SPIRV-Tools/source/opt/inst_buff_addr_check_pass.cpp
Jeremy Gebben daee1e7d34
instrument: Combine descriptor length and init state checking (#5274)
Simplify what we add to user code by moving most of it into a function
that checks both that the descriptor index is in bounds and the
initialization state. Move error logging into this function as
well.

Remove many options to turn off parts of the instrumentation,
because there were far too many permutations to keep working and
test properly.

Combine Buffer and TexBuffer error checking. This requires that VVL
set the length of TexBuffers in the descriptor input state, rather
than relying on the instrumentation code to call OpImageQuerySize.
Since the error log includes the descriptor set and binding numbers
we can use a single OOB error code rather than having 4 per-type
error codes.

Since the error codes are getting renumbered, make them start at 1
rather than 0 so it is easier to determine if the error code was
actually set by the instrumentation.
2023-06-22 09:39:49 -06:00

467 lines
22 KiB
C++

// Copyright (c) 2019 The Khronos Group Inc.
// Copyright (c) 2019 Valve Corporation
// Copyright (c) 2019 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "inst_buff_addr_check_pass.h"
namespace spvtools {
namespace opt {
bool InstBuffAddrCheckPass::InstrumentFunction(Function* func,
uint32_t stage_idx,
InstProcessFunction& pfn) {
// The bindless instrumentation pass adds functions that use
// BufferDeviceAddress They should not be instrumented by this pass.
Instruction* func_name_inst =
context()->GetNames(func->DefInst().result_id()).begin()->second;
if (func_name_inst) {
static const std::string kPrefix{"inst_bindless_"};
std::string func_name = func_name_inst->GetOperand(1).AsString();
if (func_name.size() >= kPrefix.size() &&
func_name.compare(0, kPrefix.size(), kPrefix) == 0) {
return false;
}
}
return InstrumentPass::InstrumentFunction(func, stage_idx, pfn);
}
uint32_t InstBuffAddrCheckPass::CloneOriginalReference(
Instruction* ref_inst, InstructionBuilder* builder) {
// Clone original ref with new result id (if load)
assert((ref_inst->opcode() == spv::Op::OpLoad ||
ref_inst->opcode() == spv::Op::OpStore) &&
"unexpected ref");
std::unique_ptr<Instruction> new_ref_inst(ref_inst->Clone(context()));
uint32_t ref_result_id = ref_inst->result_id();
uint32_t new_ref_id = 0;
if (ref_result_id != 0) {
new_ref_id = TakeNextId();
new_ref_inst->SetResultId(new_ref_id);
}
// Register new reference and add to new block
Instruction* added_inst = builder->AddInstruction(std::move(new_ref_inst));
uid2offset_[added_inst->unique_id()] = uid2offset_[ref_inst->unique_id()];
if (new_ref_id != 0)
get_decoration_mgr()->CloneDecorations(ref_result_id, new_ref_id);
return new_ref_id;
}
bool InstBuffAddrCheckPass::IsPhysicalBuffAddrReference(Instruction* ref_inst) {
if (ref_inst->opcode() != spv::Op::OpLoad &&
ref_inst->opcode() != spv::Op::OpStore)
return false;
uint32_t ptr_id = ref_inst->GetSingleWordInOperand(0);
analysis::DefUseManager* du_mgr = get_def_use_mgr();
Instruction* ptr_inst = du_mgr->GetDef(ptr_id);
if (ptr_inst->opcode() != spv::Op::OpAccessChain) return false;
uint32_t ptr_ty_id = ptr_inst->type_id();
Instruction* ptr_ty_inst = du_mgr->GetDef(ptr_ty_id);
if (spv::StorageClass(ptr_ty_inst->GetSingleWordInOperand(0)) !=
spv::StorageClass::PhysicalStorageBufferEXT)
return false;
return true;
}
// TODO(greg-lunarg): Refactor with InstBindlessCheckPass::GenCheckCode() ??
