SPIRV-Tools/source/opt/trim_capabilities_pass.h
Natalie Chouinard 0045b01ff9
opt: Add VulkanMemoryModelDeviceScope to trim (#5544)
Add the VulkanMemoryModelDeviceScope capability to the capability
trimming pass. According the the spec, "If the Vulkan memory model is
declared and any instruction uses Device scope, the
VulkanMemoryModelDeviceScope capability must be declared." Since this
case, based on the type of an operand, is not covered by the JSON
grammar, it is added explicitly.
2024-01-25 14:05:04 -05:00

205 lines
8.0 KiB
C++

// Copyright (c) 2023 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SOURCE_OPT_TRIM_CAPABILITIES_PASS_H_
#define SOURCE_OPT_TRIM_CAPABILITIES_PASS_H_
#include <algorithm>
#include <array>
#include <functional>
#include <optional>
#include <unordered_map>
#include <unordered_set>
#include "source/enum_set.h"
#include "source/extensions.h"
#include "source/opt/ir_context.h"
#include "source/opt/module.h"
#include "source/opt/pass.h"
#include "source/spirv_target_env.h"
namespace spvtools {
namespace opt {
// This is required for NDK build. The unordered_set/unordered_map
// implementation don't work with class enums.
struct ClassEnumHash {
std::size_t operator()(spv::Capability value) const {
using StoringType = typename std::underlying_type_t<spv::Capability>;
return std::hash<StoringType>{}(static_cast<StoringType>(value));
}
std::size_t operator()(spv::Op value) const {
using StoringType = typename std::underlying_type_t<spv::Op>;
return std::hash<StoringType>{}(static_cast<StoringType>(value));
}
};
// An opcode handler is a function which, given an instruction, returns either
// the required capability, or nothing.
// Each handler checks one case for a capability requirement.
//
// Example:
// - `OpTypeImage` can have operand `A` operand which requires capability 1
// - `OpTypeImage` can also have operand `B` which requires capability 2.
// -> We have 2 handlers: `Handler_OpTypeImage_1` and
// `Handler_OpTypeImage_2`.
using OpcodeHandler =
std::optional<spv::Capability> (*)(const Instruction* instruction);
// This pass tried to remove superfluous capabilities declared in the module.
// - If all the capabilities listed by an extension are removed, the extension
// is also trimmed.
// - If the module countains any capability listed in `kForbiddenCapabilities`,
// the module is left untouched.
// - No capabilities listed in `kUntouchableCapabilities` are trimmed, even when
// not used.
// - Only capabilitied listed in `kSupportedCapabilities` are supported.
// - If the module contains unsupported capabilities, results might be
// incorrect.
class TrimCapabilitiesPass : public Pass {
private:
// All the capabilities supported by this optimization pass. If your module
// contains unsupported instruction, the pass could yield bad results.
static constexpr std::array kSupportedCapabilities{
// clang-format off
spv::Capability::ComputeDerivativeGroupLinearNV,
spv::Capability::ComputeDerivativeGroupQuadsNV,
spv::Capability::Float16,
spv::Capability::Float64,
spv::Capability::FragmentShaderPixelInterlockEXT,
spv::Capability::FragmentShaderSampleInterlockEXT,
spv::Capability::FragmentShaderShadingRateInterlockEXT,
spv::Capability::Groups,
spv::Capability::ImageMSArray,
spv::Capability::Int16,
spv::Capability::Int64,
spv::Capability::Linkage,
spv::Capability::MinLod,
spv::Capability::PhysicalStorageBufferAddresses,
spv::Capability::RayQueryKHR,
spv::Capability::RayTracingKHR,
spv::Capability::RayTraversalPrimitiveCullingKHR,
spv::Capability::Shader,
spv::Capability::ShaderClockKHR,
spv::Capability::StorageImageReadWithoutFormat,
spv::Capability::StorageInputOutput16,
spv::Capability::StoragePushConstant16,
spv::Capability::StorageUniform16,
spv::Capability::StorageUniformBufferBlock16,
spv::Capability::VulkanMemoryModelDeviceScope
// clang-format on
};
// Those capabilities disable all transformation of the module.
