SPIRV-Tools/source/fuzz/shrinker.cpp
Alastair Donaldson 9e26ae0455
spirv-fuzz: Overflow ids (#3734)
This change adds the notion of "overflow ids", which can be used
during shrinking to facilitate applying transformations that would
otherwise have become inapplicable due to earlier transformations
being removed.
2020-08-26 07:49:42 +01:00

281 lines
12 KiB
C++

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/shrinker.h"
#include <sstream>
#include "source/fuzz/pseudo_random_generator.h"
#include "source/fuzz/replayer.h"
#include "source/opt/build_module.h"
#include "source/opt/ir_context.h"
#include "source/spirv_fuzzer_options.h"
#include "source/util/make_unique.h"
namespace spvtools {
namespace fuzz {
namespace {
// A helper to get the size of a protobuf transformation sequence in a less
// verbose manner.
uint32_t NumRemainingTransformations(
const protobufs::TransformationSequence& transformation_sequence) {
return static_cast<uint32_t>(transformation_sequence.transformation_size());
}
// A helper to return a transformation sequence identical to |transformations|,
// except that a chunk of size |chunk_size| starting from |chunk_index| x
// |chunk_size| is removed (or as many transformations as available if the whole
// chunk is not).
protobufs::TransformationSequence RemoveChunk(
const protobufs::TransformationSequence& transformations,
uint32_t chunk_index, uint32_t chunk_size) {
uint32_t lower = chunk_index * chunk_size;
uint32_t upper = std::min((chunk_index + 1) * chunk_size,
NumRemainingTransformations(transformations));
assert(lower < upper);
assert(upper <= NumRemainingTransformations(transformations));
protobufs::TransformationSequence result;
for (uint32_t j = 0; j < NumRemainingTransformations(transformations); j++) {
if (j >= lower && j < upper) {
continue;
}
protobufs::Transformation transformation =
transformations.transformation()[j];
*result.mutable_transformation()->Add() = transformation;
}
return result;
}
} // namespace
struct Shrinker::Impl {
Impl(spv_target_env env, uint32_t limit, bool validate,
spv_validator_options options)
: target_env(env),
step_limit(limit),
validate_during_replay(validate),
validator_options(options) {}
// Returns the id bound for the given SPIR-V binary, which is assumed to be
// valid.
uint32_t GetIdBound(const std::vector<uint32_t>& binary);
const spv_target_env target_env; // Target environment.
MessageConsumer consumer; // Message consumer.
const uint32_t step_limit; // Step limit for reductions.
const bool validate_during_replay; // Determines whether to check for
// validity during the replaying of
// transformations.
spv_validator_options validator_options; // Options to control validation.
};
uint32_t Shrinker::Impl::GetIdBound(const std::vector<uint32_t>& binary) {
// Build the module from the input binary.
std::unique_ptr<opt::IRContext> ir_context =
BuildModule(target_env, consumer, binary.data(), binary.size());
assert(ir_context && "Error building module.");
return ir_context->module()->id_bound();
}
Shrinker::Shrinker(spv_target_env env, uint32_t step_limit,
bool validate_during_replay,
spv_validator_options validator_options)
: impl_(MakeUnique<Impl>(env, step_limit, validate_during_replay,
validator_options)) {}
Shrinker::~Shrinker() = default;
void Shrinker::SetMessageConsumer(MessageConsumer c) {
impl_->consumer = std::move(c);
}
Shrinker::ShrinkerResultStatus Shrinker::Run(
const std::vector<uint32_t>& binary_in,
const protobufs::FactSequence& initial_facts,
const protobufs::TransformationSequence& transformation_sequence_in,
const Shrinker::InterestingnessFunction& interestingness_function,
std::vector<uint32_t>* binary_out,
protobufs::TransformationSequence* transformation_sequence_out) const {
// Check compatibility between the library version being linked with and the
// header files being used.
GOOGLE_PROTOBUF_VERIFY_VERSION;
SpirvTools tools(impl_->target_env);
if (!tools.IsValid()) {
impl_->consumer(SPV_MSG_ERROR, nullptr, {},
"Failed to create SPIRV-Tools interface; stopping.");
return Shrinker::ShrinkerResultStatus::kFailedToCreateSpirvToolsInterface;
}
// Initial binary should be valid.
if (!tools.Validate(&binary_in[0], binary_in.size(),
impl_->validator_options)) {
impl_->consumer(SPV_MSG_INFO, nullptr, {},
"Initial binary is invalid; stopping.");
return Shrinker::ShrinkerResultStatus::kInitialBinaryInvalid;
}
std::vector<uint32_t> current_best_binary;
protobufs::TransformationSequence current_best_transformations;
// Run a replay of the initial transformation sequence to (a) check that it
// succeeds, (b) get the binary that results from running these
// transformations, and (c) get the subsequence of the initial transformations
// that actually apply (in principle this could be a strict subsequence).
