mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2025-01-10 08:30:09 +00:00
25ddfec08e
This adapts the fix for the single-block loop. Split the loop like before. But when we move the OpLoopMerge back to the loop header, redirect the continue target only when the original loop was a single block loop. Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/800
705 lines
28 KiB
C++
705 lines
28 KiB
C++
// Copyright (c) 2017 The Khronos Group Inc.
|
|
// Copyright (c) 2017 Valve Corporation
|
|
// Copyright (c) 2017 LunarG Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "inline_pass.h"
|
|
|
|
#include "cfa.h"
|
|
|
|
// Indices of operands in SPIR-V instructions
|
|
|
|
static const int kSpvFunctionCallFunctionId = 2;
|
|
static const int kSpvFunctionCallArgumentId = 3;
|
|
static const int kSpvReturnValueId = 0;
|
|
static const int kSpvTypePointerStorageClass = 1;
|
|
static const int kSpvTypePointerTypeId = 2;
|
|
static const int kSpvLoopMergeMergeBlockId = 0;
|
|
static const int kSpvLoopMergeContinueTargetIdInIdx = 1;
|
|
static const int kSpvSelectionMergeMergeBlockId = 0;
|
|
|
|
namespace spvtools {
|
|
namespace opt {
|
|
|
|
uint32_t InlinePass::FindPointerToType(uint32_t type_id,
|
|
SpvStorageClass storage_class) {
|
|
ir::Module::inst_iterator type_itr = module_->types_values_begin();
|
|
for (; type_itr != module_->types_values_end(); ++type_itr) {
|
|
const ir::Instruction* type_inst = &*type_itr;
|
|
if (type_inst->opcode() == SpvOpTypePointer &&
|
|
type_inst->GetSingleWordOperand(kSpvTypePointerTypeId) == type_id &&
|
|
type_inst->GetSingleWordOperand(kSpvTypePointerStorageClass) ==
|
|
storage_class)
|
|
return type_inst->result_id();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint32_t InlinePass::AddPointerToType(uint32_t type_id,
|
|
SpvStorageClass storage_class) {
|
|
uint32_t resultId = TakeNextId();
|
|
std::unique_ptr<ir::Instruction> type_inst(new ir::Instruction(
|
|
SpvOpTypePointer, 0, resultId,
|
|
{{spv_operand_type_t::SPV_OPERAND_TYPE_STORAGE_CLASS,
|
|
{uint32_t(storage_class)}},
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {type_id}}}));
|
|
module_->AddType(std::move(type_inst));
|
|
return resultId;
|
|
}
|
|
|
|
void InlinePass::AddBranch(uint32_t label_id,
|
|
std::unique_ptr<ir::BasicBlock>* block_ptr) {
|
|
std::unique_ptr<ir::Instruction> newBranch(new ir::Instruction(
|
|
SpvOpBranch, 0, 0,
|
|
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {label_id}}}));
|
|
(*block_ptr)->AddInstruction(std::move(newBranch));
|
|
}
|
|
|
|
void InlinePass::AddBranchCond(uint32_t cond_id, uint32_t true_id,
|
|
uint32_t false_id, std::unique_ptr<ir::BasicBlock>* block_ptr) {
|
|
std::unique_ptr<ir::Instruction> newBranch(new ir::Instruction(
|
|
SpvOpBranchConditional, 0, 0,
|
|
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {cond_id}},
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {true_id}},
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {false_id}}}));
|
|
(*block_ptr)->AddInstruction(std::move(newBranch));
|
|
}
|
|
|
|
void InlinePass::AddLoopMerge(uint32_t merge_id, uint32_t continue_id,
|
|
std::unique_ptr<ir::BasicBlock>* block_ptr) {
|
|
std::unique_ptr<ir::Instruction> newLoopMerge(new ir::Instruction(
|
|
SpvOpLoopMerge, 0, 0,
|
|
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {merge_id}},
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {continue_id}},
