SPIRV-Tools/source/fuzz/transformation_add_function.cpp
Alastair Donaldson 77fb303e58
spirv-fuzz: Fuzzer pass to add function calls (#3178)
Adds a fuzzer pass that inserts function calls into the module at
random. Calls from dead blocks can be arbitrary (so long as they do
not introduce recursion), while calls from other blocks can only be to
livesafe functions.

The change fixes some oversights in transformations to replace
constants with uniforms and to obfuscate constants which testing of
this fuzzer pass identified.
2020-02-10 23:22:34 +00:00

932 lines
36 KiB
C++

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/transformation_add_function.h"
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/instruction_message.h"
namespace spvtools {
namespace fuzz {
TransformationAddFunction::TransformationAddFunction(
const spvtools::fuzz::protobufs::TransformationAddFunction& message)
: message_(message) {}
TransformationAddFunction::TransformationAddFunction(
const std::vector<protobufs::Instruction>& instructions) {
for (auto& instruction : instructions) {
*message_.add_instruction() = instruction;
}
message_.set_is_livesafe(false);
}
TransformationAddFunction::TransformationAddFunction(
const std::vector<protobufs::Instruction>& instructions,
uint32_t loop_limiter_variable_id, uint32_t loop_limit_constant_id,
const std::vector<protobufs::LoopLimiterInfo>& loop_limiters,
uint32_t kill_unreachable_return_value_id,
const std::vector<protobufs::AccessChainClampingInfo>&
access_chain_clampers) {
for (auto& instruction : instructions) {
*message_.add_instruction() = instruction;
}
message_.set_is_livesafe(true);
message_.set_loop_limiter_variable_id(loop_limiter_variable_id);
message_.set_loop_limit_constant_id(loop_limit_constant_id);
for (auto& loop_limiter : loop_limiters) {
*message_.add_loop_limiter_info() = loop_limiter;
}
message_.set_kill_unreachable_return_value_id(
kill_unreachable_return_value_id);
for (auto& access_clamper : access_chain_clampers) {
*message_.add_access_chain_clamping_info() = access_clamper;
}
}
bool TransformationAddFunction::IsApplicable(
opt::IRContext* context,
const spvtools::fuzz::FactManager& fact_manager) const {
// This transformation may use a lot of ids, all of which need to be fresh
// and distinct. This set tracks them.
std::set<uint32_t> ids_used_by_this_transformation;
// Ensure that all result ids in the new function are fresh and distinct.
for (auto& instruction : message_.instruction()) {
if (instruction.result_id()) {
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
instruction.result_id(), context,
&ids_used_by_this_transformation)) {
return false;
}
}
}
if (message_.is_livesafe()) {
// Ensure that all ids provided for making the function livesafe are fresh
// and distinct.
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
message_.loop_limiter_variable_id(), context,
&ids_used_by_this_transformation)) {
return false;
}
for (auto& loop_limiter_info : message_.loop_limiter_info()) {
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
loop_limiter_info.load_id(), context,
&ids_used_by_this_transformation)) {
return false;
}
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
loop_limiter_info.increment_id(), context,
&ids_used_by_this_transformation)) {
return false;
}
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
loop_limiter_info.compare_id(), context,
&ids_used_by_this_transformation)) {
return false;
}
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
loop_limiter_info.logical_op_id(), context,
&ids_used_by_this_transformation)) {
return false;
}
}
for (auto& access_chain_clamping_info :
message_.access_chain_clamping_info()) {
for (auto& pair : access_chain_clamping_info.compare_and_select_ids()) {
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
pair.first(), context, &ids_used_by_this_transformation)) {
return false;
}
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
pair.second(), context, &ids_used_by_this_transformation)) {
return false;
}
}
}
}
// Because checking all the conditions for a function to be valid is a big
// job that the SPIR-V validator can already do, a "try it and see" approach
// is taken here.
// We first clone the current module, so that we can try adding the new
// function without risking wrecking |context|.
auto cloned_module = fuzzerutil::CloneIRContext(context);
// We try to add a function to the cloned module, which may fail if
// |message_.instruction| is not sufficiently well-formed.
if (!TryToAddFunction(cloned_module.get())) {
return false;
}
// Check whether the cloned module is still valid after adding the function.
