SPIRV-Tools/source/opt/inst_bindless_check_pass.cpp

634 lines
27 KiB
C++

// Copyright (c) 2018 The Khronos Group Inc.
// Copyright (c) 2018 Valve Corporation
// Copyright (c) 2018 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "inst_bindless_check_pass.h"
namespace {
// Input Operand Indices
static const int kSpvImageSampleImageIdInIdx = 0;
static const int kSpvSampledImageImageIdInIdx = 0;
static const int kSpvSampledImageSamplerIdInIdx = 1;
static const int kSpvImageSampledImageIdInIdx = 0;
static const int kSpvLoadPtrIdInIdx = 0;
static const int kSpvAccessChainBaseIdInIdx = 0;
static const int kSpvAccessChainIndex0IdInIdx = 1;
static const int kSpvTypeArrayLengthIdInIdx = 1;
static const int kSpvConstantValueInIdx = 0;
static const int kSpvVariableStorageClassInIdx = 0;
} // anonymous namespace
// Avoid unused variable warning/error on Linux
#ifndef NDEBUG
#define USE_ASSERT(x) assert(x)
#else
#define USE_ASSERT(x) ((void)(x))
#endif
namespace spvtools {
namespace opt {
uint32_t InstBindlessCheckPass::GenDebugReadLength(
uint32_t var_id, InstructionBuilder* builder) {
uint32_t desc_set_idx =
var2desc_set_[var_id] + kDebugInputBindlessOffsetLengths;
uint32_t desc_set_idx_id = builder->GetUintConstantId(desc_set_idx);
uint32_t binding_idx_id = builder->GetUintConstantId(var2binding_[var_id]);
return GenDebugDirectRead({desc_set_idx_id, binding_idx_id}, builder);
}
uint32_t InstBindlessCheckPass::GenDebugReadInit(uint32_t var_id,
uint32_t desc_idx_id,
InstructionBuilder* builder) {
uint32_t binding_idx_id = builder->GetUintConstantId(var2binding_[var_id]);
uint32_t u_desc_idx_id = GenUintCastCode(desc_idx_id, builder);
// If desc index checking is not enabled, we know the offset of initialization
// entries is 1, so we can avoid loading this value and just add 1 to the
// descriptor set.
if (!desc_idx_enabled_) {
uint32_t desc_set_idx_id =
builder->GetUintConstantId(var2desc_set_[var_id] + 1);
return GenDebugDirectRead({desc_set_idx_id, binding_idx_id, u_desc_idx_id},
builder);
} else {
uint32_t desc_set_base_id =
builder->GetUintConstantId(kDebugInputBindlessInitOffset);
uint32_t desc_set_idx_id =
builder->GetUintConstantId(var2desc_set_[var_id]);
return GenDebugDirectRead(
{desc_set_base_id, desc_set_idx_id, binding_idx_id, u_desc_idx_id},
builder);
}
}
uint32_t InstBindlessCheckPass::CloneOriginalReference(
ref_analysis* ref, InstructionBuilder* builder) {
// If original is image based, start by cloning descriptor load
uint32_t new_image_id = 0;
if (ref->desc_load_id != 0) {
Instruction* desc_load_inst = get_def_use_mgr()->GetDef(ref->desc_load_id);
Instruction* new_load_inst = builder->AddLoad(
desc_load_inst->type_id(),
desc_load_inst->GetSingleWordInOperand(kSpvLoadPtrIdInIdx));
uid2offset_[new_load_inst->unique_id()] =
uid2offset_[desc_load_inst->unique_id()];
uint32_t new_load_id = new_load_inst->result_id();
get_decoration_mgr()->CloneDecorations(desc_load_inst->result_id(),
new_load_id);
new_image_id = new_load_id;
// Clone Image/SampledImage with new load, if needed
if (ref->image_id != 0) {
Instruction* image_inst = get_def_use_mgr()->GetDef(ref->image_id);
