SPIRV-Tools/source/opt/function.cpp

276 lines
7.9 KiB
C++

// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/function.h"
#include <ostream>
#include <sstream>
#include "function.h"
#include "ir_context.h"
#include "source/util/bit_vector.h"
namespace spvtools {
namespace opt {
Function* Function::Clone(IRContext* ctx) const {
Function* clone =
new Function(std::unique_ptr<Instruction>(DefInst().Clone(ctx)));
clone->params_.reserve(params_.size());
ForEachParam(
[clone, ctx](const Instruction* inst) {
clone->AddParameter(std::unique_ptr<Instruction>(inst->Clone(ctx)));
},
true);
for (const auto& i : debug_insts_in_header_) {
clone->AddDebugInstructionInHeader(
std::unique_ptr<Instruction>(i.Clone(ctx)));
}
clone->blocks_.reserve(blocks_.size());
for (const auto& b : blocks_) {
std::unique_ptr<BasicBlock> bb(b->Clone(ctx));
bb->SetParent(clone);
clone->AddBasicBlock(std::move(bb));
}
clone->SetFunctionEnd(std::unique_ptr<Instruction>(EndInst()->Clone(ctx)));
clone->non_semantic_.reserve(non_semantic_.size());
for (auto& non_semantic : non_semantic_) {
clone->AddNonSemanticInstruction(
std::unique_ptr<Instruction>(non_semantic->Clone(ctx)));
}
return clone;
}
void Function::ForEachInst(const std::function<void(Instruction*)>& f,
bool run_on_debug_line_insts,
bool run_on_non_semantic_insts) {
WhileEachInst(
[&f](Instruction* inst) {
f(inst);
return true;
},
run_on_debug_line_insts, run_on_non_semantic_insts);
}
void Function::ForEachInst(const std::function<void(const Instruction*)>& f,
bool run_on_debug_line_insts,
bool run_on_non_semantic_insts) const {
WhileEachInst(
[&f](const Instruction* inst) {
f(inst);
return true;
},
run_on_debug_line_insts, run_on_non_semantic_insts);
}
bool Function::WhileEachInst(const std::function<bool(Instruction*)>& f,
bool run_on_debug_line_insts,
bool run_on_non_semantic_insts) {
if (def_inst_) {
if (!def_inst_->WhileEachInst(f, run_on_debug_line_insts)) {
return false;
}
}
for (auto& param : params_) {
if (!param->WhileEachInst(f, run_on_debug_line_insts)) {
return false;
}
}
if (!debug_insts_in_header_.empty()) {
Instruction* di = &debug_insts_in_header_.front();
while (di != nullptr) {
Instruction* next_instruction = di->NextNode();
if (!di->WhileEachInst(f, run_on_debug_line_insts)) return false;
di = next_instruction;
}
}
for (auto& bb : blocks_) {
if (!bb->WhileEachInst(f, run_on_debug_line_insts)) {
return false;
}
}
if (end_inst_) {
if (!end_inst_->WhileEachInst(f, run_on_debug_line_insts)) {
return false;
}
}
if (run_on_non_semantic_insts) {
for (auto& non_semantic : non_semantic_) {
if (!non_semantic->WhileEachInst(f, run_on_debug_line_insts)) {
return false;
}
}
}
return true;
}
bool Function::WhileEachInst(const std::function<bool(const Instruction*)>& f,
bool run_on_debug_line_insts,
bool run_on_non_semantic_insts) const {
if (def_inst_) {
if (!static_cast<const Instruction*>(def_inst_.get())
->WhileEachInst(f, run_on_debug_line_insts)) {
return false;
}
}
for (const auto& param : params_) {
if (!static_cast<const Instruction*>(param.get())
->WhileEachInst(f, run_on_debug_line_insts)) {
return false;
}
}
for (const auto& di : debug_insts_in_header_) {
if (!static_cast<const Instruction*>(&di)->WhileEachInst(
f, run_on_debug_line_insts))
return false;
}