// If it is not, the transformation is not applicable.
if (!fuzzerutil::IsValid(cloned_module.get())) {
return false;
}
if (message_.is_livesafe()) {
if (!TryToMakeFunctionLivesafe(cloned_module.get(), fact_manager)) {
return false;
}
// After making the function livesafe, we check validity of the module
// again. This is because the turning of OpKill, OpUnreachable and OpReturn
// instructions into branches changes control flow graph reachability, which
// has the potential to make the module invalid when it was otherwise valid.
// It is simpler to rely on the validator to guard against this than to
// consider all scenarios when making a function livesafe.
if (!fuzzerutil::IsValid(cloned_module.get())) {
return false;
}
}
return true;
}
void TransformationAddFunction::Apply(
opt::IRContext* context, spvtools::fuzz::FactManager* fact_manager) const {
// Add the function to the module. As the transformation is applicable, this
// should succeed.
bool success = TryToAddFunction(context);
assert(success && "The function should be successfully added.");
(void)(success); // Keep release builds happy (otherwise they may complain
// that |success| is not used).
// Record the fact that all pointer parameters and variables declared in the
// function should be regarded as having irrelevant values. This allows other
// passes to store arbitrarily to such variables, and to pass them freely as
// parameters to other functions knowing that it is OK if they get
// over-written.
for (auto& instruction : message_.instruction()) {
switch (instruction.opcode()) {
case SpvOpFunctionParameter:
if (context->get_def_use_mgr()
->GetDef(instruction.result_type_id())
->opcode() == SpvOpTypePointer) {
fact_manager->AddFactValueOfPointeeIsIrrelevant(
instruction.result_id());
}
break;
case SpvOpVariable:
fact_manager->AddFactValueOfPointeeIsIrrelevant(
instruction.result_id());
break;
default:
break;
}
}
if (message_.is_livesafe()) {
// Make the function livesafe, which also should succeed.
success = TryToMakeFunctionLivesafe(context, *fact_manager);
assert(success && "It should be possible to make the function livesafe.");
(void)(success); // Keep release builds happy.
// Inform the fact manager that the function is livesafe.
assert(message_.instruction(0).opcode() == SpvOpFunction &&
"The first instruction of an 'add function' transformation must be "
"OpFunction.");
fact_manager->AddFactFunctionIsLivesafe(
message_.instruction(0).result_id());
} else {
// Inform the fact manager that all blocks in the function are dead.
for (auto& inst : message_.instruction()) {
if (inst.opcode() == SpvOpLabel) {
fact_manager->AddFactBlockIsDead(inst.result_id());
}
}
}
context->InvalidateAnalysesExceptFor(opt::IRContext::kAnalysisNone);
}
protobufs::Transformation TransformationAddFunction::ToMessage() const {
protobufs::Transformation result;
*result.mutable_add_function() = message_;
return result;
}
bool TransformationAddFunction::TryToAddFunction(
opt::IRContext* context) const {
// This function returns false if |message_.instruction| was not well-formed
// enough to actually create a function and add it to |context|.
// A function must have at least some instructions.
if (message_.instruction().empty()) {
return false;
}
// A function must start with OpFunction.
auto function_begin = message_.instruction(0);
if (function_begin.opcode() != SpvOpFunction) {
return false;
}
// Make a function, headed by the OpFunction instruction.
std::unique_ptr<opt::Function> new_function = MakeUnique<opt::Function>(
InstructionFromMessage(context, function_begin));
// Keeps track of which instruction protobuf message we are currently
// considering.
uint32_t instruction_index = 1;
const auto num_instructions =
static_cast<uint32_t>(message_.instruction().size());
// Iterate through all function parameter instructions, adding parameters to
// the new function.
while (instruction_index < num_instructions &&
message_.instruction(instruction_index).opcode() ==
SpvOpFunctionParameter) {
new_function->AddParameter(InstructionFromMessage(
context, message_.instruction(instruction_index)));
instruction_index++;
}
// After the parameters, there needs to be a label.
if (instruction_index == num_instructions ||
message_.instruction(instruction_index).opcode() != SpvOpLabel) {
return false;
}
// Iterate through the instructions block by block until the end of the
// function is reached.