if (image_inst->opcode() == SpvOp::SpvOpSampledImage) {
Instruction* new_image_inst = builder->AddBinaryOp(
image_inst->type_id(), SpvOpSampledImage, new_load_id,
image_inst->GetSingleWordInOperand(kSpvSampledImageSamplerIdInIdx));
uid2offset_[new_image_inst->unique_id()] =
uid2offset_[image_inst->unique_id()];
new_image_id = new_image_inst->result_id();
} else {
assert(image_inst->opcode() == SpvOp::SpvOpImage &&
"expecting OpImage");
Instruction* new_image_inst =
builder->AddUnaryOp(image_inst->type_id(), SpvOpImage, new_load_id);
uid2offset_[new_image_inst->unique_id()] =
uid2offset_[image_inst->unique_id()];
new_image_id = new_image_inst->result_id();
}
get_decoration_mgr()->CloneDecorations(ref->image_id, new_image_id);
}
}
// Clone original reference
std::unique_ptr<Instruction> new_ref_inst(ref->ref_inst->Clone(context()));
uint32_t ref_result_id = ref->ref_inst->result_id();
uint32_t new_ref_id = 0;
if (ref_result_id != 0) {
new_ref_id = TakeNextId();
new_ref_inst->SetResultId(new_ref_id);
}
// Update new ref with new image if created
if (new_image_id != 0)
new_ref_inst->SetInOperand(kSpvImageSampleImageIdInIdx, {new_image_id});
// Register new reference and add to new block
Instruction* added_inst = builder->AddInstruction(std::move(new_ref_inst));
uid2offset_[added_inst->unique_id()] =
uid2offset_[ref->ref_inst->unique_id()];
if (new_ref_id != 0)
get_decoration_mgr()->CloneDecorations(ref_result_id, new_ref_id);
return new_ref_id;
}
uint32_t InstBindlessCheckPass::GetImageId(Instruction* inst) {
switch (inst->opcode()) {
case SpvOp::SpvOpImageSampleImplicitLod:
case SpvOp::SpvOpImageSampleExplicitLod:
case SpvOp::SpvOpImageSampleDrefImplicitLod:
case SpvOp::SpvOpImageSampleDrefExplicitLod:
case SpvOp::SpvOpImageSampleProjImplicitLod:
case SpvOp::SpvOpImageSampleProjExplicitLod:
case SpvOp::SpvOpImageSampleProjDrefImplicitLod:
case SpvOp::SpvOpImageSampleProjDrefExplicitLod:
case SpvOp::SpvOpImageGather:
case SpvOp::SpvOpImageDrefGather:
case SpvOp::SpvOpImageQueryLod:
case SpvOp::SpvOpImageSparseSampleImplicitLod:
case SpvOp::SpvOpImageSparseSampleExplicitLod:
case SpvOp::SpvOpImageSparseSampleDrefImplicitLod:
case SpvOp::SpvOpImageSparseSampleDrefExplicitLod:
case SpvOp::SpvOpImageSparseSampleProjImplicitLod:
case SpvOp::SpvOpImageSparseSampleProjExplicitLod:
case SpvOp::SpvOpImageSparseSampleProjDrefImplicitLod:
case SpvOp::SpvOpImageSparseSampleProjDrefExplicitLod:
case SpvOp::SpvOpImageSparseGather:
case SpvOp::SpvOpImageSparseDrefGather:
case SpvOp::SpvOpImageFetch:
case SpvOp::SpvOpImageRead:
case SpvOp::SpvOpImageQueryFormat:
case SpvOp::SpvOpImageQueryOrder:
case SpvOp::SpvOpImageQuerySizeLod:
case SpvOp::SpvOpImageQuerySize:
case SpvOp::SpvOpImageQueryLevels:
case SpvOp::SpvOpImageQuerySamples:
case SpvOp::SpvOpImageSparseFetch:
case SpvOp::SpvOpImageSparseRead:
case SpvOp::SpvOpImageWrite:
return inst->GetSingleWordInOperand(kSpvImageSampleImageIdInIdx);
default:
break;
}
return 0;
}
Instruction* InstBindlessCheckPass::GetPointeeTypeInst(Instruction* ptr_inst) {
uint32_t pte_ty_id = GetPointeeTypeId(ptr_inst);
