SPIRV-Tools/source/fuzz/fuzzer_util.cpp
Alastair Donaldson 75d7c14cfb
spirv-fuzz: Remove AddType methods from fuzzerutil (#4204)
Types should only be added to the module by spirv-fuzz via
transformations, so this change removes the AddType methods from
fuzzerutil, which were only called once each from the appropriate
transformation.

The transformations have been adapted so that they avoid redundantly
invalidating all analyses - they now update the def-use manager and
invalidate only the type manager.
2021-03-20 08:54:51 +00:00

1922 lines
69 KiB
C++

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/fuzzer_util.h"
#include <algorithm>
#include <unordered_set>
#include "source/opt/build_module.h"
namespace spvtools {
namespace fuzz {
namespace fuzzerutil {
namespace {
// A utility class that uses RAII to change and restore the terminator
// instruction of the |block|.
class ChangeTerminatorRAII {
public:
explicit ChangeTerminatorRAII(opt::BasicBlock* block,
opt::Instruction new_terminator)
: block_(block), old_terminator_(std::move(*block->terminator())) {
*block_->terminator() = std::move(new_terminator);
}
~ChangeTerminatorRAII() {
*block_->terminator() = std::move(old_terminator_);
}
private:
opt::BasicBlock* block_;
opt::Instruction old_terminator_;
};
uint32_t MaybeGetOpConstant(opt::IRContext* ir_context,
const TransformationContext& transformation_context,
const std::vector<uint32_t>& words,
uint32_t type_id, bool is_irrelevant) {
for (const auto& inst : ir_context->types_values()) {
if (inst.opcode() == SpvOpConstant && inst.type_id() == type_id &&
inst.GetInOperand(0).words == words &&
transformation_context.GetFactManager()->IdIsIrrelevant(
inst.result_id()) == is_irrelevant) {
return inst.result_id();
}
}
return 0;
}
} // namespace
const spvtools::MessageConsumer kSilentMessageConsumer =
[](spv_message_level_t, const char*, const spv_position_t&,
const char*) -> void {};
bool BuildIRContext(spv_target_env target_env,
const spvtools::MessageConsumer& message_consumer,
const std::vector<uint32_t>& binary_in,
spv_validator_options validator_options,
std::unique_ptr<spvtools::opt::IRContext>* ir_context) {
SpirvTools tools(target_env);
tools.SetMessageConsumer(message_consumer);
if (!tools.IsValid()) {
message_consumer(SPV_MSG_ERROR, nullptr, {},
"Failed to create SPIRV-Tools interface; stopping.");
return false;
}
// Initial binary should be valid.
if (!tools.Validate(binary_in.data(), binary_in.size(), validator_options)) {
message_consumer(SPV_MSG_ERROR, nullptr, {},
"Initial binary is invalid; stopping.");
return false;
}
// Build the module from the input binary.
auto result = BuildModule(target_env, message_consumer, binary_in.data(),
binary_in.size());
assert(result && "IRContext must be valid");
*ir_context = std::move(result);
return true;
}
bool IsFreshId(opt::IRContext* context, uint32_t id) {
return !context->get_def_use_mgr()->GetDef(id);
}
void UpdateModuleIdBound(opt::IRContext* context, uint32_t id) {
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/2541) consider the
// case where the maximum id bound is reached.
context->module()->SetIdBound(
std::max(context->module()->id_bound(), id + 1));
}
opt::BasicBlock* MaybeFindBlock(opt::IRContext* context,
uint32_t maybe_block_id) {
auto inst = context->get_def_use_mgr()->GetDef(maybe_block_id);
if (inst == nullptr) {
// No instruction defining this id was found.
return nullptr;
}
if (inst->opcode() != SpvOpLabel) {
// The instruction defining the id is not a label, so it cannot be a block
// id.
return nullptr;
}
return context->cfg()->block(maybe_block_id);
}
bool PhiIdsOkForNewEdge(
opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to,
const google::protobuf::RepeatedField<google::protobuf::uint32>& phi_ids) {
if (bb_from->IsSuccessor(bb_to)) {
// There is already an edge from |from_block| to |to_block|, so there is
// no need to extend OpPhi instructions. Do not allow phi ids to be
// present. This might turn out to be too strict; perhaps it would be OK
// just to ignore the ids in this case.
return phi_ids.empty();
}
// The edge would add a previously non-existent edge from |from_block| to
// |to_block|, so we go through the given phi ids and check that they exactly
// match the OpPhi instructions in |to_block|.
uint32_t phi_index = 0;
// An explicit loop, rather than applying a lambda to each OpPhi in |bb_to|,
// makes sense here because we need to increment |phi_index| for each OpPhi
// instruction.
for (auto& inst : *bb_to) {
if (inst.opcode() != SpvOpPhi) {
// The OpPhi instructions all occur at the start of the block; if we find
// a non-OpPhi then we have seen them all.
break;
}
if (phi_index == static_cast<uint32_t>(phi_ids.size())) {
// Not enough phi ids have been provided to account for the OpPhi
// instructions.
return false;
}
// Look for an instruction defining the next phi id.
opt::Instruction* phi_extension =
context->get_def_use_mgr()->GetDef(phi_ids[phi_index]);
if (!phi_extension) {
// The id given to extend this OpPhi does not exist.
return false;
}
if (phi_extension->type_id() != inst.type_id()) {
// The instruction given to extend this OpPhi either does not have a type
// or its type does not match that of the OpPhi.
return false;
}
if (context->get_instr_block(phi_extension)) {
// The instruction defining the phi id has an associated block (i.e., it
// is not a global value). Check whether its definition dominates the
// exit of |from_block|.
auto dominator_analysis =
context->GetDominatorAnalysis(bb_from->GetParent());
if (!dominator_analysis->Dominates(phi_extension,
bb_from->terminator())) {
// The given id is no good as its definition does not dominate the exit
// of |from_block|
return false;
}
}
phi_index++;
}
// We allow some of the ids provided for extending OpPhi instructions to be
// unused. Their presence does no harm, and requiring a perfect match may
// make transformations less likely to cleanly apply.
return true;
}
opt::Instruction CreateUnreachableEdgeInstruction(opt::IRContext* ir_context,
uint32_t bb_from_id,
uint32_t bb_to_id,
uint32_t bool_id) {
const auto* bb_from = MaybeFindBlock(ir_context, bb_from_id);
assert(bb_from && "|bb_from_id| is invalid");
assert(MaybeFindBlock(ir_context, bb_to_id) && "|bb_to_id| is invalid");
assert(bb_from->terminator()->opcode() == SpvOpBranch &&
"Precondition on terminator of bb_from is not satisfied");
// Get the id of the boolean constant to be used as the condition.
auto condition_inst = ir_context->get_def_use_mgr()->GetDef(bool_id);
assert(condition_inst &&
(condition_inst->opcode() == SpvOpConstantTrue ||
condition_inst->opcode() == SpvOpConstantFalse) &&
"|bool_id| is invalid");
auto condition_value = condition_inst->opcode() == SpvOpConstantTrue;
auto successor_id = bb_from->terminator()->GetSingleWordInOperand(0);
// Add the dead branch, by turning OpBranch into OpBranchConditional, and
// ordering the targets depending on whether the given boolean corresponds to
// true or false.
return opt::Instruction(
ir_context, SpvOpBranchConditional, 0, 0,
{{SPV_OPERAND_TYPE_ID, {bool_id}},
{SPV_OPERAND_TYPE_ID, {condition_value ? successor_id : bb_to_id}},
{SPV_OPERAND_TYPE_ID, {condition_value ? bb_to_id : successor_id}}});
}
void AddUnreachableEdgeAndUpdateOpPhis(
opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to,
uint32_t bool_id,
const google::protobuf::RepeatedField<google::protobuf::uint32>& phi_ids) {
assert(PhiIdsOkForNewEdge(context, bb_from, bb_to, phi_ids) &&
"Precondition on phi_ids is not satisfied");
const bool from_to_edge_already_exists = bb_from->IsSuccessor(bb_to);
*bb_from->terminator() = CreateUnreachableEdgeInstruction(
context, bb_from->id(), bb_to->id(), bool_id);
// Update OpPhi instructions in the target block if this branch adds a
// previously non-existent edge from source to target.