while (instruction_index < num_instructions &&
message_.instruction(instruction_index).opcode() != SpvOpFunctionEnd) {
// Invariant: we should always be at a label instruction at this point.
assert(message_.instruction(instruction_index).opcode() == SpvOpLabel);
// Make a basic block using the label instruction, with the new function
// as its parent.
std::unique_ptr<opt::BasicBlock> block =
MakeUnique<opt::BasicBlock>(InstructionFromMessage(
context, message_.instruction(instruction_index)));
block->SetParent(new_function.get());
// Consider successive instructions until we hit another label or the end
// of the function, adding each such instruction to the block.
instruction_index++;
while (instruction_index < num_instructions &&
message_.instruction(instruction_index).opcode() !=
SpvOpFunctionEnd &&
message_.instruction(instruction_index).opcode() != SpvOpLabel) {
block->AddInstruction(InstructionFromMessage(
context, message_.instruction(instruction_index)));
instruction_index++;
}
// Add the block to the new function.
new_function->AddBasicBlock(std::move(block));
}
// Having considered all the blocks, we should be at the last instruction and
// it needs to be OpFunctionEnd.
if (instruction_index != num_instructions - 1 ||
message_.instruction(instruction_index).opcode() != SpvOpFunctionEnd) {
return false;
}
// Set the function's final instruction, add the function to the module and
// report success.
new_function->SetFunctionEnd(
InstructionFromMessage(context, message_.instruction(instruction_index)));
context->AddFunction(std::move(new_function));
context->InvalidateAnalysesExceptFor(opt::IRContext::kAnalysisNone);
return true;
}
bool TransformationAddFunction::TryToMakeFunctionLivesafe(
opt::IRContext* context, const FactManager& fact_manager) const {
assert(message_.is_livesafe() && "Precondition: is_livesafe must hold.");
// Get a pointer to the added function.
opt::Function* added_function = nullptr;
for (auto& function : *context->module()) {
if (function.result_id() == message_.instruction(0).result_id()) {
added_function = &function;
break;
}
}
assert(added_function && "The added function should have been found.");
if (!TryToAddLoopLimiters(context, added_function)) {
// Adding loop limiters did not work; bail out.
return false;
}
// Consider all the instructions in the function, and:
// - attempt to replace OpKill and OpUnreachable with return instructions
// - attempt to clamp access chains to be within bounds
// - check that OpFunctionCall instructions are only to livesafe functions
for (auto& block : *added_function) {
for (auto& inst : block) {
switch (inst.opcode()) {
case SpvOpKill:
case SpvOpUnreachable:
if (!TryToTurnKillOrUnreachableIntoReturn(context, added_function,
&inst)) {
return false;
}
break;
case SpvOpAccessChain:
case SpvOpInBoundsAccessChain:
if (!TryToClampAccessChainIndices(context, &inst)) {
return false;
}
break;
case SpvOpFunctionCall:
// A livesafe function my only call other livesafe functions.
if (!fact_manager.FunctionIsLivesafe(
inst.GetSingleWordInOperand(0))) {
return false;
}
default:
break;
}
}
}
return true;
}
bool TransformationAddFunction::TryToAddLoopLimiters(
opt::IRContext* context, opt::Function* added_function) const {
// Collect up all the loop headers so that we can subsequently add loop
// limiting logic.
std::vector<opt::BasicBlock*> loop_headers;
for (auto& block : *added_function) {
if (block.IsLoopHeader()) {
loop_headers.push_back(&block);
}
}
if (loop_headers.empty()) {
// There are no loops, so no need to add any loop limiters.
return true;
}
// Check that the module contains appropriate ingredients for declaring and
// manipulating a loop limiter.
auto loop_limit_constant_id_instr =
context->get_def_use_mgr()->GetDef(message_.loop_limit_constant_id());
if (!loop_limit_constant_id_instr ||
loop_limit_constant_id_instr->opcode() != SpvOpConstant) {
// The loop limit constant id instruction must exist and have an
// appropriate opcode.
return false;
}
auto loop_limit_type = context->get_def_use_mgr()->GetDef(
loop_limit_constant_id_instr->type_id());
if (loop_limit_type->opcode() != SpvOpTypeInt ||
loop_limit_type->GetSingleWordInOperand(0) != 32) {
// The type of the loop limit constant must be 32-bit integer. It
// doesn't actually matter whether the integer is signed or not.