return get_def_use_mgr()->GetDef(pte_ty_id);
}
bool InstBindlessCheckPass::AnalyzeDescriptorReference(Instruction* ref_inst,
ref_analysis* ref) {
ref->ref_inst = ref_inst;
if (ref_inst->opcode() == SpvOpLoad || ref_inst->opcode() == SpvOpStore) {
ref->desc_load_id = 0;
ref->ptr_id = ref_inst->GetSingleWordInOperand(kSpvLoadPtrIdInIdx);
Instruction* ptr_inst = get_def_use_mgr()->GetDef(ref->ptr_id);
if (ptr_inst->opcode() != SpvOp::SpvOpAccessChain) return false;
ref->var_id = ptr_inst->GetSingleWordInOperand(kSpvAccessChainBaseIdInIdx);
Instruction* var_inst = get_def_use_mgr()->GetDef(ref->var_id);
if (var_inst->opcode() != SpvOp::SpvOpVariable) return false;
uint32_t storage_class =
var_inst->GetSingleWordInOperand(kSpvVariableStorageClassInIdx);
switch (storage_class) {
case SpvStorageClassUniform:
case SpvStorageClassUniformConstant:
case SpvStorageClassStorageBuffer:
break;
default:
return false;
break;
}
Instruction* desc_type_inst = GetPointeeTypeInst(var_inst);
switch (desc_type_inst->opcode()) {
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray:
// A load through a descriptor array will have at least 3 operands. We
// do not want to instrument loads of descriptors here which are part of
// an image-based reference.
if (ptr_inst->NumInOperands() < 3) return false;
ref->desc_idx_id =
ptr_inst->GetSingleWordInOperand(kSpvAccessChainIndex0IdInIdx);
break;
default:
ref->desc_idx_id = 0;
break;
}
return true;
}
// Reference is not load or store. If not an image-based reference, return.
ref->image_id = GetImageId(ref_inst);
if (ref->image_id == 0) return false;
Instruction* image_inst = get_def_use_mgr()->GetDef(ref->image_id);
Instruction* desc_load_inst = nullptr;
if (image_inst->opcode() == SpvOp::SpvOpSampledImage) {
ref->desc_load_id =
image_inst->GetSingleWordInOperand(kSpvSampledImageImageIdInIdx);
desc_load_inst = get_def_use_mgr()->GetDef(ref->desc_load_id);
} else if (image_inst->opcode() == SpvOp::SpvOpImage) {
ref->desc_load_id =
image_inst->GetSingleWordInOperand(kSpvImageSampledImageIdInIdx);
desc_load_inst = get_def_use_mgr()->GetDef(ref->desc_load_id);
} else {
ref->desc_load_id = ref->image_id;
desc_load_inst = image_inst;
ref->image_id = 0;
}
if (desc_load_inst->opcode() != SpvOp::SpvOpLoad) {
// TODO(greg-lunarg): Handle additional possibilities?
return false;
}
ref->ptr_id = desc_load_inst->GetSingleWordInOperand(kSpvLoadPtrIdInIdx);
Instruction* ptr_inst = get_def_use_mgr()->GetDef(ref->ptr_id);
if (ptr_inst->opcode() == SpvOp::SpvOpVariable) {
ref->desc_idx_id = 0;
ref->var_id = ref->ptr_id;
} else if (ptr_inst->opcode() == SpvOp::SpvOpAccessChain) {
if (ptr_inst->NumInOperands() != 2) {
assert(false && "unexpected bindless index number");
return false;
}
ref->desc_idx_id =
ptr_inst->GetSingleWordInOperand(kSpvAccessChainIndex0IdInIdx);
ref->var_id = ptr_inst->GetSingleWordInOperand(kSpvAccessChainBaseIdInIdx);
Instruction* var_inst = get_def_use_mgr()->GetDef(ref->var_id);
if (var_inst->opcode() != SpvOpVariable) {
assert(false && "unexpected bindless base");
return false;
}
} else {
// TODO(greg-lunarg): Handle additional possibilities?