if (!from_to_edge_already_exists) {
uint32_t phi_index = 0;
for (auto& inst : *bb_to) {
if (inst.opcode() != SpvOpPhi) {
break;
}
assert(phi_index < static_cast<uint32_t>(phi_ids.size()) &&
"There should be at least one phi id per OpPhi instruction.");
inst.AddOperand({SPV_OPERAND_TYPE_ID, {phi_ids[phi_index]}});
inst.AddOperand({SPV_OPERAND_TYPE_ID, {bb_from->id()}});
phi_index++;
}
}
}
bool BlockIsBackEdge(opt::IRContext* context, uint32_t block_id,
uint32_t loop_header_id) {
auto block = context->cfg()->block(block_id);
auto loop_header = context->cfg()->block(loop_header_id);
// |block| and |loop_header| must be defined, |loop_header| must be in fact
// loop header and |block| must branch to it.
if (!(block && loop_header && loop_header->IsLoopHeader() &&
block->IsSuccessor(loop_header))) {
return false;
}
// |block_id| must be reachable and be dominated by |loop_header|.
opt::DominatorAnalysis* dominator_analysis =
context->GetDominatorAnalysis(loop_header->GetParent());
return dominator_analysis->IsReachable(block_id) &&
dominator_analysis->Dominates(loop_header_id, block_id);
}
bool BlockIsInLoopContinueConstruct(opt::IRContext* context, uint32_t block_id,
uint32_t maybe_loop_header_id) {
// We deem a block to be part of a loop's continue construct if the loop's
// continue target dominates the block.
auto containing_construct_block = context->cfg()->block(maybe_loop_header_id);
if (containing_construct_block->IsLoopHeader()) {
auto continue_target = containing_construct_block->ContinueBlockId();
if (context->GetDominatorAnalysis(containing_construct_block->GetParent())
->Dominates(continue_target, block_id)) {
return true;
}
}
return false;
}
opt::BasicBlock::iterator GetIteratorForInstruction(
opt::BasicBlock* block, const opt::Instruction* inst) {
for (auto inst_it = block->begin(); inst_it != block->end(); ++inst_it) {
if (inst == &*inst_it) {
return inst_it;
}
}
return block->end();
}
bool BlockIsReachableInItsFunction(opt::IRContext* context,
opt::BasicBlock* bb) {
auto enclosing_function = bb->GetParent();
return context->GetDominatorAnalysis(enclosing_function)
->Dominates(enclosing_function->entry().get(), bb);
}
bool CanInsertOpcodeBeforeInstruction(
SpvOp opcode, const opt::BasicBlock::iterator& instruction_in_block) {
if (instruction_in_block->PreviousNode() &&
(instruction_in_block->PreviousNode()->opcode() == SpvOpLoopMerge ||
instruction_in_block->PreviousNode()->opcode() == SpvOpSelectionMerge)) {
// We cannot insert directly after a merge instruction.
return false;
}
if (opcode != SpvOpVariable &&
instruction_in_block->opcode() == SpvOpVariable) {
// We cannot insert a non-OpVariable instruction directly before a
// variable; variables in a function must be contiguous in the entry block.
return false;
}
// We cannot insert a non-OpPhi instruction directly before an OpPhi, because
// OpPhi instructions need to be contiguous at the start of a block.
return opcode == SpvOpPhi || instruction_in_block->opcode() != SpvOpPhi;
}
bool CanMakeSynonymOf(opt::IRContext* ir_context,
const TransformationContext& transformation_context,
opt::Instruction* inst) {
if (inst->opcode() == SpvOpSampledImage) {
// The SPIR-V data rules say that only very specific instructions may
// may consume the result id of an OpSampledImage, and this excludes the
// instructions that are used for making synonyms.
return false;
}
if (!inst->HasResultId()) {
// We can only make a synonym of an instruction that generates an id.
return false;
}
if (transformation_context.GetFactManager()->IdIsIrrelevant(
inst->result_id())) {
// An irrelevant id can't be a synonym of anything.
return false;
}
if (!inst->type_id()) {
// We can only make a synonym of an instruction that has a type.
return false;
}
auto type_inst = ir_context->get_def_use_mgr()->GetDef(inst->type_id());
if (type_inst->opcode() == SpvOpTypeVoid) {
// We only make synonyms of instructions that define objects, and an object
// cannot have void type.
return false;
}
if (type_inst->opcode() == SpvOpTypePointer) {
switch (inst->opcode()) {
case SpvOpConstantNull:
case SpvOpUndef:
// We disallow making synonyms of null or undefined pointers. This is
// to provide the property that if the original shader exhibited no bad
// pointer accesses, the transformed shader will not either.
return false;
default:
break;
}
}
// We do not make synonyms of objects that have decorations: if the synonym is
// not decorated analogously, using the original object vs. its synonymous
// form may not be equivalent.
return ir_context->get_decoration_mgr()
->GetDecorationsFor(inst->result_id(), true)
.empty();
}
bool IsCompositeType(const opt::analysis::Type* type) {
return type && (type->AsArray() || type->AsMatrix() || type->AsStruct() ||
type->AsVector());
}
std::vector<uint32_t> RepeatedFieldToVector(
const google::protobuf::RepeatedField<uint32_t>& repeated_field) {
std::vector<uint32_t> result;
for (auto i : repeated_field) {
result.push_back(i);
}
return result;
}
uint32_t WalkOneCompositeTypeIndex(opt::IRContext* context,
uint32_t base_object_type_id,
uint32_t index) {
auto should_be_composite_type =
context->get_def_use_mgr()->GetDef(base_object_type_id);
assert(should_be_composite_type && "The type should exist.");
switch (should_be_composite_type->opcode()) {
case SpvOpTypeArray: {
auto array_length = GetArraySize(*should_be_composite_type, context);
if (array_length == 0 || index >= array_length) {
return 0;
}
return should_be_composite_type->GetSingleWordInOperand(0);
}
case SpvOpTypeMatrix:
case SpvOpTypeVector: {
auto count = should_be_composite_type->GetSingleWordInOperand(1);
if (index >= count) {
return 0;
}
return should_be_composite_type->GetSingleWordInOperand(0);
}
case SpvOpTypeStruct: {
if (index >= GetNumberOfStructMembers(*should_be_composite_type)) {
return 0;
}
return should_be_composite_type->GetSingleWordInOperand(index);
}
default:
return 0;
}
}
uint32_t WalkCompositeTypeIndices(
opt::IRContext* context, uint32_t base_object_type_id,
const google::protobuf::RepeatedField<google::protobuf::uint32>& indices) {
uint32_t sub_object_type_id = base_object_type_id;
for (auto index : indices) {
sub_object_type_id =
WalkOneCompositeTypeIndex(context, sub_object_type_id, index);
if (!sub_object_type_id) {
return 0;
}
}
return sub_object_type_id;
}
uint32_t GetNumberOfStructMembers(
const opt::Instruction& struct_type_instruction) {
assert(struct_type_instruction.opcode() == SpvOpTypeStruct &&
"An OpTypeStruct instruction is required here.");
return struct_type_instruction.NumInOperands();
}
uint32_t GetArraySize(const opt::Instruction& array_type_instruction,
opt::IRContext* context) {
auto array_length_constant =
context->get_constant_mgr()
->GetConstantFromInst(context->get_def_use_mgr()->GetDef(
array_type_instruction.GetSingleWordInOperand(1)))
->AsIntConstant();
if (array_length_constant->words().size() != 1) {
return 0;
}
return array_length_constant->GetU32();
}
uint32_t GetBoundForCompositeIndex(const opt::Instruction& composite_type_inst,
opt::IRContext* ir_context) {
switch (composite_type_inst.opcode()) {
case SpvOpTypeArray:
return fuzzerutil::GetArraySize(composite_type_inst, ir_context);
case SpvOpTypeMatrix:
case SpvOpTypeVector:
return composite_type_inst.GetSingleWordInOperand(1);
case SpvOpTypeStruct: {
return fuzzerutil::GetNumberOfStructMembers(composite_type_inst);
}
case SpvOpTypeRuntimeArray:
assert(false &&
"GetBoundForCompositeIndex should not be invoked with an "
"OpTypeRuntimeArray, which does not have a static bound.");
return 0;
default:
assert(false && "Unknown composite type.");
return 0;
}
}
bool IsValid(const opt::IRContext* context,
spv_validator_options validator_options,
MessageConsumer consumer) {
std::vector<uint32_t> binary;
context->module()->ToBinary(&binary, false);
SpirvTools tools(context->grammar().target_env());
tools.SetMessageConsumer(std::move(consumer));
return tools.Validate(binary.data(), binary.size(), validator_options);
}
bool IsValidAndWellFormed(const opt::IRContext* ir_context,
spv_validator_options validator_options,
MessageConsumer consumer) {
if (!IsValid(ir_context, validator_options, consumer)) {
// Expression to dump |ir_context| to /data/temp/shader.spv:
// DumpShader(ir_context, "/data/temp/shader.spv")
consumer(SPV_MSG_INFO, nullptr, {},
"Module is invalid (set a breakpoint to inspect).");
return false;
}
// Check that all blocks in the module have appropriate parent functions.