return false;
}
// Find the id of the "unsigned int" type.
opt::analysis::Integer unsigned_int_type(32, false);
uint32_t unsigned_int_type_id =
context->get_type_mgr()->GetId(&unsigned_int_type);
if (!unsigned_int_type_id) {
// Unsigned int is not available; we need this type in order to add loop
// limiters.
return false;
}
auto registered_unsigned_int_type =
context->get_type_mgr()->GetRegisteredType(&unsigned_int_type);
// Look for 0 of type unsigned int.
opt::analysis::IntConstant zero(registered_unsigned_int_type->AsInteger(),
{0});
auto registered_zero = context->get_constant_mgr()->FindConstant(&zero);
if (!registered_zero) {
// We need 0 in order to be able to initialize loop limiters.
return false;
}
uint32_t zero_id = context->get_constant_mgr()
->GetDefiningInstruction(registered_zero)
->result_id();
// Look for 1 of type unsigned int.
opt::analysis::IntConstant one(registered_unsigned_int_type->AsInteger(),
{1});
auto registered_one = context->get_constant_mgr()->FindConstant(&one);
if (!registered_one) {
// We need 1 in order to be able to increment loop limiters.
return false;
}
uint32_t one_id = context->get_constant_mgr()
->GetDefiningInstruction(registered_one)
->result_id();
// Look for pointer-to-unsigned int type.
opt::analysis::Pointer pointer_to_unsigned_int_type(
registered_unsigned_int_type, SpvStorageClassFunction);
uint32_t pointer_to_unsigned_int_type_id =
context->get_type_mgr()->GetId(&pointer_to_unsigned_int_type);
if (!pointer_to_unsigned_int_type_id) {
// We need pointer-to-unsigned int in order to declare the loop limiter
// variable.
return false;
}
// Look for bool type.
opt::analysis::Bool bool_type;
uint32_t bool_type_id = context->get_type_mgr()->GetId(&bool_type);
if (!bool_type_id) {
// We need bool in order to compare the loop limiter's value with the loop
// limit constant.
return false;
}
// Declare the loop limiter variable at the start of the function's entry
// block, via an instruction of the form:
// %loop_limiter_var = SpvOpVariable %ptr_to_uint Function %zero
added_function->begin()->begin()->InsertBefore(MakeUnique<opt::Instruction>(
context, SpvOpVariable, pointer_to_unsigned_int_type_id,
message_.loop_limiter_variable_id(),
opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_STORAGE_CLASS, {SpvStorageClassFunction}},
{SPV_OPERAND_TYPE_ID, {zero_id}}})));
// Update the module's id bound since we have added the loop limiter
// variable id.
fuzzerutil::UpdateModuleIdBound(context, message_.loop_limiter_variable_id());
// Consider each loop in turn.
for (auto loop_header : loop_headers) {
// Look for the loop's back-edge block. This is a predecessor of the loop
// header that is dominated by the loop header.
uint32_t back_edge_block_id = 0;
for (auto pred : context->cfg()->preds(loop_header->id())) {
if (context->GetDominatorAnalysis(added_function)
->Dominates(loop_header->id(), pred)) {
back_edge_block_id = pred;
break;
}
}
if (!back_edge_block_id) {
// The loop's back-edge block must be unreachable. This means that the
// loop cannot iterate, so there is no need to make it lifesafe; we can
// move on from this loop.
continue;
}
auto back_edge_block = context->cfg()->block(back_edge_block_id);
// Go through the sequence of loop limiter infos and find the one
// corresponding to this loop.
bool found = false;
protobufs::LoopLimiterInfo loop_limiter_info;
for (auto& info : message_.loop_limiter_info()) {
if (info.loop_header_id() == loop_header->id()) {
loop_limiter_info = info;
found = true;
break;
}
}
if (!found) {
// We don't have loop limiter info for this loop header.
return false;
}
// The back-edge block either has the form:
//
// (1)
//
// %l = OpLabel
// ... instructions ...
// OpBranch %loop_header
//
// (2)
//
// %l = OpLabel
// ... instructions ...
