStorageClassUniformConstant) {
return false;
}
ir::Instruction* base_type =
context()->get_def_use_mgr()->GetDef(GetSingleWordInOperand(1));
if (base_type->opcode() != SpvOpTypeImage) {
return false;
}
if (base_type->GetSingleWordInOperand(kTypeImageDimIndex) != SpvDimBuffer) {
return false;
}
// Check if the image is sampled. If we do not know for sure that it is,
// then assume it is a storage texel buffer.
return base_type->GetSingleWordInOperand(kTypeImageSampledIndex) != 1;
}
bool Instruction::IsVulkanStorageBuffer() const {
// Is there a difference between a "Storage buffer" and a "dynamic storage
// buffer" in SPIR-V and do we care about the difference?
if (opcode() != SpvOpTypePointer) {
return false;
}
ir::Instruction* base_type =
context()->get_def_use_mgr()->GetDef(GetSingleWordInOperand(1));
if (base_type->opcode() != SpvOpTypeStruct) {
return false;
}
uint32_t storage_class = GetSingleWordInOperand(kVariableStorageClassIndex);
if (storage_class == SpvStorageClassUniform) {
bool is_buffer_block = false;
context()->get_decoration_mgr()->ForEachDecoration(
base_type->result_id(), SpvDecorationBufferBlock,
[&is_buffer_block](const ir::Instruction&) { is_buffer_block = true; });
return is_buffer_block;
} else if (storage_class == SpvStorageClassStorageBuffer) {
bool is_block = false;
context()->get_decoration_mgr()->ForEachDecoration(
base_type->result_id(), SpvDecorationBlock,
[&is_block](const ir::Instruction&) { is_block = true; });
return is_block;
}
return false;
}
bool Instruction::IsVulkanUniformBuffer() const {
if (opcode() != SpvOpTypePointer) {
return false;
}
uint32_t storage_class = GetSingleWordInOperand(kVariableStorageClassIndex);
if (storage_class != SpvStorageClassUniform) {
return false;
}
ir::Instruction* base_type =
context()->get_def_use_mgr()->GetDef(GetSingleWordInOperand(1));
if (base_type->opcode() != SpvOpTypeStruct) {
return false;
}
bool is_block = false;
context()->get_decoration_mgr()->ForEachDecoration(
base_type->result_id(), SpvDecorationBlock,
[&is_block](const ir::Instruction&) { is_block = true; });
return is_block;
}
bool Instruction::IsReadOnlyVariableShaders() const {
uint32_t storage_class = GetSingleWordInOperand(kVariableStorageClassIndex);
Instruction* type_def = context()->get_def_use_mgr()->GetDef(type_id());
switch (storage_class) {
case SpvStorageClassUniformConstant:
if (!type_def->IsVulkanStorageImage() &&
!type_def->IsVulkanStorageTexelBuffer()) {
return true;
}
break;
case SpvStorageClassUniform:
if (!type_def->IsVulkanStorageBuffer()) {
return true;
}
break;
case SpvStorageClassPushConstant:
case SpvStorageClassInput:
return true;
default:
break;
}
bool is_nonwritable = false;
context()->get_decoration_mgr()->ForEachDecoration(
result_id(), SpvDecorationNonWritable,
[&is_nonwritable](const Instruction&) { is_nonwritable = true; });
return is_nonwritable;
}
bool Instruction::IsReadOnlyVariableKernel() const {
uint32_t storage_class = GetSingleWordInOperand(kVariableStorageClassIndex);
return storage_class == SpvStorageClassUniformConstant;
}
uint32_t Instruction::GetTypeComponent(uint32_t element) const {
uint32_t subtype = 0;
switch (opcode()) {
case SpvOpTypeStruct:
subtype = GetSingleWordInOperand(element);
break;
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray:
case SpvOpTypeVector:
case SpvOpTypeMatrix:
// These types all have uniform subtypes.
subtype = GetSingleWordInOperand(0u);
break;
default:
break;
}
return subtype;
}
Instruction* Instruction::InsertBefore(
std::vector<std::unique_ptr<Instruction>>&& list) {
Instruction* first_node = list.front().get();
for (auto& i : list) {
i.release()->InsertBefore(this);
}
list.clear();
return first_node;
}
Instruction* Instruction::InsertBefore(std::unique_ptr<Instruction>&& i) {
i.get()->InsertBefore(this);
return i.release();
}
bool Instruction::IsValidBasePointer() const {
uint32_t tid = type_id();
if (tid == 0) {
return false;
}
ir::Instruction* type = context()->get_def_use_mgr()->GetDef(tid);
if (type->opcode() != SpvOpTypePointer) {
return false;
}
if (context()->get_feature_mgr()->HasCapability(SpvCapabilityAddresses)) {
// TODO: The rules here could be more restrictive.