return false;
}
return true;
}
uint32_t InstBindlessCheckPass::FindStride(uint32_t ty_id,
uint32_t stride_deco) {
uint32_t stride = 0xdeadbeef;
bool found = !get_decoration_mgr()->WhileEachDecoration(
ty_id, stride_deco, [&stride](const Instruction& deco_inst) {
stride = deco_inst.GetSingleWordInOperand(2u);
return false;
});
USE_ASSERT(found && "stride not found");
return stride;
}
uint32_t InstBindlessCheckPass::ByteSize(uint32_t ty_id) {
analysis::TypeManager* type_mgr = context()->get_type_mgr();
const analysis::Type* sz_ty = type_mgr->GetType(ty_id);
if (sz_ty->kind() == analysis::Type::kPointer) {
// Assuming PhysicalStorageBuffer pointer
return 8;
}
uint32_t size = 1;
if (sz_ty->kind() == analysis::Type::kMatrix) {
const analysis::Matrix* m_ty = sz_ty->AsMatrix();
size = m_ty->element_count() * size;
uint32_t stride = FindStride(ty_id, SpvDecorationMatrixStride);
if (stride != 0) return size * stride;
sz_ty = m_ty->element_type();
}
if (sz_ty->kind() == analysis::Type::kVector) {
const analysis::Vector* v_ty = sz_ty->AsVector();
size = v_ty->element_count() * size;
sz_ty = v_ty->element_type();
}
switch (sz_ty->kind()) {
case analysis::Type::kFloat: {
const analysis::Float* f_ty = sz_ty->AsFloat();
size *= f_ty->width();
} break;
case analysis::Type::kInteger: {
const analysis::Integer* i_ty = sz_ty->AsInteger();
size *= i_ty->width();
} break;
default: { assert(false && "unexpected type"); } break;
}
size /= 8;
return size;
}
uint32_t InstBindlessCheckPass::GenLastByteIdx(ref_analysis* ref,
InstructionBuilder* builder) {
// Find outermost buffer type and its access chain index
Instruction* var_inst = get_def_use_mgr()->GetDef(ref->var_id);
Instruction* desc_ty_inst = GetPointeeTypeInst(var_inst);
uint32_t buff_ty_id;
uint32_t ac_in_idx = 1;
switch (desc_ty_inst->opcode()) {
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray:
buff_ty_id = desc_ty_inst->GetSingleWordInOperand(0);
++ac_in_idx;
break;
default:
assert(desc_ty_inst->opcode() == SpvOpTypeStruct &&
"unexpected descriptor type");
buff_ty_id = desc_ty_inst->result_id();
break;
}
// Process remaining access chain indices
Instruction* ac_inst = get_def_use_mgr()->GetDef(ref->ptr_id);
uint32_t curr_ty_id = buff_ty_id;
uint32_t sum_id = 0;
while (ac_in_idx < ac_inst->NumInOperands()) {
uint32_t curr_idx_id = ac_inst->GetSingleWordInOperand(ac_in_idx);
Instruction* curr_idx_inst = get_def_use_mgr()->GetDef(curr_idx_id);
Instruction* curr_ty_inst = get_def_use_mgr()->GetDef(curr_ty_id);
uint32_t curr_offset_id = 0;
switch (curr_ty_inst->opcode()) {
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray:
case SpvOpTypeMatrix: {
// Get array/matrix stride and multiply by current index
uint32_t stride_deco = (curr_ty_inst->opcode() == SpvOpTypeMatrix)
? SpvDecorationMatrixStride
: SpvDecorationArrayStride;
uint32_t arr_stride = FindStride(curr_ty_id, stride_deco);
uint32_t arr_stride_id = builder->GetUintConstantId(arr_stride);
Instruction* curr_offset_inst = builder->AddBinaryOp(
GetUintId(), SpvOpIMul, arr_stride_id, curr_idx_id);
curr_offset_id = curr_offset_inst->result_id();
// Get element type for next step
curr_ty_id = curr_ty_inst->GetSingleWordInOperand(0);
} break;
case SpvOpTypeVector: {
// Stride is size of component type
uint32_t comp_ty_id = curr_ty_inst->GetSingleWordInOperand(0u);
uint32_t vec_stride = ByteSize(comp_ty_id);
uint32_t vec_stride_id = builder->GetUintConstantId(vec_stride);
Instruction* curr_offset_inst = builder->AddBinaryOp(
GetUintId(), SpvOpIMul, vec_stride_id, curr_idx_id);
curr_offset_id = curr_offset_inst->result_id();
// Get element type for next step
curr_ty_id = comp_ty_id;
} break;
case SpvOpTypeStruct: {
// Get buffer byte offset for the referenced member