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_LOOP_CONTROL, {0}}}));
|
|
(*block_ptr)->AddInstruction(std::move(newLoopMerge));
|
|
}
|
|
|
|
void InlinePass::AddStore(uint32_t ptr_id, uint32_t val_id,
|
|
std::unique_ptr<ir::BasicBlock>* block_ptr) {
|
|
std::unique_ptr<ir::Instruction> newStore(new ir::Instruction(
|
|
SpvOpStore, 0, 0, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {ptr_id}},
|
|
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {val_id}}}));
|
|
(*block_ptr)->AddInstruction(std::move(newStore));
|
|
}
|
|
|
|
void InlinePass::AddLoad(uint32_t type_id, uint32_t resultId, uint32_t ptr_id,
|
|
std::unique_ptr<ir::BasicBlock>* block_ptr) {
|
|
std::unique_ptr<ir::Instruction> newLoad(new ir::Instruction(
|
|
SpvOpLoad, type_id, resultId,
|
|
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {ptr_id}}}));
|
|
(*block_ptr)->AddInstruction(std::move(newLoad));
|
|
}
|
|
|
|
std::unique_ptr<ir::Instruction> InlinePass::NewLabel(uint32_t label_id) {
|
|
std::unique_ptr<ir::Instruction> newLabel(
|
|
new ir::Instruction(SpvOpLabel, 0, label_id, {}));
|
|
return newLabel;
|
|
}
|
|
|
|
uint32_t InlinePass::GetFalseId() {
|
|
if (false_id_ != 0)
|
|
return false_id_;
|
|
false_id_ = module_->GetGlobalValue(SpvOpConstantFalse);
|
|
if (false_id_ != 0)
|
|
return false_id_;
|
|
uint32_t boolId = module_->GetGlobalValue(SpvOpTypeBool);
|
|
if (boolId == 0) {
|
|
boolId = TakeNextId();
|
|
module_->AddGlobalValue(SpvOpTypeBool, boolId, 0);
|
|
}
|
|
false_id_ = TakeNextId();
|
|
module_->AddGlobalValue(SpvOpConstantFalse, false_id_, boolId);
|
|
return false_id_;
|
|
}
|
|
|
|
void InlinePass::MapParams(
|
|
ir::Function* calleeFn,
|
|
ir::UptrVectorIterator<ir::Instruction> call_inst_itr,
|
|
std::unordered_map<uint32_t, uint32_t>* callee2caller) {
|
|
int param_idx = 0;
|
|
calleeFn->ForEachParam(
|
|
[&call_inst_itr, ¶m_idx, &callee2caller](const ir::Instruction* cpi) {
|
|
const uint32_t pid = cpi->result_id();
|
|
(*callee2caller)[pid] = call_inst_itr->GetSingleWordOperand(
|
|
kSpvFunctionCallArgumentId + param_idx);
|
|
++param_idx;
|
|
});
|
|
}
|
|
|
|
void InlinePass::CloneAndMapLocals(
|
|
ir::Function* calleeFn,
|
|
std::vector<std::unique_ptr<ir::Instruction>>* new_vars,
|
|
std::unordered_map<uint32_t, uint32_t>* callee2caller) {
|
|
auto callee_block_itr = calleeFn->begin();
|
|
auto callee_var_itr = callee_block_itr->begin();
|
|
while (callee_var_itr->opcode() == SpvOp::SpvOpVariable) {
|
|
std::unique_ptr<ir::Instruction> var_inst(
|
|
new ir::Instruction(*callee_var_itr));
|
|
uint32_t newId = TakeNextId();
|
|
var_inst->SetResultId(newId);
|
|
(*callee2caller)[callee_var_itr->result_id()] = newId;
|
|
new_vars->push_back(std::move(var_inst));
|
|
++callee_var_itr;
|
|
}
|
|
}
|
|
|
|
uint32_t InlinePass::CreateReturnVar(
|
|
ir::Function* calleeFn,
|
|
std::vector<std::unique_ptr<ir::Instruction>>* new_vars) {
|
|
uint32_t returnVarId = 0;
|
|
const uint32_t calleeTypeId = calleeFn->type_id();
|
|
const ir::Instruction* calleeType =
|
|
def_use_mgr_->id_to_defs().find(calleeTypeId)->second;
|
|
if (calleeType->opcode() != SpvOpTypeVoid) {
|
|
// Find or create ptr to callee return type.
|
|
uint32_t returnVarTypeId =
|
|
FindPointerToType(calleeTypeId, SpvStorageClassFunction);
|
|
if (returnVarTypeId == 0)
|
|
returnVarTypeId = AddPointerToType(calleeTypeId, SpvStorageClassFunction);
|
|
// Add return var to new function scope variables.