// OpBranchConditional %c %loop_header %loop_merge
//
// (3)
//
// %l = OpLabel
// ... instructions ...
// OpBranchConditional %c %loop_merge %loop_header
//
// We turn these into the following:
//
// (1)
//
// %l = OpLabel
// ... instructions ...
// %t1 = OpLoad %uint32 %loop_limiter
// %t2 = OpIAdd %uint32 %t1 %one
// OpStore %loop_limiter %t2
// %t3 = OpUGreaterThanEqual %bool %t1 %loop_limit
// OpBranchConditional %t3 %loop_merge %loop_header
//
// (2)
//
// %l = OpLabel
// ... instructions ...
// %t1 = OpLoad %uint32 %loop_limiter
// %t2 = OpIAdd %uint32 %t1 %one
// OpStore %loop_limiter %t2
// %t3 = OpULessThan %bool %t1 %loop_limit
// %t4 = OpLogicalAnd %bool %c %t3
// OpBranchConditional %t4 %loop_header %loop_merge
//
// (3)
//
// %l = OpLabel
// ... instructions ...
// %t1 = OpLoad %uint32 %loop_limiter
// %t2 = OpIAdd %uint32 %t1 %one
// OpStore %loop_limiter %t2
// %t3 = OpUGreaterThanEqual %bool %t1 %loop_limit
// %t4 = OpLogicalOr %bool %c %t3
// OpBranchConditional %t4 %loop_merge %loop_header
auto back_edge_block_terminator = back_edge_block->terminator();
bool compare_using_greater_than_equal;
if (back_edge_block_terminator->opcode() == SpvOpBranch) {
compare_using_greater_than_equal = true;
} else {
assert(back_edge_block_terminator->opcode() == SpvOpBranchConditional);
assert(((back_edge_block_terminator->GetSingleWordInOperand(1) ==
loop_header->id() &&
back_edge_block_terminator->GetSingleWordInOperand(2) ==
loop_header->MergeBlockId()) ||
(back_edge_block_terminator->GetSingleWordInOperand(2) ==
loop_header->id() &&
back_edge_block_terminator->GetSingleWordInOperand(1) ==
loop_header->MergeBlockId())) &&
"A back edge edge block must branch to"
" either the loop header or merge");
compare_using_greater_than_equal =
back_edge_block_terminator->GetSingleWordInOperand(1) ==
loop_header->MergeBlockId();
}
std::vector<std::unique_ptr<opt::Instruction>> new_instructions;
// Add a load from the loop limiter variable, of the form:
// %t1 = OpLoad %uint32 %loop_limiter
new_instructions.push_back(MakeUnique<opt::Instruction>(
context, SpvOpLoad, unsigned_int_type_id, loop_limiter_info.load_id(),
opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_ID, {message_.loop_limiter_variable_id()}}})));
// Increment the loaded value:
// %t2 = OpIAdd %uint32 %t1 %one
new_instructions.push_back(MakeUnique<opt::Instruction>(
context, SpvOpIAdd, unsigned_int_type_id,
loop_limiter_info.increment_id(),
opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_ID, {loop_limiter_info.load_id()}},
{SPV_OPERAND_TYPE_ID, {one_id}}})));
// Store the incremented value back to the loop limiter variable:
// OpStore %loop_limiter %t2
new_instructions.push_back(MakeUnique<opt::Instruction>(
context, SpvOpStore, 0, 0,
opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_ID, {message_.loop_limiter_variable_id()}},
{SPV_OPERAND_TYPE_ID, {loop_limiter_info.increment_id()}}})));
// Compare the loaded value with the loop limit; either:
// %t3 = OpUGreaterThanEqual %bool %t1 %loop_limit
// or
// %t3 = OpULessThan %bool %t1 %loop_limit
new_instructions.push_back(MakeUnique<opt::Instruction>(
context,
compare_using_greater_than_equal ? SpvOpUGreaterThanEqual
: SpvOpULessThan,
bool_type_id, loop_limiter_info.compare_id(),
opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_ID, {loop_limiter_info.load_id()}},
{SPV_OPERAND_TYPE_ID, {message_.loop_limit_constant_id()}}})));
if (back_edge_block_terminator->opcode() == SpvOpBranchConditional) {
new_instructions.push_back(MakeUnique<opt::Instruction>(
context,
compare_using_greater_than_equal ? SpvOpLogicalOr : SpvOpLogicalAnd,
bool_type_id, loop_limiter_info.logical_op_id(),
opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_ID,
{back_edge_block_terminator->GetSingleWordInOperand(0)}},
{SPV_OPERAND_TYPE_ID, {loop_limiter_info.compare_id()}}})));
}
// Add the new instructions at the end of the back edge block, before the
// terminator and any loop merge instruction (as the back edge block can
// be the loop header).