assert(curr_idx_inst->opcode() == SpvOpConstant &&
"unexpected struct index");
uint32_t member_idx = curr_idx_inst->GetSingleWordInOperand(0);
uint32_t member_offset = 0xdeadbeef;
bool found = !get_decoration_mgr()->WhileEachDecoration(
curr_ty_id, SpvDecorationOffset,
[&member_idx, &member_offset](const Instruction& deco_inst) {
if (deco_inst.GetSingleWordInOperand(1u) != member_idx)
return true;
member_offset = deco_inst.GetSingleWordInOperand(3u);
return false;
});
USE_ASSERT(found && "member offset not found");
curr_offset_id = builder->GetUintConstantId(member_offset);
// Get element type for next step
curr_ty_id = curr_ty_inst->GetSingleWordInOperand(member_idx);
} break;
default: { assert(false && "unexpected non-composite type"); } break;
}
if (sum_id == 0)
sum_id = curr_offset_id;
else {
Instruction* sum_inst =
builder->AddBinaryOp(GetUintId(), SpvOpIAdd, sum_id, curr_offset_id);
sum_id = sum_inst->result_id();
}
++ac_in_idx;
}
// Add in offset of last byte of referenced object
uint32_t bsize = ByteSize(curr_ty_id);
uint32_t last = bsize - 1;
uint32_t last_id = builder->GetUintConstantId(last);
Instruction* sum_inst =
builder->AddBinaryOp(GetUintId(), SpvOpIAdd, sum_id, last_id);
return sum_inst->result_id();
}
void InstBindlessCheckPass::GenCheckCode(
uint32_t check_id, uint32_t error_id, uint32_t offset_id,
uint32_t length_id, uint32_t stage_idx, ref_analysis* ref,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
BasicBlock* back_blk_ptr = &*new_blocks->back();
InstructionBuilder builder(
context(), back_blk_ptr,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
// Gen conditional branch on check_id. Valid branch generates original
// reference. Invalid generates debug output and zero result (if needed).
uint32_t merge_blk_id = TakeNextId();
uint32_t valid_blk_id = TakeNextId();
uint32_t invalid_blk_id = TakeNextId();
std::unique_ptr<Instruction> merge_label(NewLabel(merge_blk_id));
std::unique_ptr<Instruction> valid_label(NewLabel(valid_blk_id));
std::unique_ptr<Instruction> invalid_label(NewLabel(invalid_blk_id));
(void)builder.AddConditionalBranch(check_id, valid_blk_id, invalid_blk_id,
merge_blk_id, SpvSelectionControlMaskNone);
// Gen valid bounds branch
std::unique_ptr<BasicBlock> new_blk_ptr(
new BasicBlock(std::move(valid_label)));
builder.SetInsertPoint(&*new_blk_ptr);
uint32_t new_ref_id = CloneOriginalReference(ref, &builder);
(void)builder.AddBranch(merge_blk_id);
new_blocks->push_back(std::move(new_blk_ptr));
// Gen invalid block
new_blk_ptr.reset(new BasicBlock(std::move(invalid_label)));
builder.SetInsertPoint(&*new_blk_ptr);
uint32_t u_index_id = GenUintCastCode(ref->desc_idx_id, &builder);
if (offset_id != 0)
GenDebugStreamWrite(uid2offset_[ref->ref_inst->unique_id()], stage_idx,
{error_id, u_index_id, offset_id, length_id}, &builder);
else if (buffer_bounds_enabled_)
// So all error modes will use same debug stream write function
GenDebugStreamWrite(
uid2offset_[ref->ref_inst->unique_id()], stage_idx,
{error_id, u_index_id, length_id, builder.GetUintConstantId(0)},
&builder);
else
GenDebugStreamWrite(uid2offset_[ref->ref_inst->unique_id()], stage_idx,
{error_id, u_index_id, length_id}, &builder);
// Remember last invalid block id
uint32_t last_invalid_blk_id = new_blk_ptr->GetLabelInst()->result_id();
// Gen zero for invalid reference
uint32_t ref_type_id = ref->ref_inst->type_id();
(void)builder.AddBranch(merge_blk_id);
new_blocks->push_back(std::move(new_blk_ptr));
// Gen merge block
new_blk_ptr.reset(new BasicBlock(std::move(merge_label)));
builder.SetInsertPoint(&*new_blk_ptr);
// Gen phi of new reference and zero, if necessary, and replace the
// result id of the original reference with that of the Phi. Kill original
// reference.