void InstBuffAddrCheckPass::GenCheckCode(
uint32_t check_id, uint32_t error_id, uint32_t ref_uptr_id,
uint32_t stage_idx, Instruction* ref_inst,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
BasicBlock* back_blk_ptr = &*new_blocks->back();
InstructionBuilder builder(
context(), back_blk_ptr,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
// Gen conditional branch on check_id. Valid branch generates original
// reference. Invalid generates debug output and zero result (if needed).
uint32_t merge_blk_id = TakeNextId();
uint32_t valid_blk_id = TakeNextId();
uint32_t invalid_blk_id = TakeNextId();
std::unique_ptr<Instruction> merge_label(NewLabel(merge_blk_id));
std::unique_ptr<Instruction> valid_label(NewLabel(valid_blk_id));
std::unique_ptr<Instruction> invalid_label(NewLabel(invalid_blk_id));
(void)builder.AddConditionalBranch(
check_id, valid_blk_id, invalid_blk_id, merge_blk_id,
uint32_t(spv::SelectionControlMask::MaskNone));
// Gen valid branch
std::unique_ptr<BasicBlock> new_blk_ptr(
new BasicBlock(std::move(valid_label)));
builder.SetInsertPoint(&*new_blk_ptr);
uint32_t new_ref_id = CloneOriginalReference(ref_inst, &builder);
(void)builder.AddBranch(merge_blk_id);
new_blocks->push_back(std::move(new_blk_ptr));
// Gen invalid block
new_blk_ptr.reset(new BasicBlock(std::move(invalid_label)));
builder.SetInsertPoint(&*new_blk_ptr);
// Convert uptr from uint64 to 2 uint32
Instruction* lo_uptr_inst =
builder.AddUnaryOp(GetUintId(), spv::Op::OpUConvert, ref_uptr_id);
Instruction* rshift_uptr_inst =
builder.AddBinaryOp(GetUint64Id(), spv::Op::OpShiftRightLogical,
ref_uptr_id, builder.GetUintConstantId(32));
Instruction* hi_uptr_inst = builder.AddUnaryOp(
GetUintId(), spv::Op::OpUConvert, rshift_uptr_inst->result_id());
GenDebugStreamWrite(
builder.GetUintConstantId(shader_id_),
builder.GetUintConstantId(uid2offset_[ref_inst->unique_id()]),
GenStageInfo(stage_idx, &builder),
{error_id, lo_uptr_inst->result_id(), hi_uptr_inst->result_id()},
&builder);
// Gen zero for invalid load. If pointer type, need to convert uint64
// zero to pointer; cannot create ConstantNull of pointer type.
uint32_t null_id = 0;
if (new_ref_id != 0) {
uint32_t ref_type_id = ref_inst->type_id();
analysis::TypeManager* type_mgr = context()->get_type_mgr();
analysis::Type* ref_type = type_mgr->GetType(ref_type_id);
if (ref_type->AsPointer() != nullptr) {
uint32_t null_u64_id = GetNullId(GetUint64Id());
Instruction* null_ptr_inst = builder.AddUnaryOp(
ref_type_id, spv::Op::OpConvertUToPtr, null_u64_id);
null_id = null_ptr_inst->result_id();
} else {
null_id = GetNullId(ref_type_id);
}
}
(void)builder.AddBranch(merge_blk_id);
new_blocks->push_back(std::move(new_blk_ptr));
// Gen merge block
new_blk_ptr.reset(new BasicBlock(std::move(merge_label)));
builder.SetInsertPoint(&*new_blk_ptr);
// Gen phi of new reference and zero, if necessary, and replace the
// result id of the original reference with that of the Phi. Kill original
// reference.