for (auto& function : *ir_context->module()) {
for (auto& block : function) {
if (block.GetParent() == nullptr) {
std::stringstream ss;
ss << "Block " << block.id() << " has no parent; its parent should be "
<< function.result_id() << " (set a breakpoint to inspect).";
consumer(SPV_MSG_INFO, nullptr, {}, ss.str().c_str());
return false;
}
if (block.GetParent() != &function) {
std::stringstream ss;
ss << "Block " << block.id() << " should have parent "
<< function.result_id() << " but instead has parent "
<< block.GetParent() << " (set a breakpoint to inspect).";
consumer(SPV_MSG_INFO, nullptr, {}, ss.str().c_str());
return false;
}
}
}
// Check that all instructions have distinct unique ids. We map each unique
// id to the first instruction it is observed to be associated with so that
// if we encounter a duplicate we have access to the previous instruction -
// this is a useful aid to debugging.
std::unordered_map<uint32_t, opt::Instruction*> unique_ids;
bool found_duplicate = false;
ir_context->module()->ForEachInst([&consumer, &found_duplicate,
&unique_ids](opt::Instruction* inst) {
if (unique_ids.count(inst->unique_id()) != 0) {
consumer(SPV_MSG_INFO, nullptr, {},
"Two instructions have the same unique id (set a breakpoint to "
"inspect).");
found_duplicate = true;
}
unique_ids.insert({inst->unique_id(), inst});
});
return !found_duplicate;
}
std::unique_ptr<opt::IRContext> CloneIRContext(opt::IRContext* context) {
std::vector<uint32_t> binary;
context->module()->ToBinary(&binary, false);
return BuildModule(context->grammar().target_env(), nullptr, binary.data(),
binary.size());
}
bool IsNonFunctionTypeId(opt::IRContext* ir_context, uint32_t id) {
auto type = ir_context->get_type_mgr()->GetType(id);
return type && !type->AsFunction();
}
bool IsMergeOrContinue(opt::IRContext* ir_context, uint32_t block_id) {
bool result = false;
ir_context->get_def_use_mgr()->WhileEachUse(
block_id,
[&result](const opt::Instruction* use_instruction,
uint32_t /*unused*/) -> bool {
switch (use_instruction->opcode()) {
case SpvOpLoopMerge:
case SpvOpSelectionMerge:
result = true;
return false;
default:
return true;
}
});
return result;
}
uint32_t GetLoopFromMergeBlock(opt::IRContext* ir_context,
uint32_t merge_block_id) {
uint32_t result = 0;
ir_context->get_def_use_mgr()->WhileEachUse(
merge_block_id,
[ir_context, &result](opt::Instruction* use_instruction,
uint32_t use_index) -> bool {
switch (use_instruction->opcode()) {
case SpvOpLoopMerge:
// The merge block operand is the first operand in OpLoopMerge.
if (use_index == 0) {
result = ir_context->get_instr_block(use_instruction)->id();
return false;
}
return true;
default:
return true;
}
});
return result;
}
uint32_t FindFunctionType(opt::IRContext* ir_context,
const std::vector<uint32_t>& type_ids) {
// Look through the existing types for a match.
for (auto& type_or_value : ir_context->types_values()) {
if (type_or_value.opcode() != SpvOpTypeFunction) {
// We are only interested in function types.
continue;
}
if (type_or_value.NumInOperands() != type_ids.size()) {
// Not a match: different numbers of arguments.
continue;
}
// Check whether the return type and argument types match.
bool input_operands_match = true;
for (uint32_t i = 0; i < type_or_value.NumInOperands(); i++) {
if (type_ids[i] != type_or_value.GetSingleWordInOperand(i)) {
input_operands_match = false;
break;
}
}
if (input_operands_match) {
// Everything matches.
return type_or_value.result_id();
}
}
// No match was found.
return 0;
}
opt::Instruction* GetFunctionType(opt::IRContext* context,
const opt::Function* function) {
uint32_t type_id = function->DefInst().GetSingleWordInOperand(1);
return context->get_def_use_mgr()->GetDef(type_id);
}
opt::Function* FindFunction(opt::IRContext* ir_context, uint32_t function_id) {
for (auto& function : *ir_context->module()) {
if (function.result_id() == function_id) {
return &function;
}
}
return nullptr;
}
bool FunctionContainsOpKillOrUnreachable(const opt::Function& function) {
for (auto& block : function) {
if (block.terminator()->opcode() == SpvOpKill ||
block.terminator()->opcode() == SpvOpUnreachable) {
return true;
}
}
return false;
}
bool FunctionIsEntryPoint(opt::IRContext* context, uint32_t function_id) {
for (auto& entry_point : context->module()->entry_points()) {
if (entry_point.GetSingleWordInOperand(1) == function_id) {
return true;
}
}
return false;
}
bool IdIsAvailableAtUse(opt::IRContext* context,
opt::Instruction* use_instruction,
uint32_t use_input_operand_index, uint32_t id) {
assert(context->get_instr_block(use_instruction) &&
"|use_instruction| must be in a basic block");
auto defining_instruction = context->get_def_use_mgr()->GetDef(id);
auto enclosing_function =
context->get_instr_block(use_instruction)->GetParent();
// If the id a function parameter, it needs to be associated with the
// function containing the use.
if (defining_instruction->opcode() == SpvOpFunctionParameter) {
return InstructionIsFunctionParameter(defining_instruction,
enclosing_function);
}
if (!context->get_instr_block(id)) {
// The id must be at global scope.
return true;
}
if (defining_instruction == use_instruction) {
// It is not OK for a definition to use itself.
return false;
}
auto dominator_analysis = context->GetDominatorAnalysis(enclosing_function);
if (!dominator_analysis->IsReachable(
context->get_instr_block(use_instruction)) ||
!dominator_analysis->IsReachable(context->get_instr_block(id))) {
// Skip unreachable blocks.
return false;
}
if (use_instruction->opcode() == SpvOpPhi) {
// In the case where the use is an operand to OpPhi, it is actually the
// *parent* block associated with the operand that must be dominated by
// the synonym.
auto parent_block =
use_instruction->GetSingleWordInOperand(use_input_operand_index + 1);
return dominator_analysis->Dominates(
context->get_instr_block(defining_instruction)->id(), parent_block);
}
return dominator_analysis->Dominates(defining_instruction, use_instruction);
}
bool IdIsAvailableBeforeInstruction(opt::IRContext* context,
opt::Instruction* instruction,
uint32_t id) {
assert(context->get_instr_block(instruction) &&
"|instruction| must be in a basic block");
auto id_definition = context->get_def_use_mgr()->GetDef(id);
auto function_enclosing_instruction =
context->get_instr_block(instruction)->GetParent();
// If the id a function parameter, it needs to be associated with the
// function containing the instruction.
if (id_definition->opcode() == SpvOpFunctionParameter) {
return InstructionIsFunctionParameter(id_definition,
function_enclosing_instruction);
}
if (!context->get_instr_block(id)) {
// The id is at global scope.
return true;
}
if (id_definition == instruction) {
// The instruction is not available right before its own definition.
return false;
}
const auto* dominator_analysis =
context->GetDominatorAnalysis(function_enclosing_instruction);
if (dominator_analysis->IsReachable(context->get_instr_block(instruction)) &&
dominator_analysis->IsReachable(context->get_instr_block(id)) &&
dominator_analysis->Dominates(id_definition, instruction)) {
// The id's definition dominates the instruction, and both the definition
// and the instruction are in reachable blocks, thus the id is available at
// the instruction.
return true;
}
if (id_definition->opcode() == SpvOpVariable &&
function_enclosing_instruction ==
context->get_instr_block(id)->GetParent()) {
assert(!dominator_analysis->IsReachable(
context->get_instr_block(instruction)) &&
"If the instruction were in a reachable block we should already "
"have returned true.");
// The id is a variable and it is in the same function as |instruction|.