if (back_edge_block->GetLoopMergeInst()) {
back_edge_block->GetLoopMergeInst()->InsertBefore(
std::move(new_instructions));
} else {
back_edge_block_terminator->InsertBefore(std::move(new_instructions));
}
if (back_edge_block_terminator->opcode() == SpvOpBranchConditional) {
back_edge_block_terminator->SetInOperand(
0, {loop_limiter_info.logical_op_id()});
} else {
assert(back_edge_block_terminator->opcode() == SpvOpBranch &&
"Back-edge terminator must be OpBranch or OpBranchConditional");
// Check that, if the merge block starts with OpPhi instructions, suitable
// ids have been provided to give these instructions a value corresponding
// to the new incoming edge from the back edge block.
auto merge_block = context->cfg()->block(loop_header->MergeBlockId());
if (!fuzzerutil::PhiIdsOkForNewEdge(context, back_edge_block, merge_block,
loop_limiter_info.phi_id())) {
return false;
}
// Augment OpPhi instructions at the loop merge with the given ids.
uint32_t phi_index = 0;
for (auto& inst : *merge_block) {
if (inst.opcode() != SpvOpPhi) {
break;
}
assert(phi_index <
static_cast<uint32_t>(loop_limiter_info.phi_id().size()) &&
"There should be at least one phi id per OpPhi instruction.");
inst.AddOperand(
{SPV_OPERAND_TYPE_ID, {loop_limiter_info.phi_id(phi_index)}});
inst.AddOperand({SPV_OPERAND_TYPE_ID, {back_edge_block_id}});
phi_index++;
}
// Add the new edge, by changing OpBranch to OpBranchConditional.
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3162): This
// could be a problem if the merge block was originally unreachable: it
// might now be dominated by other blocks that it appears earlier than in
// the module.
back_edge_block_terminator->SetOpcode(SpvOpBranchConditional);
back_edge_block_terminator->SetInOperands(opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_ID, {loop_limiter_info.compare_id()}},
{SPV_OPERAND_TYPE_ID, {loop_header->MergeBlockId()}
},
{SPV_OPERAND_TYPE_ID, {loop_header->id()}}}));
}
// Update the module's id bound with respect to the various ids that
// have been used for loop limiter manipulation.
fuzzerutil::UpdateModuleIdBound(context, loop_limiter_info.load_id());
fuzzerutil::UpdateModuleIdBound(context, loop_limiter_info.increment_id());
fuzzerutil::UpdateModuleIdBound(context, loop_limiter_info.compare_id());
fuzzerutil::UpdateModuleIdBound(context, loop_limiter_info.logical_op_id());
}
return true;
}
bool TransformationAddFunction::TryToTurnKillOrUnreachableIntoReturn(
opt::IRContext* context, opt::Function* added_function,
opt::Instruction* kill_or_unreachable_inst) const {
assert((kill_or_unreachable_inst->opcode() == SpvOpKill ||
kill_or_unreachable_inst->opcode() == SpvOpUnreachable) &&
"Precondition: instruction must be OpKill or OpUnreachable.");
// Get the function's return type.
auto function_return_type_inst =
context->get_def_use_mgr()->GetDef(added_function->type_id());
if (function_return_type_inst->opcode() == SpvOpTypeVoid) {
// The function has void return type, so change this instruction to
// OpReturn.
kill_or_unreachable_inst->SetOpcode(SpvOpReturn);
} else {
// The function has non-void return type, so change this instruction
// to OpReturnValue, using the value id provided with the
// transformation.