if (new_ref_id != 0) {
Instruction* phi_inst =
builder.AddPhi(ref_inst->type_id(),
{new_ref_id, valid_blk_id, null_id, invalid_blk_id});
context()->ReplaceAllUsesWith(ref_inst->result_id(), phi_inst->result_id());
}
new_blocks->push_back(std::move(new_blk_ptr));
context()->KillInst(ref_inst);
}
uint32_t InstBuffAddrCheckPass::GetTypeLength(uint32_t type_id) {
Instruction* type_inst = get_def_use_mgr()->GetDef(type_id);
switch (type_inst->opcode()) {
case spv::Op::OpTypeFloat:
case spv::Op::OpTypeInt:
return type_inst->GetSingleWordInOperand(0) / 8u;
case spv::Op::OpTypeVector:
case spv::Op::OpTypeMatrix:
return type_inst->GetSingleWordInOperand(1) *
GetTypeLength(type_inst->GetSingleWordInOperand(0));
case spv::Op::OpTypePointer:
assert(spv::StorageClass(type_inst->GetSingleWordInOperand(0)) ==
spv::StorageClass::PhysicalStorageBufferEXT &&
"unexpected pointer type");
return 8u;
case spv::Op::OpTypeArray: {
uint32_t const_id = type_inst->GetSingleWordInOperand(1);
Instruction* const_inst = get_def_use_mgr()->GetDef(const_id);
uint32_t cnt = const_inst->GetSingleWordInOperand(0);
return cnt * GetTypeLength(type_inst->GetSingleWordInOperand(0));
}
case spv::Op::OpTypeStruct: {
// Figure out the location of the last byte of the last member of the
// structure.
uint32_t last_offset = 0, last_len = 0;
get_decoration_mgr()->ForEachDecoration(
type_id, uint32_t(spv::Decoration::Offset),
[&last_offset](const Instruction& deco_inst) {
last_offset = deco_inst.GetSingleWordInOperand(3);
});
type_inst->ForEachInId([&last_len, this](const uint32_t* iid) {
last_len = GetTypeLength(*iid);
});
return last_offset + last_len;
}
case spv::Op::OpTypeRuntimeArray:
default:
assert(false && "unexpected type");
return 0;
}
}
void InstBuffAddrCheckPass::AddParam(uint32_t type_id,
std::vector<uint32_t>* param_vec,
std::unique_ptr<Function>* input_func) {
uint32_t pid = TakeNextId();
param_vec->push_back(pid);
std::unique_ptr<Instruction> param_inst(new Instruction(
get_module()->context(), spv::Op::OpFunctionParameter, type_id, pid, {}));
get_def_use_mgr()->AnalyzeInstDefUse(&*param_inst);
(*input_func)->AddParameter(std::move(param_inst));
}
uint32_t InstBuffAddrCheckPass::GetSearchAndTestFuncId() {
if (search_test_func_id_ == 0) {
// Generate function "bool search_and_test(uint64_t ref_ptr, uint32_t len)"
// which searches input buffer for buffer which most likely contains the
// pointer value |ref_ptr| and verifies that the entire reference of
// length |len| bytes is contained in the buffer.
search_test_func_id_ = TakeNextId();
analysis::TypeManager* type_mgr = context()->get_type_mgr();
std::vector<const analysis::Type*> param_types = {
type_mgr->GetType(GetUint64Id()), type_mgr->GetType(GetUintId())};
analysis::Function func_ty(type_mgr->GetType(GetBoolId()), param_types);
analysis::Type* reg_func_ty = type_mgr->GetRegisteredType(&func_ty);
std::unique_ptr<Instruction> func_inst(
new Instruction(get_module()->context(), spv::Op::OpFunction,
GetBoolId(), search_test_func_id_,
{{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
{uint32_t(spv::FunctionControlMask::MaskNone)}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID,
{type_mgr->GetTypeInstruction(reg_func_ty)}}}));
get_def_use_mgr()->AnalyzeInstDefUse(&*func_inst);
std::unique_ptr<Function> input_func =
MakeUnique<Function>(std::move(func_inst));
std::vector<uint32_t> param_vec;
// Add ref_ptr and length parameters
AddParam(GetUint64Id(), &param_vec, &input_func);
AddParam(GetUintId(), &param_vec, &input_func);
// Empty first block.