if (new_ref_id != 0) {
Instruction* phi_inst = builder.AddPhi(
ref_type_id, {new_ref_id, valid_blk_id, GetNullId(ref_type_id),
last_invalid_blk_id});
context()->ReplaceAllUsesWith(ref->ref_inst->result_id(),
phi_inst->result_id());
}
new_blocks->push_back(std::move(new_blk_ptr));
context()->KillInst(ref->ref_inst);
}
void InstBindlessCheckPass::GenDescIdxCheckCode(
BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr, uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
// Look for reference through indexed descriptor. If found, analyze and
// save components. If not, return.
ref_analysis ref;
if (!AnalyzeDescriptorReference(&*ref_inst_itr, &ref)) return;
Instruction* ptr_inst = get_def_use_mgr()->GetDef(ref.ptr_id);
if (ptr_inst->opcode() != SpvOp::SpvOpAccessChain) return;
// If index and bound both compile-time constants and index < bound,
// return without changing
Instruction* var_inst = get_def_use_mgr()->GetDef(ref.var_id);
Instruction* desc_type_inst = GetPointeeTypeInst(var_inst);
uint32_t length_id = 0;
if (desc_type_inst->opcode() == SpvOpTypeArray) {
length_id =
desc_type_inst->GetSingleWordInOperand(kSpvTypeArrayLengthIdInIdx);
Instruction* index_inst = get_def_use_mgr()->GetDef(ref.desc_idx_id);
Instruction* length_inst = get_def_use_mgr()->GetDef(length_id);
if (index_inst->opcode() == SpvOpConstant &&
length_inst->opcode() == SpvOpConstant &&
index_inst->GetSingleWordInOperand(kSpvConstantValueInIdx) <
length_inst->GetSingleWordInOperand(kSpvConstantValueInIdx))
return;
} else if (!desc_idx_enabled_ ||
desc_type_inst->opcode() != SpvOpTypeRuntimeArray) {
return;
}
// Move original block's preceding instructions into first new block
std::unique_ptr<BasicBlock> new_blk_ptr;
MovePreludeCode(ref_inst_itr, ref_block_itr, &new_blk_ptr);
InstructionBuilder builder(
context(), &*new_blk_ptr,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
new_blocks->push_back(std::move(new_blk_ptr));
uint32_t error_id = builder.GetUintConstantId(kInstErrorBindlessBounds);
// If length id not yet set, descriptor array is runtime size so
// generate load of length from stage's debug input buffer.
if (length_id == 0) {
assert(desc_type_inst->opcode() == SpvOpTypeRuntimeArray &&
"unexpected bindless type");
length_id = GenDebugReadLength(ref.var_id, &builder);
}
// Generate full runtime bounds test code with true branch
// being full reference and false branch being debug output and zero
// for the referenced value.
Instruction* ult_inst = builder.AddBinaryOp(GetBoolId(), SpvOpULessThan,
ref.desc_idx_id, length_id);
GenCheckCode(ult_inst->result_id(), error_id, 0u, length_id, stage_idx, &ref,
new_blocks);
// Move original block's remaining code into remainder/merge block and add
// to new blocks
BasicBlock* back_blk_ptr = &*new_blocks->back();
MovePostludeCode(ref_block_itr, back_blk_ptr);
}
void InstBindlessCheckPass::GenDescInitCheckCode(
BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr, uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
// Look for reference through descriptor. If not, return.
ref_analysis ref;
if (!AnalyzeDescriptorReference(&*ref_inst_itr, &ref)) return;
// Determine if we can only do initialization check
bool init_check = false;
if (ref.desc_load_id != 0 || !buffer_bounds_enabled_) {
init_check = true;
} else {
// For now, only do bounds check for non-aggregate types. Otherwise
// just do descriptor initialization check.