// This is OK despite |instruction| being unreachable.
return true;
}
return false;
}
bool InstructionIsFunctionParameter(opt::Instruction* instruction,
opt::Function* function) {
if (instruction->opcode() != SpvOpFunctionParameter) {
return false;
}
bool found_parameter = false;
function->ForEachParam(
[instruction, &found_parameter](opt::Instruction* param) {
if (param == instruction) {
found_parameter = true;
}
});
return found_parameter;
}
uint32_t GetTypeId(opt::IRContext* context, uint32_t result_id) {
const auto* inst = context->get_def_use_mgr()->GetDef(result_id);
assert(inst && "|result_id| is invalid");
return inst->type_id();
}
uint32_t GetPointeeTypeIdFromPointerType(opt::Instruction* pointer_type_inst) {
assert(pointer_type_inst && pointer_type_inst->opcode() == SpvOpTypePointer &&
"Precondition: |pointer_type_inst| must be OpTypePointer.");
return pointer_type_inst->GetSingleWordInOperand(1);
}
uint32_t GetPointeeTypeIdFromPointerType(opt::IRContext* context,
uint32_t pointer_type_id) {
return GetPointeeTypeIdFromPointerType(
context->get_def_use_mgr()->GetDef(pointer_type_id));
}
SpvStorageClass GetStorageClassFromPointerType(
opt::Instruction* pointer_type_inst) {
assert(pointer_type_inst && pointer_type_inst->opcode() == SpvOpTypePointer &&
"Precondition: |pointer_type_inst| must be OpTypePointer.");
return static_cast<SpvStorageClass>(
pointer_type_inst->GetSingleWordInOperand(0));
}
SpvStorageClass GetStorageClassFromPointerType(opt::IRContext* context,
uint32_t pointer_type_id) {
return GetStorageClassFromPointerType(
context->get_def_use_mgr()->GetDef(pointer_type_id));
}
uint32_t MaybeGetPointerType(opt::IRContext* context, uint32_t pointee_type_id,
SpvStorageClass storage_class) {
for (auto& inst : context->types_values()) {
switch (inst.opcode()) {
case SpvOpTypePointer:
if (inst.GetSingleWordInOperand(0) == storage_class &&
inst.GetSingleWordInOperand(1) == pointee_type_id) {
return inst.result_id();
}
break;
default:
break;
}
}
return 0;
}
uint32_t InOperandIndexFromOperandIndex(const opt::Instruction& inst,
uint32_t absolute_index) {
// Subtract the number of non-input operands from the index
return absolute_index - inst.NumOperands() + inst.NumInOperands();
}
bool IsNullConstantSupported(const opt::analysis::Type& type) {
return type.AsBool() || type.AsInteger() || type.AsFloat() ||
type.AsMatrix() || type.AsVector() || type.AsArray() ||
type.AsStruct() || type.AsPointer() || type.AsEvent() ||
type.AsDeviceEvent() || type.AsReserveId() || type.AsQueue();
}
bool GlobalVariablesMustBeDeclaredInEntryPointInterfaces(
const opt::IRContext* ir_context) {
// TODO(afd): We capture the environments for which this requirement holds.
// The check should be refined on demand for other target environments.
switch (ir_context->grammar().target_env()) {
case SPV_ENV_UNIVERSAL_1_0:
case SPV_ENV_UNIVERSAL_1_1:
case SPV_ENV_UNIVERSAL_1_2:
case SPV_ENV_UNIVERSAL_1_3:
case SPV_ENV_VULKAN_1_0:
case SPV_ENV_VULKAN_1_1:
return false;
default:
return true;
}
}
void AddVariableIdToEntryPointInterfaces(opt::IRContext* context, uint32_t id) {
if (GlobalVariablesMustBeDeclaredInEntryPointInterfaces(context)) {
// Conservatively add this global to the interface of every entry point in
// the module. This means that the global is available for other
// transformations to use.
//
// A downside of this is that the global will be in the interface even if it
// ends up never being used.
//
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3111) revisit
// this if a more thorough approach to entry point interfaces is taken.
for (auto& entry_point : context->module()->entry_points()) {
entry_point.AddOperand({SPV_OPERAND_TYPE_ID, {id}});
}
}
}
void AddGlobalVariable(opt::IRContext* context, uint32_t result_id,
uint32_t type_id, SpvStorageClass storage_class,
uint32_t initializer_id) {
// Check various preconditions.
assert(result_id != 0 && "Result id can't be 0");
assert((storage_class == SpvStorageClassPrivate ||
storage_class == SpvStorageClassWorkgroup) &&
"Variable's storage class must be either Private or Workgroup");
auto* type_inst = context->get_def_use_mgr()->GetDef(type_id);
(void)type_inst; // Variable becomes unused in release mode.
assert(type_inst && type_inst->opcode() == SpvOpTypePointer &&
GetStorageClassFromPointerType(type_inst) == storage_class &&
"Variable's type is invalid");
if (storage_class == SpvStorageClassWorkgroup) {
assert(initializer_id == 0);
}
if (initializer_id != 0) {
const auto* constant_inst =
context->get_def_use_mgr()->GetDef(initializer_id);
(void)constant_inst; // Variable becomes unused in release mode.
assert(constant_inst && spvOpcodeIsConstant(constant_inst->opcode()) &&
GetPointeeTypeIdFromPointerType(type_inst) ==
constant_inst->type_id() &&
"Initializer is invalid");
}
opt::Instruction::OperandList operands = {
{SPV_OPERAND_TYPE_STORAGE_CLASS, {static_cast<uint32_t>(storage_class)}}};
if (initializer_id) {
operands.push_back({SPV_OPERAND_TYPE_ID, {initializer_id}});
}
context->module()->AddGlobalValue(MakeUnique<opt::Instruction>(
context, SpvOpVariable, type_id, result_id, std::move(operands)));
AddVariableIdToEntryPointInterfaces(context, result_id);
UpdateModuleIdBound(context, result_id);
}
void AddLocalVariable(opt::IRContext* context, uint32_t result_id,
uint32_t type_id, uint32_t function_id,
uint32_t initializer_id) {
// Check various preconditions.
assert(result_id != 0 && "Result id can't be 0");
auto* type_inst = context->get_def_use_mgr()->GetDef(type_id);
(void)type_inst; // Variable becomes unused in release mode.
assert(type_inst && type_inst->opcode() == SpvOpTypePointer &&
GetStorageClassFromPointerType(type_inst) == SpvStorageClassFunction &&
"Variable's type is invalid");
const auto* constant_inst =
context->get_def_use_mgr()->GetDef(initializer_id);
(void)constant_inst; // Variable becomes unused in release mode.
assert(constant_inst && spvOpcodeIsConstant(constant_inst->opcode()) &&
GetPointeeTypeIdFromPointerType(type_inst) ==
constant_inst->type_id() &&
"Initializer is invalid");
auto* function = FindFunction(context, function_id);
assert(function && "Function id is invalid");
function->begin()->begin()->InsertBefore(MakeUnique<opt::Instruction>(
context, SpvOpVariable, type_id, result_id,
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_STORAGE_CLASS, {SpvStorageClassFunction}},
{SPV_OPERAND_TYPE_ID, {initializer_id}}}));
UpdateModuleIdBound(context, result_id);
}
bool HasDuplicates(const std::vector<uint32_t>& arr) {
return std::unordered_set<uint32_t>(arr.begin(), arr.end()).size() !=
arr.size();
}
bool IsPermutationOfRange(const std::vector<uint32_t>& arr, uint32_t lo,
uint32_t hi) {
if (arr.empty()) {
return lo > hi;
}
if (HasDuplicates(arr)) {
return false;
}
auto min_max = std::minmax_element(arr.begin(), arr.end());
return arr.size() == hi - lo + 1 && *min_max.first == lo &&
*min_max.second == hi;
}
std::vector<opt::Instruction*> GetParameters(opt::IRContext* ir_context,
uint32_t function_id) {
auto* function = FindFunction(ir_context, function_id);
assert(function && "|function_id| is invalid");
std::vector<opt::Instruction*> result;
function->ForEachParam(
[&result](opt::Instruction* inst) { result.push_back(inst); });
return result;
}
void RemoveParameter(opt::IRContext* ir_context, uint32_t parameter_id) {
auto* function = GetFunctionFromParameterId(ir_context, parameter_id);
assert(function && "|parameter_id| is invalid");
assert(!FunctionIsEntryPoint(ir_context, function->result_id()) &&
"Can't remove parameter from an entry point function");
function->RemoveParameter(parameter_id);
// We've just removed parameters from the function and cleared their memory.