uint32_t first_blk_id = TakeNextId();
std::unique_ptr<Instruction> first_blk_label(NewLabel(first_blk_id));
std::unique_ptr<BasicBlock> first_blk_ptr =
MakeUnique<BasicBlock>(std::move(first_blk_label));
InstructionBuilder builder(
context(), &*first_blk_ptr,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
uint32_t hdr_blk_id = TakeNextId();
// Branch to search loop header
std::unique_ptr<Instruction> hdr_blk_label(NewLabel(hdr_blk_id));
(void)builder.AddBranch(hdr_blk_id);
input_func->AddBasicBlock(std::move(first_blk_ptr));
// Linear search loop header block
// TODO(greg-lunarg): Implement binary search
std::unique_ptr<BasicBlock> hdr_blk_ptr =
MakeUnique<BasicBlock>(std::move(hdr_blk_label));
builder.SetInsertPoint(&*hdr_blk_ptr);
// Phi for search index. Starts with 1.
uint32_t cont_blk_id = TakeNextId();
std::unique_ptr<Instruction> cont_blk_label(NewLabel(cont_blk_id));
// Deal with def-use cycle caused by search loop index computation.
// Create Add and Phi instructions first, then do Def analysis on Add.
// Add Phi and Add instructions and do Use analysis later.
uint32_t idx_phi_id = TakeNextId();
uint32_t idx_inc_id = TakeNextId();
std::unique_ptr<Instruction> idx_inc_inst(new Instruction(
context(), spv::Op::OpIAdd, GetUintId(), idx_inc_id,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {idx_phi_id}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID,
{builder.GetUintConstantId(1u)}}}));
std::unique_ptr<Instruction> idx_phi_inst(new Instruction(
context(), spv::Op::OpPhi, GetUintId(), idx_phi_id,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID,
{builder.GetUintConstantId(1u)}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {first_blk_id}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {idx_inc_id}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {cont_blk_id}}}));
get_def_use_mgr()->AnalyzeInstDef(&*idx_inc_inst);
// Add (previously created) search index phi
(void)builder.AddInstruction(std::move(idx_phi_inst));
// LoopMerge
uint32_t bound_test_blk_id = TakeNextId();
std::unique_ptr<Instruction> bound_test_blk_label(
NewLabel(bound_test_blk_id));
(void)builder.AddLoopMerge(bound_test_blk_id, cont_blk_id,
uint32_t(spv::LoopControlMask::MaskNone));
// Branch to continue/work block
(void)builder.AddBranch(cont_blk_id);
input_func->AddBasicBlock(std::move(hdr_blk_ptr));
// Continue/Work Block. Read next buffer pointer and break if greater
// than ref_ptr arg.
std::unique_ptr<BasicBlock> cont_blk_ptr =
MakeUnique<BasicBlock>(std::move(cont_blk_label));
builder.SetInsertPoint(&*cont_blk_ptr);
// Add (previously created) search index increment now.
(void)builder.AddInstruction(std::move(idx_inc_inst));
// Load next buffer address from debug input buffer
uint32_t ibuf_id = GetInputBufferId();
uint32_t ibuf_ptr_id = GetInputBufferPtrId();
Instruction* uptr_ac_inst = builder.AddTernaryOp(
ibuf_ptr_id, spv::Op::OpAccessChain, ibuf_id,
builder.GetUintConstantId(kDebugInputDataOffset), idx_inc_id);
uint32_t ibuf_type_id = GetInputBufferTypeId();
Instruction* uptr_load_inst = builder.AddUnaryOp(
ibuf_type_id, spv::Op::OpLoad, uptr_ac_inst->result_id());
// If loaded address greater than ref_ptr arg, break, else branch back to
// loop header
Instruction* uptr_test_inst =
builder.AddBinaryOp(GetBoolId(), spv::Op::OpUGreaterThan,
uptr_load_inst->result_id(), param_vec[0]);
(void)builder.AddConditionalBranch(
uptr_test_inst->result_id(), bound_test_blk_id, hdr_blk_id, kInvalidId,
uint32_t(spv::SelectionControlMask::MaskNone));
input_func->AddBasicBlock(std::move(cont_blk_ptr));
// Bounds test block. Read length of selected buffer and test that
// all len arg bytes are in buffer.