static constexpr std::array kForbiddenCapabilities{
spv::Capability::Linkage,
};
// Those capabilities are never removed from a module because we cannot
// guess from the SPIR-V only if they are required or not.
static constexpr std::array kUntouchableCapabilities{
spv::Capability::Shader,
};
public:
TrimCapabilitiesPass();
TrimCapabilitiesPass(const TrimCapabilitiesPass&) = delete;
TrimCapabilitiesPass(TrimCapabilitiesPass&&) = delete;
private:
// Inserts every capability listed by `descriptor` this pass supports into
// `output`. Expects a Descriptor like `spv_opcode_desc_t` or
// `spv_operand_desc_t`.
template <class Descriptor>
inline void addSupportedCapabilitiesToSet(const Descriptor* const descriptor,
CapabilitySet* output) const {
const uint32_t capabilityCount = descriptor->numCapabilities;
for (uint32_t i = 0; i < capabilityCount; ++i) {
const auto capability = descriptor->capabilities[i];
if (supportedCapabilities_.contains(capability)) {
output->insert(capability);
}
}
}
// Inserts every extension listed by `descriptor` required by the module into
// `output`. Expects a Descriptor like `spv_opcode_desc_t` or
// `spv_operand_desc_t`.
template <class Descriptor>
inline void addSupportedExtensionsToSet(const Descriptor* const descriptor,
ExtensionSet* output) const {
if (descriptor->minVersion <=
spvVersionForTargetEnv(context()->GetTargetEnv())) {
return;
}
output->insert(descriptor->extensions,
descriptor->extensions + descriptor->numExtensions);
}
void addInstructionRequirementsForOpcode(spv::Op opcode,
CapabilitySet* capabilities,
ExtensionSet* extensions) const;
void addInstructionRequirementsForOperand(const Operand& operand,
CapabilitySet* capabilities,
ExtensionSet* extensions) const;
// Given an `instruction`, determines the capabilities it requires, and output
// them in `capabilities`. The returned capabilities form a subset of
// kSupportedCapabilities.
void addInstructionRequirements(Instruction* instruction,
CapabilitySet* capabilities,
ExtensionSet* extensions) const;
// Given an operand `type` and `value`, adds the extensions it would require
// to `extensions`.
void AddExtensionsForOperand(const spv_operand_type_t type,
const uint32_t value,
ExtensionSet* extensions) const;
// Returns the list of required capabilities and extensions for the module.
// The returned capabilities form a subset of kSupportedCapabilities.
std::pair<CapabilitySet, ExtensionSet>
DetermineRequiredCapabilitiesAndExtensions() const;
// Trims capabilities not listed in `required_capabilities` if possible.
// Returns whether or not the module was modified.
Pass::Status TrimUnrequiredCapabilities(
const CapabilitySet& required_capabilities) const;
// Trims extensions not listed in `required_extensions` if supported by this
// pass. An extensions is considered supported as soon as one capability this
// pass support requires it.
Pass::Status TrimUnrequiredExtensions(
const ExtensionSet& required_extensions) const;
// Returns if the analyzed module contains any forbidden capability.
bool HasForbiddenCapabilities() const;
public:
const char* name() const override { return "trim-capabilities"; }
Status Process() override;
private:
const CapabilitySet supportedCapabilities_;
const CapabilitySet forbiddenCapabilities_;
const CapabilitySet untouchableCapabilities_;
const std::unordered_multimap<spv::Op, OpcodeHandler, ClassEnumHash>
opcodeHandlers_;
};
} // namespace opt
} // namespace spvtools
#endif // SOURCE_OPT_TRIM_CAPABILITIES_H_