Replayer replayer(impl_->target_env, impl_->validate_during_replay,
impl_->validator_options);
replayer.SetMessageConsumer(impl_->consumer);
if (replayer.Run(binary_in, initial_facts, transformation_sequence_in,
static_cast<uint32_t>(
transformation_sequence_in.transformation_size()),
/* No overflow ids */ 0, &current_best_binary,
&current_best_transformations) !=
Replayer::ReplayerResultStatus::kComplete) {
return ShrinkerResultStatus::kReplayFailed;
}
// Check that the binary produced by applying the initial transformations is
// indeed interesting.
if (!interestingness_function(current_best_binary, 0)) {
impl_->consumer(SPV_MSG_INFO, nullptr, {},
"Initial binary is not interesting; stopping.");
return ShrinkerResultStatus::kInitialBinaryNotInteresting;
}
// The largest id used by the module before any shrinking has been applied
// serves as the first id that can be used for overflow purposes.
const uint32_t first_overflow_id = impl_->GetIdBound(current_best_binary);
assert(first_overflow_id >= impl_->GetIdBound(binary_in) &&
"Applying transformations should only increase a module's id bound.");
uint32_t attempt = 0; // Keeps track of the number of shrink attempts that
// have been tried, whether successful or not.
uint32_t chunk_size =
std::max(1u, NumRemainingTransformations(current_best_transformations) /
2); // The number of contiguous transformations that the
// shrinker will try to remove in one go; starts
// high and decreases during the shrinking process.
// Keep shrinking until we:
// - reach the step limit,
// - run out of transformations to remove, or
// - cannot make the chunk size any smaller.
while (attempt < impl_->step_limit &&
!current_best_transformations.transformation().empty() &&
chunk_size > 0) {
bool progress_this_round =
false; // Used to decide whether to make the chunk size with which we
// remove transformations smaller. If we managed to remove at
// least one chunk of transformations at a particular chunk
// size, we set this flag so that we do not yet decrease the
// chunk size.
assert(chunk_size <=
NumRemainingTransformations(current_best_transformations) &&
"Chunk size should never exceed the number of transformations that "
"remain.");
// The number of chunks is the ceiling of (#remaining_transformations /
// chunk_size).
const uint32_t num_chunks =
(NumRemainingTransformations(current_best_transformations) +
chunk_size - 1) /
chunk_size;
assert(num_chunks >= 1 && "There should be at least one chunk.");
assert(num_chunks * chunk_size >=
NumRemainingTransformations(current_best_transformations) &&
"All transformations should be in some chunk.");
// We go through the transformations in reverse, in chunks of size
// |chunk_size|, using |chunk_index| to track which chunk to try removing
// next. The loop exits early if we reach the shrinking step limit.
for (int chunk_index = num_chunks - 1;
attempt < impl_->step_limit && chunk_index >= 0; chunk_index--) {
// Remove a chunk of transformations according to the current index and
// chunk size.
auto transformations_with_chunk_removed =
RemoveChunk(current_best_transformations,
static_cast<uint32_t>(chunk_index), chunk_size);
// Replay the smaller sequence of transformations to get a next binary and
// transformation sequence. Note that the transformations arising from
// replay might be even smaller than the transformations with the chunk
// removed, because removing those transformations might make further
// transformations inapplicable.
std::vector<uint32_t> next_binary;
protobufs::TransformationSequence next_transformation_sequence;
if (replayer.Run(
binary_in, initial_facts, transformations_with_chunk_removed,
static_cast<uint32_t>(
transformations_with_chunk_removed.transformation_size()),
first_overflow_id, &next_binary, &next_transformation_sequence) !=
Replayer::ReplayerResultStatus::kComplete) {
// Replay should not fail; if it does, we need to abort shrinking.
return ShrinkerResultStatus::kReplayFailed;
}
assert(NumRemainingTransformations(next_transformation_sequence) >=
chunk_index * chunk_size &&
"Removing this chunk of transformations should not have an effect "
"on earlier chunks.");
if (interestingness_function(next_binary, attempt)) {
// If the binary arising from the smaller transformation sequence is
// interesting, this becomes our current best binary and transformation
// sequence.
current_best_binary = next_binary;
current_best_transformations = next_transformation_sequence;
progress_this_round = true;
}
// Either way, this was a shrink attempt, so increment our count of shrink
// attempts.
attempt++;
}
if (!progress_this_round) {
// If we didn't manage to remove any chunks at this chunk size, try a
// smaller chunk size.
chunk_size /= 2;
}
// Decrease the chunk size until it becomes no larger than the number of
// remaining transformations.
while (chunk_size >
NumRemainingTransformations(current_best_transformations)) {
chunk_size /= 2;
}
}
// The output from the shrinker is the best binary we saw, and the
// transformations that led to it.
*binary_out = current_best_binary;
*transformation_sequence_out = current_best_transformations;
// Indicate whether shrinking completed or was truncated due to reaching the
// step limit.
assert(attempt <= impl_->step_limit);
if (attempt == impl_->step_limit) {
std::stringstream strstream;
strstream << "Shrinking did not complete; step limit " << impl_->step_limit
<< " was reached.";
impl_->consumer(SPV_MSG_WARNING, nullptr, {}, strstream.str().c_str());
return Shrinker::ShrinkerResultStatus::kStepLimitReached;
}
return Shrinker::ShrinkerResultStatus::kComplete;
}
} // namespace fuzz
} // namespace spvtools