// TODO(greg-lunarg): Do bounds check for aggregate loads and stores
Instruction* ref_ptr_inst = get_def_use_mgr()->GetDef(ref.ptr_id);
Instruction* pte_type_inst = GetPointeeTypeInst(ref_ptr_inst);
uint32_t pte_type_op = pte_type_inst->opcode();
if (pte_type_op == SpvOpTypeArray || pte_type_op == SpvOpTypeRuntimeArray ||
pte_type_op == SpvOpTypeStruct)
init_check = true;
}
// If initialization check and not enabled, return
if (init_check && !desc_init_enabled_) return;
// Move original block's preceding instructions into first new block
std::unique_ptr<BasicBlock> new_blk_ptr;
MovePreludeCode(ref_inst_itr, ref_block_itr, &new_blk_ptr);
InstructionBuilder builder(
context(), &*new_blk_ptr,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
new_blocks->push_back(std::move(new_blk_ptr));
// If initialization check, use reference value of zero.
// Else use the index of the last byte referenced.
uint32_t ref_id = init_check ? builder.GetUintConstantId(0u)
: GenLastByteIdx(&ref, &builder);
// Read initialization/bounds from debug input buffer. If index id not yet
// set, binding is single descriptor, so set index to constant 0.
if (ref.desc_idx_id == 0) ref.desc_idx_id = builder.GetUintConstantId(0u);
uint32_t init_id = GenDebugReadInit(ref.var_id, ref.desc_idx_id, &builder);
// Generate runtime initialization/bounds test code with true branch
// being full reference and false branch being debug output and zero
// for the referenced value.
Instruction* ult_inst =
builder.AddBinaryOp(GetBoolId(), SpvOpULessThan, ref_id, init_id);
uint32_t error =
init_check ? kInstErrorBindlessUninit : kInstErrorBindlessBuffOOB;
uint32_t error_id = builder.GetUintConstantId(error);
GenCheckCode(ult_inst->result_id(), error_id, init_check ? 0 : ref_id,
init_check ? builder.GetUintConstantId(0u) : init_id, stage_idx,
&ref, new_blocks);
// Move original block's remaining code into remainder/merge block and add
// to new blocks
BasicBlock* back_blk_ptr = &*new_blocks->back();
MovePostludeCode(ref_block_itr, back_blk_ptr);
}
void InstBindlessCheckPass::InitializeInstBindlessCheck() {
// Initialize base class
InitializeInstrument();
// If runtime array length support enabled, create variable mappings. Length
// support is always enabled if descriptor init check is enabled.
if (desc_idx_enabled_ || buffer_bounds_enabled_)
for (auto& anno : get_module()->annotations())
if (anno.opcode() == SpvOpDecorate) {
if (anno.GetSingleWordInOperand(1u) == SpvDecorationDescriptorSet)
var2desc_set_[anno.GetSingleWordInOperand(0u)] =
anno.GetSingleWordInOperand(2u);
else if (anno.GetSingleWordInOperand(1u) == SpvDecorationBinding)
var2binding_[anno.GetSingleWordInOperand(0u)] =
anno.GetSingleWordInOperand(2u);
}
}
Pass::Status InstBindlessCheckPass::ProcessImpl() {
// Perform bindless bounds check on each entry point function in module
InstProcessFunction pfn =
[this](BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr, uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
return GenDescIdxCheckCode(ref_inst_itr, ref_block_itr, stage_idx,
new_blocks);
};
bool modified = InstProcessEntryPointCallTree(pfn);
if (desc_init_enabled_ || buffer_bounds_enabled_) {
// Perform descriptor initialization check on each entry point function in
// module
pfn = [this](BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr,
uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
return GenDescInitCheckCode(ref_inst_itr, ref_block_itr, stage_idx,
new_blocks);
};
modified |= InstProcessEntryPointCallTree(pfn);
}
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
Pass::Status InstBindlessCheckPass::Process() {
InitializeInstBindlessCheck();
return ProcessImpl();
}
} // namespace opt
} // namespace spvtools