// Make sure analyses have no dangling pointers.
ir_context->InvalidateAnalysesExceptFor(
opt::IRContext::Analysis::kAnalysisNone);
}
std::vector<opt::Instruction*> GetCallers(opt::IRContext* ir_context,
uint32_t function_id) {
assert(FindFunction(ir_context, function_id) &&
"|function_id| is not a result id of a function");
std::vector<opt::Instruction*> result;
ir_context->get_def_use_mgr()->ForEachUser(
function_id, [&result, function_id](opt::Instruction* inst) {
if (inst->opcode() == SpvOpFunctionCall &&
inst->GetSingleWordInOperand(0) == function_id) {
result.push_back(inst);
}
});
return result;
}
opt::Function* GetFunctionFromParameterId(opt::IRContext* ir_context,
uint32_t param_id) {
auto* param_inst = ir_context->get_def_use_mgr()->GetDef(param_id);
assert(param_inst && "Parameter id is invalid");
for (auto& function : *ir_context->module()) {
if (InstructionIsFunctionParameter(param_inst, &function)) {
return &function;
}
}
return nullptr;
}
uint32_t UpdateFunctionType(opt::IRContext* ir_context, uint32_t function_id,
uint32_t new_function_type_result_id,
uint32_t return_type_id,
const std::vector<uint32_t>& parameter_type_ids) {
// Check some initial constraints.
assert(ir_context->get_type_mgr()->GetType(return_type_id) &&
"Return type is invalid");
for (auto id : parameter_type_ids) {
const auto* type = ir_context->get_type_mgr()->GetType(id);
(void)type; // Make compilers happy in release mode.
// Parameters can't be OpTypeVoid.
assert(type && !type->AsVoid() && "Parameter has invalid type");
}
auto* function = FindFunction(ir_context, function_id);
assert(function && "|function_id| is invalid");
auto* old_function_type = GetFunctionType(ir_context, function);
assert(old_function_type && "Function has invalid type");
std::vector<uint32_t> operand_ids = {return_type_id};
operand_ids.insert(operand_ids.end(), parameter_type_ids.begin(),
parameter_type_ids.end());
// A trivial case - we change nothing.
if (FindFunctionType(ir_context, operand_ids) ==
old_function_type->result_id()) {
return old_function_type->result_id();
}
if (ir_context->get_def_use_mgr()->NumUsers(old_function_type) == 1 &&
FindFunctionType(ir_context, operand_ids) == 0) {
// We can change |old_function_type| only if it's used once in the module
// and we are certain we won't create a duplicate as a result of the change.
// Update |old_function_type| in-place.
opt::Instruction::OperandList operands;
for (auto id : operand_ids) {
operands.push_back({SPV_OPERAND_TYPE_ID, {id}});
}
old_function_type->SetInOperands(std::move(operands));
// |operands| may depend on result ids defined below the |old_function_type|
// in the module.
old_function_type->RemoveFromList();
ir_context->AddType(std::unique_ptr<opt::Instruction>(old_function_type));
return old_function_type->result_id();
} else {
// We can't modify the |old_function_type| so we have to either use an
// existing one or create a new one.
auto type_id = FindOrCreateFunctionType(
ir_context, new_function_type_result_id, operand_ids);
assert(type_id != old_function_type->result_id() &&
"We should've handled this case above");
function->DefInst().SetInOperand(1, {type_id});
// DefUseManager hasn't been updated yet, so if the following condition is
// true, then |old_function_type| will have no users when this function
// returns. We might as well remove it.
if (ir_context->get_def_use_mgr()->NumUsers(old_function_type) == 1) {
ir_context->KillInst(old_function_type);
}
return type_id;
}
}
void AddFunctionType(opt::IRContext* ir_context, uint32_t result_id,
const std::vector<uint32_t>& type_ids) {
assert(result_id != 0 && "Result id can't be 0");
assert(!type_ids.empty() &&
"OpTypeFunction always has at least one operand - function's return "
"type");
assert(IsNonFunctionTypeId(ir_context, type_ids[0]) &&
"Return type must not be a function");
for (size_t i = 1; i < type_ids.size(); ++i) {
const auto* param_type = ir_context->get_type_mgr()->GetType(type_ids[i]);
(void)param_type; // Make compiler happy in release mode.
assert(param_type && !param_type->AsVoid() && !param_type->AsFunction() &&
"Function parameter can't have a function or void type");
}
opt::Instruction::OperandList operands;
operands.reserve(type_ids.size());
for (auto id : type_ids) {
operands.push_back({SPV_OPERAND_TYPE_ID, {id}});
}
ir_context->AddType(MakeUnique<opt::Instruction>(
ir_context, SpvOpTypeFunction, 0, result_id, std::move(operands)));
UpdateModuleIdBound(ir_context, result_id);
}
uint32_t FindOrCreateFunctionType(opt::IRContext* ir_context,
uint32_t result_id,
const std::vector<uint32_t>& type_ids) {
if (auto existing_id = FindFunctionType(ir_context, type_ids)) {
return existing_id;
}
AddFunctionType(ir_context, result_id, type_ids);
return result_id;
}
uint32_t MaybeGetIntegerType(opt::IRContext* ir_context, uint32_t width,
bool is_signed) {
opt::analysis::Integer type(width, is_signed);
return ir_context->get_type_mgr()->GetId(&type);
}
uint32_t MaybeGetFloatType(opt::IRContext* ir_context, uint32_t width) {
opt::analysis::Float type(width);
return ir_context->get_type_mgr()->GetId(&type);
}
uint32_t MaybeGetBoolType(opt::IRContext* ir_context) {
opt::analysis::Bool type;
return ir_context->get_type_mgr()->GetId(&type);
}
uint32_t MaybeGetVectorType(opt::IRContext* ir_context,
uint32_t component_type_id,
uint32_t element_count) {
const auto* component_type =
ir_context->get_type_mgr()->GetType(component_type_id);
assert(component_type &&
(component_type->AsInteger() || component_type->AsFloat() ||
component_type->AsBool()) &&
"|component_type_id| is invalid");
assert(element_count >= 2 && element_count <= 4 &&
"Precondition: component count must be in range [2, 4].");
opt::analysis::Vector type(component_type, element_count);
return ir_context->get_type_mgr()->GetId(&type);
}
uint32_t MaybeGetStructType(opt::IRContext* ir_context,
const std::vector<uint32_t>& component_type_ids) {
for (auto& type_or_value : ir_context->types_values()) {
if (type_or_value.opcode() != SpvOpTypeStruct ||
type_or_value.NumInOperands() !=
static_cast<uint32_t>(component_type_ids.size())) {
continue;
}
bool all_components_match = true;
for (uint32_t i = 0; i < component_type_ids.size(); i++) {
if (type_or_value.GetSingleWordInOperand(i) != component_type_ids[i]) {
all_components_match = false;
break;
}
}
if (all_components_match) {
return type_or_value.result_id();
}
}
return 0;
}
uint32_t MaybeGetVoidType(opt::IRContext* ir_context) {
opt::analysis::Void type;
return ir_context->get_type_mgr()->GetId(&type);
}
uint32_t MaybeGetZeroConstant(
opt::IRContext* ir_context,
const TransformationContext& transformation_context,
uint32_t scalar_or_composite_type_id, bool is_irrelevant) {
const auto* type_inst =
ir_context->get_def_use_mgr()->GetDef(scalar_or_composite_type_id);
assert(type_inst && "|scalar_or_composite_type_id| is invalid");
switch (type_inst->opcode()) {
case SpvOpTypeBool:
return MaybeGetBoolConstant(ir_context, transformation_context, false,
is_irrelevant);
case SpvOpTypeFloat:
case SpvOpTypeInt: {
const auto width = type_inst->GetSingleWordInOperand(0);
std::vector<uint32_t> words = {0};
if (width > 32) {
words.push_back(0);
}
return MaybeGetScalarConstant(ir_context, transformation_context, words,
scalar_or_composite_type_id, is_irrelevant);
}
case SpvOpTypeStruct: {
std::vector<uint32_t> component_ids;
for (uint32_t i = 0; i < type_inst->NumInOperands(); ++i) {
const auto component_type_id = type_inst->GetSingleWordInOperand(i);
auto component_id =
MaybeGetZeroConstant(ir_context, transformation_context,
component_type_id, is_irrelevant);
if (component_id == 0 && is_irrelevant) {
// Irrelevant constants can use either relevant or irrelevant
// constituents.