// We first check that the id, %id, provided with the transformation
// specifically to turn OpKill and OpUnreachable instructions into
// OpReturnValue %id has the same type as the function's return type.
if (context->get_def_use_mgr()
->GetDef(message_.kill_unreachable_return_value_id())
->type_id() != function_return_type_inst->result_id()) {
return false;
}
kill_or_unreachable_inst->SetOpcode(SpvOpReturnValue);
kill_or_unreachable_inst->SetInOperands(
{{SPV_OPERAND_TYPE_ID, {message_.kill_unreachable_return_value_id()}}});
}
return true;
}
bool TransformationAddFunction::TryToClampAccessChainIndices(
opt::IRContext* context, opt::Instruction* access_chain_inst) const {
assert((access_chain_inst->opcode() == SpvOpAccessChain ||
access_chain_inst->opcode() == SpvOpInBoundsAccessChain) &&
"Precondition: instruction must be OpAccessChain or "
"OpInBoundsAccessChain.");
// Find the AccessChainClampingInfo associated with this access chain.
const protobufs::AccessChainClampingInfo* access_chain_clamping_info =
nullptr;
for (auto& clamping_info : message_.access_chain_clamping_info()) {
if (clamping_info.access_chain_id() == access_chain_inst->result_id()) {
access_chain_clamping_info = &clamping_info;
break;
}
}
if (!access_chain_clamping_info) {
// No access chain clamping information was found; the function cannot be
// made livesafe.
return false;
}
// Check that there is a (compare_id, select_id) pair for every
// index associated with the instruction.
if (static_cast<uint32_t>(
access_chain_clamping_info->compare_and_select_ids().size()) !=
access_chain_inst->NumInOperands() - 1) {
return false;
}
// Walk the access chain, clamping each index to be within bounds if it is
// not a constant.
auto base_object = context->get_def_use_mgr()->GetDef(
access_chain_inst->GetSingleWordInOperand(0));
assert(base_object && "The base object must exist.");
auto pointer_type =
context->get_def_use_mgr()->GetDef(base_object->type_id());
assert(pointer_type && pointer_type->opcode() == SpvOpTypePointer &&
"The base object must have pointer type.");
auto should_be_composite_type = context->get_def_use_mgr()->GetDef(
pointer_type->GetSingleWordInOperand(1));
// Consider each index input operand in turn (operand 0 is the base object).
for (uint32_t index = 1; index < access_chain_inst->NumInOperands();
index++) {
// We are going to turn:
//
// %result = OpAccessChain %type %object ... %index ...
//
// into:
//
// %t1 = OpULessThanEqual %bool %index %bound_minus_one
// %t2 = OpSelect %int_type %t1 %index %bound_minus_one
// %result = OpAccessChain %type %object ... %t2 ...
//
// ... unless %index is already a constant.
// Get the bound for the composite being indexed into; e.g. the number of
// columns of matrix or the size of an array.
uint32_t bound =
GetBoundForCompositeIndex(context, *should_be_composite_type);
// Get the instruction associated with the index and figure out its integer
// type.
const uint32_t index_id = access_chain_inst->GetSingleWordInOperand(index);
auto index_inst = context->get_def_use_mgr()->GetDef(index_id);
auto index_type_inst =
context->get_def_use_mgr()->GetDef(index_inst->type_id());
assert(index_type_inst->opcode() == SpvOpTypeInt);
assert(index_type_inst->GetSingleWordInOperand(0) == 32);
opt::analysis::Integer* index_int_type =
context->get_type_mgr()
->GetType(index_type_inst->result_id())
->AsInteger();
if (index_inst->opcode() != SpvOpConstant) {
// The index is non-constant so we need to clamp it.
assert(should_be_composite_type->opcode() != SpvOpTypeStruct &&
"Access chain indices into structures are required to be "
"constants.");
opt::analysis::IntConstant bound_minus_one(index_int_type, {bound - 1});
if (!context->get_constant_mgr()->FindConstant(&bound_minus_one)) {
// We do not have an integer constant whose value is |bound| -1.
return false;
}
opt::analysis::Bool bool_type;
uint32_t bool_type_id = context->get_type_mgr()->GetId(&bool_type);
if (!bool_type_id) {
// Bool type is not declared; we cannot do a comparison.