std::unique_ptr<BasicBlock> bound_test_blk_ptr =
MakeUnique<BasicBlock>(std::move(bound_test_blk_label));
builder.SetInsertPoint(&*bound_test_blk_ptr);
// Decrement index to point to previous/candidate buffer address
Instruction* cand_idx_inst =
builder.AddBinaryOp(GetUintId(), spv::Op::OpISub, idx_inc_id,
builder.GetUintConstantId(1u));
// Load candidate buffer address
Instruction* cand_ac_inst =
builder.AddTernaryOp(ibuf_ptr_id, spv::Op::OpAccessChain, ibuf_id,
builder.GetUintConstantId(kDebugInputDataOffset),
cand_idx_inst->result_id());
Instruction* cand_load_inst = builder.AddUnaryOp(
ibuf_type_id, spv::Op::OpLoad, cand_ac_inst->result_id());
// Compute offset of ref_ptr from candidate buffer address
Instruction* offset_inst =
builder.AddBinaryOp(ibuf_type_id, spv::Op::OpISub, param_vec[0],
cand_load_inst->result_id());
// Convert ref length to uint64
Instruction* ref_len_64_inst =
builder.AddUnaryOp(ibuf_type_id, spv::Op::OpUConvert, param_vec[1]);
// Add ref length to ref offset to compute end of reference
Instruction* ref_end_inst = builder.AddBinaryOp(
ibuf_type_id, spv::Op::OpIAdd, offset_inst->result_id(),
ref_len_64_inst->result_id());
// Load starting index of lengths in input buffer and convert to uint32
Instruction* len_start_ac_inst =
builder.AddTernaryOp(ibuf_ptr_id, spv::Op::OpAccessChain, ibuf_id,
builder.GetUintConstantId(kDebugInputDataOffset),
builder.GetUintConstantId(0u));
Instruction* len_start_load_inst = builder.AddUnaryOp(
ibuf_type_id, spv::Op::OpLoad, len_start_ac_inst->result_id());
Instruction* len_start_32_inst = builder.AddUnaryOp(
GetUintId(), spv::Op::OpUConvert, len_start_load_inst->result_id());
// Decrement search index to get candidate buffer length index
Instruction* cand_len_idx_inst = builder.AddBinaryOp(
GetUintId(), spv::Op::OpISub, cand_idx_inst->result_id(),
builder.GetUintConstantId(1u));
// Add candidate length index to start index
Instruction* len_idx_inst = builder.AddBinaryOp(
GetUintId(), spv::Op::OpIAdd, cand_len_idx_inst->result_id(),
len_start_32_inst->result_id());
// Load candidate buffer length
Instruction* len_ac_inst =
builder.AddTernaryOp(ibuf_ptr_id, spv::Op::OpAccessChain, ibuf_id,
builder.GetUintConstantId(kDebugInputDataOffset),
len_idx_inst->result_id());
Instruction* len_load_inst = builder.AddUnaryOp(
ibuf_type_id, spv::Op::OpLoad, len_ac_inst->result_id());
// Test if reference end within candidate buffer length
Instruction* len_test_inst = builder.AddBinaryOp(
GetBoolId(), spv::Op::OpULessThanEqual, ref_end_inst->result_id(),
len_load_inst->result_id());
// Return test result
(void)builder.AddUnaryOp(0, spv::Op::OpReturnValue,
len_test_inst->result_id());
// Close block
input_func->AddBasicBlock(std::move(bound_test_blk_ptr));
// Close function and add function to module
std::unique_ptr<Instruction> func_end_inst(new Instruction(
get_module()->context(), spv::Op::OpFunctionEnd, 0, 0, {}));
get_def_use_mgr()->AnalyzeInstDefUse(&*func_end_inst);
input_func->SetFunctionEnd(std::move(func_end_inst));
context()->AddFunction(std::move(input_func));
context()->AddDebug2Inst(
NewGlobalName(search_test_func_id_, "search_and_test"));
}
return search_test_func_id_;
}
uint32_t InstBuffAddrCheckPass::GenSearchAndTest(Instruction* ref_inst,
InstructionBuilder* builder,