component_id = MaybeGetZeroConstant(
ir_context, transformation_context, component_type_id, false);
}
if (component_id == 0) {
return 0;
}
component_ids.push_back(component_id);
}
return MaybeGetCompositeConstant(
ir_context, transformation_context, component_ids,
scalar_or_composite_type_id, is_irrelevant);
}
case SpvOpTypeMatrix:
case SpvOpTypeVector: {
const auto component_type_id = type_inst->GetSingleWordInOperand(0);
auto component_id = MaybeGetZeroConstant(
ir_context, transformation_context, component_type_id, is_irrelevant);
if (component_id == 0 && is_irrelevant) {
// Irrelevant constants can use either relevant or irrelevant
// constituents.
component_id = MaybeGetZeroConstant(ir_context, transformation_context,
component_type_id, false);
}
if (component_id == 0) {
return 0;
}
const auto component_count = type_inst->GetSingleWordInOperand(1);
return MaybeGetCompositeConstant(
ir_context, transformation_context,
std::vector<uint32_t>(component_count, component_id),
scalar_or_composite_type_id, is_irrelevant);
}
case SpvOpTypeArray: {
const auto component_type_id = type_inst->GetSingleWordInOperand(0);
auto component_id = MaybeGetZeroConstant(
ir_context, transformation_context, component_type_id, is_irrelevant);
if (component_id == 0 && is_irrelevant) {
// Irrelevant constants can use either relevant or irrelevant
// constituents.
component_id = MaybeGetZeroConstant(ir_context, transformation_context,
component_type_id, false);
}
if (component_id == 0) {
return 0;
}
return MaybeGetCompositeConstant(
ir_context, transformation_context,
std::vector<uint32_t>(GetArraySize(*type_inst, ir_context),
component_id),
scalar_or_composite_type_id, is_irrelevant);
}
default:
assert(false && "Type is not supported");
return 0;
}
}
bool CanCreateConstant(opt::IRContext* ir_context, uint32_t type_id) {
opt::Instruction* type_instr = ir_context->get_def_use_mgr()->GetDef(type_id);
assert(type_instr != nullptr && "The type must exist.");
assert(spvOpcodeGeneratesType(type_instr->opcode()) &&
"A type-generating opcode was expected.");
switch (type_instr->opcode()) {
case SpvOpTypeBool:
case SpvOpTypeInt:
case SpvOpTypeFloat:
case SpvOpTypeMatrix:
case SpvOpTypeVector:
return true;
case SpvOpTypeArray:
return CanCreateConstant(ir_context,
type_instr->GetSingleWordInOperand(0));
case SpvOpTypeStruct:
if (HasBlockOrBufferBlockDecoration(ir_context, type_id)) {
return false;
}
for (uint32_t index = 0; index < type_instr->NumInOperands(); index++) {
if (!CanCreateConstant(ir_context,
type_instr->GetSingleWordInOperand(index))) {
return false;
}
}
return true;
default:
return false;
}
}
uint32_t MaybeGetScalarConstant(
opt::IRContext* ir_context,
const TransformationContext& transformation_context,
const std::vector<uint32_t>& words, uint32_t scalar_type_id,
bool is_irrelevant) {
const auto* type = ir_context->get_type_mgr()->GetType(scalar_type_id);
assert(type && "|scalar_type_id| is invalid");
if (const auto* int_type = type->AsInteger()) {
return MaybeGetIntegerConstant(ir_context, transformation_context, words,
int_type->width(), int_type->IsSigned(),
is_irrelevant);
} else if (const auto* float_type = type->AsFloat()) {
return MaybeGetFloatConstant(ir_context, transformation_context, words,
float_type->width(), is_irrelevant);
} else {
assert(type->AsBool() && words.size() == 1 &&
"|scalar_type_id| doesn't represent a scalar type");
return MaybeGetBoolConstant(ir_context, transformation_context, words[0],
is_irrelevant);
}
}
uint32_t MaybeGetCompositeConstant(
opt::IRContext* ir_context,
const TransformationContext& transformation_context,
const std::vector<uint32_t>& component_ids, uint32_t composite_type_id,
bool is_irrelevant) {
const auto* type = ir_context->get_type_mgr()->GetType(composite_type_id);
(void)type; // Make compilers happy in release mode.
assert(IsCompositeType(type) && "|composite_type_id| is invalid");
for (const auto& inst : ir_context->types_values()) {
if (inst.opcode() == SpvOpConstantComposite &&
inst.type_id() == composite_type_id &&
transformation_context.GetFactManager()->IdIsIrrelevant(
inst.result_id()) == is_irrelevant &&
inst.NumInOperands() == component_ids.size()) {
bool is_match = true;
for (uint32_t i = 0; i < inst.NumInOperands(); ++i) {
if (inst.GetSingleWordInOperand(i) != component_ids[i]) {
is_match = false;
break;
}
}
if (is_match) {
return inst.result_id();
}
}
}
return 0;
}
uint32_t MaybeGetIntegerConstant(
opt::IRContext* ir_context,
const TransformationContext& transformation_context,
const std::vector<uint32_t>& words, uint32_t width, bool is_signed,
bool is_irrelevant) {
if (auto type_id = MaybeGetIntegerType(ir_context, width, is_signed)) {
return MaybeGetOpConstant(ir_context, transformation_context, words,
type_id, is_irrelevant);
}
return 0;
}
uint32_t MaybeGetIntegerConstantFromValueAndType(opt::IRContext* ir_context,
uint32_t value,
uint32_t int_type_id) {
auto int_type_inst = ir_context->get_def_use_mgr()->GetDef(int_type_id);
assert(int_type_inst && "The given type id must exist.");
auto int_type = ir_context->get_type_mgr()
->GetType(int_type_inst->result_id())
->AsInteger();
assert(int_type && int_type->width() == 32 &&
"The given type id must correspond to an 32-bit integer type.");
opt::analysis::IntConstant constant(int_type, {value});
// Check that the constant exists in the module.
if (!ir_context->get_constant_mgr()->FindConstant(&constant)) {
return 0;
}
return ir_context->get_constant_mgr()
->GetDefiningInstruction(&constant)
->result_id();
}
uint32_t MaybeGetFloatConstant(
opt::IRContext* ir_context,
const TransformationContext& transformation_context,
const std::vector<uint32_t>& words, uint32_t width, bool is_irrelevant) {
if (auto type_id = MaybeGetFloatType(ir_context, width)) {
return MaybeGetOpConstant(ir_context, transformation_context, words,
type_id, is_irrelevant);
}
return 0;
}
uint32_t MaybeGetBoolConstant(
opt::IRContext* ir_context,
const TransformationContext& transformation_context, bool value,
bool is_irrelevant) {
if (auto type_id = MaybeGetBoolType(ir_context)) {
for (const auto& inst : ir_context->types_values()) {
if (inst.opcode() == (value ? SpvOpConstantTrue : SpvOpConstantFalse) &&
inst.type_id() == type_id &&
transformation_context.GetFactManager()->IdIsIrrelevant(
inst.result_id()) == is_irrelevant) {
return inst.result_id();
}
}
}
return 0;
}
std::vector<uint32_t> IntToWords(uint64_t value, uint32_t width,
bool is_signed) {
assert(width <= 64 && "The bit width should not be more than 64 bits");
// Sign-extend or zero-extend the last |width| bits of |value|, depending on
// |is_signed|.