return true;
}
if (opcode() == SpvOpVariable || opcode() == SpvOpFunctionParameter) {
return true;
}
uint32_t pointee_type_id = type->GetSingleWordInOperand(1);
ir::Instruction* pointee_type_inst =
context()->get_def_use_mgr()->GetDef(pointee_type_id);
if (pointee_type_inst->IsOpaqueType()) {
return true;
}
return false;
}
bool Instruction::IsValidBaseImage() const {
uint32_t tid = type_id();
if (tid == 0) {
return false;
}
ir::Instruction* type = context()->get_def_use_mgr()->GetDef(tid);
return (type->opcode() == SpvOpTypeImage ||
type->opcode() == SpvOpTypeSampledImage);
}
bool Instruction::IsOpaqueType() const {
if (opcode() == SpvOpTypeStruct) {
bool is_opaque = false;
ForEachInOperand([&is_opaque, this](const uint32_t* op_id) {
ir::Instruction* type_inst = context()->get_def_use_mgr()->GetDef(*op_id);
is_opaque |= type_inst->IsOpaqueType();
});
return is_opaque;
} else if (opcode() == SpvOpTypeArray) {
uint32_t sub_type_id = GetSingleWordInOperand(0);
ir::Instruction* sub_type_inst =
context()->get_def_use_mgr()->GetDef(sub_type_id);
return sub_type_inst->IsOpaqueType();
} else {
return opcode() == SpvOpTypeRuntimeArray ||
spvOpcodeIsBaseOpaqueType(opcode());
}
}
bool Instruction::IsFoldable() const {
return IsFoldableByFoldScalar() ||
opt::GetConstantFoldingRules().HasFoldingRule(opcode());
}
bool Instruction::IsFoldableByFoldScalar() const {
if (!opt::IsFoldableOpcode(opcode())) {
return false;
}
Instruction* type = context()->get_def_use_mgr()->GetDef(type_id());
return opt::IsFoldableType(type);
}
bool Instruction::IsFloatingPointFoldingAllowed() const {
// TODO: Add the rules for kernels. For now it will be pessimistic.
if (!context_->get_feature_mgr()->HasCapability(SpvCapabilityShader)) {
return false;
}
bool is_nocontract = false;
context_->get_decoration_mgr()->WhileEachDecoration(
opcode_, SpvDecorationNoContraction,
[&is_nocontract](const ir::Instruction&) {
is_nocontract = true;
return false;
});
return !is_nocontract;
}
std::string Instruction::PrettyPrint(uint32_t options) const {
// Convert the module to binary.
std::vector<uint32_t> module_binary;
context()->module()->ToBinary(&module_binary, /* skip_nop = */ false);
// Convert the instruction to binary. This is used to identify the correct
// stream of words to output from the module.
std::vector<uint32_t> inst_binary;
ToBinaryWithoutAttachedDebugInsts(&inst_binary);
// Do not generate a header.
return spvInstructionBinaryToText(
context()->grammar().target_env(), inst_binary.data(), inst_binary.size(),
module_binary.data(), module_binary.size(),
options | SPV_BINARY_TO_TEXT_OPTION_NO_HEADER);
}
std::ostream& operator<<(std::ostream& str, const ir::Instruction& inst) {
str << inst.PrettyPrint();
return str;
}
bool Instruction::IsOpcodeCodeMotionSafe() const {
switch (opcode_) {
case SpvOpVectorExtractDynamic:
case SpvOpVectorInsertDynamic:
case SpvOpVectorShuffle:
case SpvOpConvertFToU:
case SpvOpConvertFToS:
case SpvOpConvertSToF:
case SpvOpConvertUToF:
case SpvOpUConvert:
case SpvOpSConvert:
case SpvOpFConvert:
case SpvOpQuantizeToF16:
case SpvOpBitcast:
case SpvOpSNegate:
case SpvOpFNegate:
case SpvOpIAdd:
case SpvOpFAdd:
case SpvOpISub:
case SpvOpFSub:
case SpvOpIMul:
case SpvOpFMul:
case SpvOpUDiv:
case SpvOpSDiv:
case SpvOpFDiv:
case SpvOpUMod:
case SpvOpSRem:
case SpvOpSMod:
case SpvOpFRem:
case SpvOpFMod:
case SpvOpVectorTimesScalar:
case SpvOpMatrixTimesScalar:
case SpvOpVectorTimesMatrix:
case SpvOpMatrixTimesVector:
case SpvOpMatrixTimesMatrix:
case SpvOpLogicalEqual:
case SpvOpLogicalNotEqual:
case SpvOpLogicalOr:
case SpvOpLogicalAnd:
case SpvOpLogicalNot:
case SpvOpIEqual:
case SpvOpINotEqual:
case SpvOpUGreaterThan:
case SpvOpSGreaterThan:
case SpvOpUGreaterThanEqual:
case SpvOpSGreaterThanEqual:
case SpvOpULessThan:
case SpvOpSLessThan:
case SpvOpULessThanEqual:
case SpvOpSLessThanEqual:
case SpvOpFOrdEqual:
case SpvOpFUnordEqual:
case SpvOpFOrdNotEqual:
case SpvOpFUnordNotEqual:
case SpvOpFOrdLessThan:
case SpvOpFUnordLessThan:
case SpvOpFOrdGreaterThan:
case SpvOpFUnordGreaterThan:
case SpvOpFOrdLessThanEqual:
case SpvOpFUnordLessThanEqual:
case SpvOpFOrdGreaterThanEqual:
case SpvOpFUnordGreaterThanEqual:
case SpvOpShiftRightLogical:
case SpvOpShiftRightArithmetic:
case SpvOpShiftLeftLogical:
case SpvOpBitwiseOr:
case SpvOpBitwiseXor:
case SpvOpBitwiseAnd:
case SpvOpNot:
return true;
default:
return false;
}
}
} // namespace ir
} // namespace spvtools