return false;
}
uint32_t bound_minus_one_id =
context->get_constant_mgr()
->GetDefiningInstruction(&bound_minus_one)
->result_id();
uint32_t compare_id =
access_chain_clamping_info->compare_and_select_ids(index - 1).first();
uint32_t select_id =
access_chain_clamping_info->compare_and_select_ids(index - 1)
.second();
std::vector<std::unique_ptr<opt::Instruction>> new_instructions;
// Compare the index with the bound via an instruction of the form:
// %t1 = OpULessThanEqual %bool %index %bound_minus_one
new_instructions.push_back(MakeUnique<opt::Instruction>(
context, SpvOpULessThanEqual, bool_type_id, compare_id,
opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_ID, {index_inst->result_id()}},
{SPV_OPERAND_TYPE_ID, {bound_minus_one_id}}})));
// Select the index if in-bounds, otherwise one less than the bound:
// %t2 = OpSelect %int_type %t1 %index %bound_minus_one
new_instructions.push_back(MakeUnique<opt::Instruction>(
context, SpvOpSelect, index_type_inst->result_id(), select_id,
opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_ID, {compare_id}},
{SPV_OPERAND_TYPE_ID, {index_inst->result_id()}},
{SPV_OPERAND_TYPE_ID, {bound_minus_one_id}}})));
// Add the new instructions before the access chain
access_chain_inst->InsertBefore(std::move(new_instructions));
// Replace %index with %t2.
access_chain_inst->SetInOperand(index, {select_id});
fuzzerutil::UpdateModuleIdBound(context, compare_id);
fuzzerutil::UpdateModuleIdBound(context, select_id);
} else {
// TODO(afd): At present the SPIR-V spec is not clear on whether
// statically out-of-bounds indices mean that a module is invalid (so
// that it should be rejected by the validator), or that such accesses
// yield undefined results. Via the following assertion, we assume that
// functions added to the module do not feature statically out-of-bounds
// accesses.
// Assert that the index is smaller (unsigned) than this value.
// Return false if it is not (to keep compilers happy).
if (index_inst->GetSingleWordInOperand(0) >= bound) {
assert(false &&
"The function has a statically out-of-bounds access; "
"this should not occur.");
return false;
}
}
should_be_composite_type =
FollowCompositeIndex(context, *should_be_composite_type, index_id);
}
return true;
}
uint32_t TransformationAddFunction::GetBoundForCompositeIndex(
opt::IRContext* context, const opt::Instruction& composite_type_inst) {
switch (composite_type_inst.opcode()) {
case SpvOpTypeArray:
return fuzzerutil::GetArraySize(composite_type_inst, context);
case SpvOpTypeMatrix:
case SpvOpTypeVector:
return composite_type_inst.GetSingleWordInOperand(1);
case SpvOpTypeStruct: {
return fuzzerutil::GetNumberOfStructMembers(composite_type_inst);
}
default:
assert(false && "Unknown composite type.");
return 0;
}
}
opt::Instruction* TransformationAddFunction::FollowCompositeIndex(
opt::IRContext* context, const opt::Instruction& composite_type_inst,
uint32_t index_id) {
uint32_t sub_object_type_id;
switch (composite_type_inst.opcode()) {
case SpvOpTypeArray:
sub_object_type_id = composite_type_inst.GetSingleWordInOperand(0);
break;
case SpvOpTypeMatrix:
case SpvOpTypeVector:
sub_object_type_id = composite_type_inst.GetSingleWordInOperand(0);
break;
case SpvOpTypeStruct: {
auto index_inst = context->get_def_use_mgr()->GetDef(index_id);
assert(index_inst->opcode() == SpvOpConstant);
assert(
context->get_def_use_mgr()->GetDef(index_inst->type_id())->opcode() ==
SpvOpTypeInt);
assert(context->get_def_use_mgr()
->GetDef(index_inst->type_id())
->GetSingleWordInOperand(0) == 32);
uint32_t index_value = index_inst->GetSingleWordInOperand(0);
sub_object_type_id =
composite_type_inst.GetSingleWordInOperand(index_value);
break;
}
default:
assert(false && "Unknown composite type.");
sub_object_type_id = 0;
break;
}
assert(sub_object_type_id && "No sub-object found.");
return context->get_def_use_mgr()->GetDef(sub_object_type_id);
}
} // namespace fuzz
} // namespace spvtools