if (is_signed) {
// Sign-extend by shifting left and then shifting right, interpreting the
// integer as signed.
value = static_cast<int64_t>(value << (64 - width)) >> (64 - width);
} else {
// Zero-extend by shifting left and then shifting right, interpreting the
// integer as unsigned.
value = (value << (64 - width)) >> (64 - width);
}
std::vector<uint32_t> result;
result.push_back(static_cast<uint32_t>(value));
if (width > 32) {
result.push_back(static_cast<uint32_t>(value >> 32));
}
return result;
}
bool TypesAreEqualUpToSign(opt::IRContext* ir_context, uint32_t type1_id,
uint32_t type2_id) {
if (type1_id == type2_id) {
return true;
}
auto type1 = ir_context->get_type_mgr()->GetType(type1_id);
auto type2 = ir_context->get_type_mgr()->GetType(type2_id);
// Integer scalar types must have the same width
if (type1->AsInteger() && type2->AsInteger()) {
return type1->AsInteger()->width() == type2->AsInteger()->width();
}
// Integer vector types must have the same number of components and their
// component types must be integers with the same width.
if (type1->AsVector() && type2->AsVector()) {
auto component_type1 = type1->AsVector()->element_type()->AsInteger();
auto component_type2 = type2->AsVector()->element_type()->AsInteger();
// Only check the component count and width if they are integer.
if (component_type1 && component_type2) {
return type1->AsVector()->element_count() ==
type2->AsVector()->element_count() &&
component_type1->width() == component_type2->width();
}
}
// In all other cases, the types cannot be considered equal.
return false;
}
std::map<uint32_t, uint32_t> RepeatedUInt32PairToMap(
const google::protobuf::RepeatedPtrField<protobufs::UInt32Pair>& data) {
std::map<uint32_t, uint32_t> result;
for (const auto& entry : data) {
result[entry.first()] = entry.second();
}
return result;
}
google::protobuf::RepeatedPtrField<protobufs::UInt32Pair>
MapToRepeatedUInt32Pair(const std::map<uint32_t, uint32_t>& data) {
google::protobuf::RepeatedPtrField<protobufs::UInt32Pair> result;
for (const auto& entry : data) {
protobufs::UInt32Pair pair;
pair.set_first(entry.first);
pair.set_second(entry.second);
*result.Add() = std::move(pair);
}
return result;
}
opt::Instruction* GetLastInsertBeforeInstruction(opt::IRContext* ir_context,
uint32_t block_id,
SpvOp opcode) {
// CFG::block uses std::map::at which throws an exception when |block_id| is
// invalid. The error message is unhelpful, though. Thus, we test that
// |block_id| is valid here.
const auto* label_inst = ir_context->get_def_use_mgr()->GetDef(block_id);
(void)label_inst; // Make compilers happy in release mode.
assert(label_inst && label_inst->opcode() == SpvOpLabel &&
"|block_id| is invalid");
auto* block = ir_context->cfg()->block(block_id);
auto it = block->rbegin();
assert(it != block->rend() && "Basic block can't be empty");
if (block->GetMergeInst()) {
++it;
assert(it != block->rend() &&
"|block| must have at least two instructions:"
"terminator and a merge instruction");
}
return CanInsertOpcodeBeforeInstruction(opcode, &*it) ? &*it : nullptr;
}
bool IdUseCanBeReplaced(opt::IRContext* ir_context,
const TransformationContext& transformation_context,
opt::Instruction* use_instruction,
uint32_t use_in_operand_index) {
if (spvOpcodeIsAccessChain(use_instruction->opcode()) &&
use_in_operand_index > 0) {
// A replacement for an irrelevant index in OpAccessChain must be clamped
// first.
if (transformation_context.GetFactManager()->IdIsIrrelevant(
use_instruction->GetSingleWordInOperand(use_in_operand_index))) {
return false;
}
// This is an access chain index. If the (sub-)object being accessed by the
// given index has struct type then we cannot replace the use, as it needs
// to be an OpConstant.
// Get the top-level composite type that is being accessed.
auto object_being_accessed = ir_context->get_def_use_mgr()->GetDef(
use_instruction->GetSingleWordInOperand(0));
auto pointer_type =
ir_context->get_type_mgr()->GetType(object_being_accessed->type_id());
assert(pointer_type->AsPointer());
auto composite_type_being_accessed =
pointer_type->AsPointer()->pointee_type();
// Now walk the access chain, tracking the type of each sub-object of the
// composite that is traversed, until the index of interest is reached.
for (uint32_t index_in_operand = 1; index_in_operand < use_in_operand_index;
index_in_operand++) {
// For vectors, matrices and arrays, getting the type of the sub-object is
// trivial. For the struct case, the sub-object type is field-sensitive,
// and depends on the constant index that is used.
if (composite_type_being_accessed->AsVector()) {
composite_type_being_accessed =
composite_type_being_accessed->AsVector()->element_type();
} else if (composite_type_being_accessed->AsMatrix()) {
composite_type_being_accessed =
composite_type_being_accessed->AsMatrix()->element_type();
} else if (composite_type_being_accessed->AsArray()) {
composite_type_being_accessed =
composite_type_being_accessed->AsArray()->element_type();
} else if (composite_type_being_accessed->AsRuntimeArray()) {
composite_type_being_accessed =
composite_type_being_accessed->AsRuntimeArray()->element_type();
} else {
assert(composite_type_being_accessed->AsStruct());
auto constant_index_instruction = ir_context->get_def_use_mgr()->GetDef(
use_instruction->GetSingleWordInOperand(index_in_operand));
assert(constant_index_instruction->opcode() == SpvOpConstant);
uint32_t member_index =
constant_index_instruction->GetSingleWordInOperand(0);
composite_type_being_accessed =
composite_type_being_accessed->AsStruct()
->element_types()[member_index];
}
}
// We have found the composite type being accessed by the index we are
// considering replacing. If it is a struct, then we cannot do the
// replacement as struct indices must be constants.
if (composite_type_being_accessed->AsStruct()) {
return false;
}
}
if (use_instruction->opcode() == SpvOpFunctionCall &&
use_in_operand_index > 0) {
// This is a function call argument. It is not allowed to have pointer
// type.
// Get the definition of the function being called.
auto function = ir_context->get_def_use_mgr()->GetDef(
use_instruction->GetSingleWordInOperand(0));
// From the function definition, get the function type.
auto function_type = ir_context->get_def_use_mgr()->GetDef(
function->GetSingleWordInOperand(1));
// OpTypeFunction's 0-th input operand is the function return type, and the
// function argument types follow. Because the arguments to OpFunctionCall
// start from input operand 1, we can use |use_in_operand_index| to get the
// type associated with this function argument.
auto parameter_type = ir_context->get_type_mgr()->GetType(
function_type->GetSingleWordInOperand(use_in_operand_index));
if (parameter_type->AsPointer()) {
return false;
}
}
if (use_instruction->opcode() == SpvOpImageTexelPointer &&
use_in_operand_index == 2) {
// The OpImageTexelPointer instruction has a Sample parameter that in some
// situations must be an id for the value 0. To guard against disrupting
// that requirement, we do not replace this argument to that instruction.
return false;
}
return true;
}
bool MembersHaveBuiltInDecoration(opt::IRContext* ir_context,
uint32_t struct_type_id) {
const auto* type_inst = ir_context->get_def_use_mgr()->GetDef(struct_type_id);
assert(type_inst && type_inst->opcode() == SpvOpTypeStruct &&
"|struct_type_id| is not a result id of an OpTypeStruct");
uint32_t builtin_count = 0;
ir_context->get_def_use_mgr()->ForEachUser(
type_inst,
[struct_type_id, &builtin_count](const opt::Instruction* user) {
if (user->opcode() == SpvOpMemberDecorate &&
user->GetSingleWordInOperand(0) == struct_type_id &&
static_cast<SpvDecoration>(user->GetSingleWordInOperand(2)) ==
SpvDecorationBuiltIn) {
++builtin_count;
}
});
assert((builtin_count == 0 || builtin_count == type_inst->NumInOperands()) &&
"The module is invalid: either none or all of the members of "
"|struct_type_id| may be builtin");
return builtin_count != 0;
}
bool HasBlockOrBufferBlockDecoration(opt::IRContext* ir_context, uint32_t id) {
for (auto decoration : {SpvDecorationBlock, SpvDecorationBufferBlock}) {
if (!ir_context->get_decoration_mgr()->WhileEachDecoration(
id, decoration, [](const opt::Instruction & /*unused*/) -> bool {
return false;
})) {
return true;
}
}
return false;
}
bool SplittingBeforeInstructionSeparatesOpSampledImageDefinitionFromUse(
opt::BasicBlock* block_to_split, opt::Instruction* split_before) {
std::set<uint32_t> sampled_image_result_ids;
bool before_split = true;
// Check all the instructions in the block to split.