for (const auto& bb : blocks_) {
if (!static_cast<const BasicBlock*>(bb.get())->WhileEachInst(
f, run_on_debug_line_insts)) {
return false;
}
}
if (end_inst_) {
if (!static_cast<const Instruction*>(end_inst_.get())
->WhileEachInst(f, run_on_debug_line_insts)) {
return false;
}
}
if (run_on_non_semantic_insts) {
for (auto& non_semantic : non_semantic_) {
if (!static_cast<const Instruction*>(non_semantic.get())
->WhileEachInst(f, run_on_debug_line_insts)) {
return false;
}
}
}
return true;
}
void Function::ForEachParam(const std::function<void(Instruction*)>& f,
bool run_on_debug_line_insts) {
for (auto& param : params_)
static_cast<Instruction*>(param.get())
->ForEachInst(f, run_on_debug_line_insts);
}
void Function::ForEachParam(const std::function<void(const Instruction*)>& f,
bool run_on_debug_line_insts) const {
for (const auto& param : params_)
static_cast<const Instruction*>(param.get())
->ForEachInst(f, run_on_debug_line_insts);
}
void Function::ForEachDebugInstructionsInHeader(
const std::function<void(Instruction*)>& f) {
if (debug_insts_in_header_.empty()) return;
Instruction* di = &debug_insts_in_header_.front();
while (di != nullptr) {
Instruction* next_instruction = di->NextNode();
di->ForEachInst(f);
di = next_instruction;
}
}
BasicBlock* Function::InsertBasicBlockAfter(
std::unique_ptr<BasicBlock>&& new_block, BasicBlock* position) {
for (auto bb_iter = begin(); bb_iter != end(); ++bb_iter) {
if (&*bb_iter == position) {
new_block->SetParent(this);
++bb_iter;
bb_iter = bb_iter.InsertBefore(std::move(new_block));
return &*bb_iter;
}
}
assert(false && "Could not find insertion point.");
return nullptr;
}
BasicBlock* Function::InsertBasicBlockBefore(
std::unique_ptr<BasicBlock>&& new_block, BasicBlock* position) {
for (auto bb_iter = begin(); bb_iter != end(); ++bb_iter) {
if (&*bb_iter == position) {
new_block->SetParent(this);
bb_iter = bb_iter.InsertBefore(std::move(new_block));
return &*bb_iter;
}
}
assert(false && "Could not find insertion point.");
return nullptr;
}
bool Function::HasEarlyReturn() const {
auto post_dominator_analysis =
blocks_.front()->GetLabel()->context()->GetPostDominatorAnalysis(this);
for (auto& block : blocks_) {
if (spvOpcodeIsReturn(block->tail()->opcode()) &&
!post_dominator_analysis->Dominates(block.get(), entry().get())) {
return true;
}
}
return false;
}
bool Function::IsRecursive() const {
IRContext* ctx = blocks_.front()->GetLabel()->context();
IRContext::ProcessFunction mark_visited = [this](Function* fp) {
return fp == this;
};
// Process the call tree from all of the function called by |this|. If it get
// back to |this|, then we have a recursive function.
std::queue<uint32_t> roots;
ctx->AddCalls(this, &roots);
return ctx->ProcessCallTreeFromRoots(mark_visited, &roots);
}
std::ostream& operator<<(std::ostream& str, const Function& func) {
str << func.PrettyPrint();
return str;
}
void Function::Dump() const {
std::cerr << "Function #" << result_id() << "\n" << *this << "\n";
}
std::string Function::PrettyPrint(uint32_t options) const {
std::ostringstream str;
ForEachInst([&str, options](const Instruction* inst) {
str << inst->PrettyPrint(options);
if (inst->opcode() != SpvOpFunctionEnd) {
str << std::endl;
}
});
return str.str();
}
} // namespace opt
} // namespace spvtools