uint32_t* ref_uptr_id) {
// Enable Int64 if necessary
context()->AddCapability(spv::Capability::Int64);
// Convert reference pointer to uint64
uint32_t ref_ptr_id = ref_inst->GetSingleWordInOperand(0);
Instruction* ref_uptr_inst =
builder->AddUnaryOp(GetUint64Id(), spv::Op::OpConvertPtrToU, ref_ptr_id);
*ref_uptr_id = ref_uptr_inst->result_id();
// Compute reference length in bytes
analysis::DefUseManager* du_mgr = get_def_use_mgr();
Instruction* ref_ptr_inst = du_mgr->GetDef(ref_ptr_id);
uint32_t ref_ptr_ty_id = ref_ptr_inst->type_id();
Instruction* ref_ptr_ty_inst = du_mgr->GetDef(ref_ptr_ty_id);
uint32_t ref_len = GetTypeLength(ref_ptr_ty_inst->GetSingleWordInOperand(1));
uint32_t ref_len_id = builder->GetUintConstantId(ref_len);
// Gen call to search and test function
Instruction* call_inst = builder->AddFunctionCall(
GetBoolId(), GetSearchAndTestFuncId(), {*ref_uptr_id, ref_len_id});
uint32_t retval = call_inst->result_id();
return retval;
}
void InstBuffAddrCheckPass::GenBuffAddrCheckCode(
BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr, uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
// Look for reference through indexed descriptor. If found, analyze and
// save components. If not, return.
Instruction* ref_inst = &*ref_inst_itr;
if (!IsPhysicalBuffAddrReference(ref_inst)) return;
// Move original block's preceding instructions into first new block
std::unique_ptr<BasicBlock> new_blk_ptr;
MovePreludeCode(ref_inst_itr, ref_block_itr, &new_blk_ptr);
InstructionBuilder builder(
context(), &*new_blk_ptr,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
new_blocks->push_back(std::move(new_blk_ptr));
uint32_t error_id = builder.GetUintConstantId(kInstErrorBuffAddrUnallocRef);
// Generate code to do search and test if all bytes of reference
// are within a listed buffer. Return reference pointer converted to uint64.
uint32_t ref_uptr_id;
uint32_t valid_id = GenSearchAndTest(ref_inst, &builder, &ref_uptr_id);
// Generate test of search results with true branch
// being full reference and false branch being debug output and zero
// for the referenced value.
GenCheckCode(valid_id, error_id, ref_uptr_id, stage_idx, ref_inst,
new_blocks);
// Move original block's remaining code into remainder/merge block and add
// to new blocks
BasicBlock* back_blk_ptr = &*new_blocks->back();
MovePostludeCode(ref_block_itr, back_blk_ptr);
}
void InstBuffAddrCheckPass::InitInstBuffAddrCheck() {
// Initialize base class
InitializeInstrument();
// Initialize class
search_test_func_id_ = 0;
}
Pass::Status InstBuffAddrCheckPass::ProcessImpl() {
// Perform bindless bounds check on each entry point function in module
InstProcessFunction pfn =
[this](BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr, uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
return GenBuffAddrCheckCode(ref_inst_itr, ref_block_itr, stage_idx,
new_blocks);
};
bool modified = InstProcessEntryPointCallTree(pfn);
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
Pass::Status InstBuffAddrCheckPass::Process() {
if (!get_feature_mgr()->HasCapability(
spv::Capability::PhysicalStorageBufferAddressesEXT))
return Status::SuccessWithoutChange;
InitInstBuffAddrCheck();
return ProcessImpl();
}
} // namespace opt
} // namespace spvtools