for (auto& instruction : *block_to_split) {
if (&instruction == &*split_before) {
before_split = false;
}
if (before_split) {
// If the instruction comes before the split and its opcode is
// OpSampledImage, record its result id.
if (instruction.opcode() == SpvOpSampledImage) {
sampled_image_result_ids.insert(instruction.result_id());
}
} else {
// If the instruction comes after the split, check if ids
// corresponding to OpSampledImage instructions defined before the split
// are used, and return true if they are.
if (!instruction.WhileEachInId(
[&sampled_image_result_ids](uint32_t* id) -> bool {
return !sampled_image_result_ids.count(*id);
})) {
return true;
}
}
}
// No usage that would be separated from the definition has been found.
return false;
}
bool InstructionHasNoSideEffects(const opt::Instruction& instruction) {
switch (instruction.opcode()) {
case SpvOpUndef:
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
case SpvOpArrayLength:
case SpvOpVectorExtractDynamic:
case SpvOpVectorInsertDynamic:
case SpvOpVectorShuffle:
case SpvOpCompositeConstruct:
case SpvOpCompositeExtract:
case SpvOpCompositeInsert:
case SpvOpCopyObject:
case SpvOpTranspose:
case SpvOpConvertFToU:
case SpvOpConvertFToS:
case SpvOpConvertSToF:
case SpvOpConvertUToF:
case SpvOpUConvert:
case SpvOpSConvert:
case SpvOpFConvert:
case SpvOpQuantizeToF16:
case SpvOpSatConvertSToU:
case SpvOpSatConvertUToS:
case SpvOpBitcast:
case SpvOpSNegate:
case SpvOpFNegate:
case SpvOpIAdd:
case SpvOpFAdd:
case SpvOpISub:
case SpvOpFSub:
case SpvOpIMul:
case SpvOpFMul:
case SpvOpUDiv:
case SpvOpSDiv:
case SpvOpFDiv:
case SpvOpUMod:
case SpvOpSRem:
case SpvOpSMod:
case SpvOpFRem:
case SpvOpFMod:
case SpvOpVectorTimesScalar:
case SpvOpMatrixTimesScalar:
case SpvOpVectorTimesMatrix:
case SpvOpMatrixTimesVector:
case SpvOpMatrixTimesMatrix:
case SpvOpOuterProduct:
case SpvOpDot:
case SpvOpIAddCarry:
case SpvOpISubBorrow:
case SpvOpUMulExtended:
case SpvOpSMulExtended:
case SpvOpAny:
case SpvOpAll:
case SpvOpIsNan:
case SpvOpIsInf:
case SpvOpIsFinite:
case SpvOpIsNormal:
case SpvOpSignBitSet:
case SpvOpLessOrGreater:
case SpvOpOrdered:
case SpvOpUnordered:
case SpvOpLogicalEqual:
case SpvOpLogicalNotEqual:
case SpvOpLogicalOr:
case SpvOpLogicalAnd:
case SpvOpLogicalNot:
case SpvOpSelect:
case SpvOpIEqual:
case SpvOpINotEqual:
case SpvOpUGreaterThan:
case SpvOpSGreaterThan:
case SpvOpUGreaterThanEqual:
case SpvOpSGreaterThanEqual:
case SpvOpULessThan:
case SpvOpSLessThan:
case SpvOpULessThanEqual:
case SpvOpSLessThanEqual:
case SpvOpFOrdEqual:
case SpvOpFUnordEqual:
case SpvOpFOrdNotEqual:
case SpvOpFUnordNotEqual:
case SpvOpFOrdLessThan:
case SpvOpFUnordLessThan:
case SpvOpFOrdGreaterThan:
case SpvOpFUnordGreaterThan:
case SpvOpFOrdLessThanEqual:
case SpvOpFUnordLessThanEqual:
case SpvOpFOrdGreaterThanEqual:
case SpvOpFUnordGreaterThanEqual:
case SpvOpShiftRightLogical:
case SpvOpShiftRightArithmetic:
case SpvOpShiftLeftLogical:
case SpvOpBitwiseOr:
case SpvOpBitwiseXor:
case SpvOpBitwiseAnd:
case SpvOpNot:
case SpvOpBitFieldInsert:
case SpvOpBitFieldSExtract:
case SpvOpBitFieldUExtract:
case SpvOpBitReverse:
case SpvOpBitCount:
case SpvOpCopyLogical:
case SpvOpPhi:
case SpvOpPtrEqual:
case SpvOpPtrNotEqual:
return true;
default:
return false;
}
}
std::set<uint32_t> GetReachableReturnBlocks(opt::IRContext* ir_context,
uint32_t function_id) {
auto function = ir_context->GetFunction(function_id);
assert(function && "The function |function_id| must exist.");
std::set<uint32_t> result;
ir_context->cfg()->ForEachBlockInPostOrder(function->entry().get(),
[&result](opt::BasicBlock* block) {
if (block->IsReturn()) {
result.emplace(block->id());
}
});
return result;
}
bool NewTerminatorPreservesDominationRules(opt::IRContext* ir_context,
uint32_t block_id,
opt::Instruction new_terminator) {
auto* mutated_block = MaybeFindBlock(ir_context, block_id);
assert(mutated_block && "|block_id| is invalid");
ChangeTerminatorRAII change_terminator_raii(mutated_block,
std::move(new_terminator));
opt::DominatorAnalysis dominator_analysis;
dominator_analysis.InitializeTree(*ir_context->cfg(),
mutated_block->GetParent());
// Check that each dominator appears before each dominated block.
std::unordered_map<uint32_t, size_t> positions;
for (const auto& block : *mutated_block->GetParent()) {
positions[block.id()] = positions.size();
}
std::queue<uint32_t> q({mutated_block->GetParent()->begin()->id()});
std::unordered_set<uint32_t> visited;
while (!q.empty()) {
auto block = q.front();
q.pop();
visited.insert(block);
auto success = ir_context->cfg()->block(block)->WhileEachSuccessorLabel(
[&positions, &visited, &dominator_analysis, block, &q](uint32_t id) {
if (id == block) {
// Handle the case when loop header and continue target are the same
// block.
return true;
}
if (dominator_analysis.Dominates(block, id) &&
positions[block] > positions[id]) {
// |block| dominates |id| but appears after |id| - violates
// domination rules.
return false;
}
if (!visited.count(id)) {
q.push(id);
}
return true;
});
if (!success) {
return false;
}
}
// For each instruction in the |block->GetParent()| function check whether
// all its dependencies satisfy domination rules (i.e. all id operands
// dominate that instruction).
for (const auto& block : *mutated_block->GetParent()) {
if (!dominator_analysis.IsReachable(&block)) {
// If some block is not reachable then we don't need to worry about the
// preservation of domination rules for its instructions.
continue;
}
for (const auto& inst : block) {
for (uint32_t i = 0; i < inst.NumInOperands();
i += inst.opcode() == SpvOpPhi ? 2 : 1) {
const auto& operand = inst.GetInOperand(i);
if (!spvIsInIdType(operand.type)) {
continue;
}
if (MaybeFindBlock(ir_context, operand.words[0])) {
// Ignore operands that refer to OpLabel instructions.
continue;
}
const auto* dependency_block =
ir_context->get_instr_block(operand.words[0]);
if (!dependency_block) {
// A global instruction always dominates all instructions in any
// function.
continue;
}
auto domination_target_id = inst.opcode() == SpvOpPhi
? inst.GetSingleWordInOperand(i + 1)
: block.id();
if (!dominator_analysis.Dominates(dependency_block->id(),
domination_target_id)) {
return false;
}
}
}
}
return true;
}
} // namespace fuzzerutil
} // namespace fuzz
} // namespace spvtools