|
|
returnVarId = TakeNextId();
|
|
std::unique_ptr<ir::Instruction> var_inst(new ir::Instruction(
|
|
SpvOpVariable, returnVarTypeId, returnVarId,
|
|
{{spv_operand_type_t::SPV_OPERAND_TYPE_STORAGE_CLASS,
|
|
{SpvStorageClassFunction}}}));
|
|
new_vars->push_back(std::move(var_inst));
|
|
}
|
|
return returnVarId;
|
|
}
|
|
|
|
bool InlinePass::IsSameBlockOp(const ir::Instruction* inst) const {
|
|
return inst->opcode() == SpvOpSampledImage || inst->opcode() == SpvOpImage;
|
|
}
|
|
|
|
void InlinePass::CloneSameBlockOps(
|
|
std::unique_ptr<ir::Instruction>* inst,
|
|
std::unordered_map<uint32_t, uint32_t>* postCallSB,
|
|
std::unordered_map<uint32_t, ir::Instruction*>* preCallSB,
|
|
std::unique_ptr<ir::BasicBlock>* block_ptr) {
|
|
(*inst)
|
|
->ForEachInId([&postCallSB, &preCallSB, &block_ptr, this](uint32_t* iid) {
|
|
const auto mapItr = (*postCallSB).find(*iid);
|
|
if (mapItr == (*postCallSB).end()) {
|
|
const auto mapItr2 = (*preCallSB).find(*iid);
|
|
if (mapItr2 != (*preCallSB).end()) {
|
|
// Clone pre-call same-block ops, map result id.
|
|
const ir::Instruction* inInst = mapItr2->second;
|
|
std::unique_ptr<ir::Instruction> sb_inst(
|
|
new ir::Instruction(*inInst));
|
|
CloneSameBlockOps(&sb_inst, postCallSB, preCallSB, block_ptr);
|
|
const uint32_t rid = sb_inst->result_id();
|
|
const uint32_t nid = this->TakeNextId();
|
|
sb_inst->SetResultId(nid);
|
|
(*postCallSB)[rid] = nid;
|
|
*iid = nid;
|
|
(*block_ptr)->AddInstruction(std::move(sb_inst));
|
|
}
|
|
} else {
|
|
// Reset same-block op operand.
|
|
*iid = mapItr->second;
|
|
}
|
|
});
|
|
}
|
|
|
|
void InlinePass::GenInlineCode(
|
|
std::vector<std::unique_ptr<ir::BasicBlock>>* new_blocks,
|
|
std::vector<std::unique_ptr<ir::Instruction>>* new_vars,
|
|
ir::UptrVectorIterator<ir::Instruction> call_inst_itr,
|
|
ir::UptrVectorIterator<ir::BasicBlock> call_block_itr) {
|
|
// Map from all ids in the callee to their equivalent id in the caller
|
|
// as callee instructions are copied into caller.
|
|
std::unordered_map<uint32_t, uint32_t> callee2caller;
|
|
// Pre-call same-block insts
|
|
std::unordered_map<uint32_t, ir::Instruction*> preCallSB;
|
|
// Post-call same-block op ids
|
|
std::unordered_map<uint32_t, uint32_t> postCallSB;
|
|
|
|
ir::Function* calleeFn = id2function_[call_inst_itr->GetSingleWordOperand(
|
|
kSpvFunctionCallFunctionId)];
|
|
|
|
// Check for multiple returns in the callee.
|
|
auto fi = multi_return_funcs_.find(calleeFn->result_id());
|
|
const bool multiReturn = fi != multi_return_funcs_.end();
|
|
|
|
// Map parameters to actual arguments.
|
|
MapParams(calleeFn, call_inst_itr, &callee2caller);
|
|
|
|
// Define caller local variables for all callee variables and create map to
|
|
// them.
|
|
CloneAndMapLocals(calleeFn, new_vars, &callee2caller);
|
|
|
|
// Create return var if needed.
|
|
uint32_t returnVarId = CreateReturnVar(calleeFn, new_vars);
|
|
|
|
// Create set of callee result ids. Used to detect forward references
|
|
std::unordered_set<uint32_t> callee_result_ids;
|
|
calleeFn->ForEachInst([&callee_result_ids](
|
|
const ir::Instruction* cpi) {
|
|
const uint32_t rid = cpi->result_id();
|
|
if (rid != 0)
|
|
callee_result_ids.insert(rid);
|
|
});
|
|
|
|
// If the caller is in a single-block loop, and the callee has multiple
|
|
// blocks, then the normal inlining logic will place the OpLoopMerge in
|
|
// the last of several blocks in the loop. Instead, it should be placed
|
|
// at the end of the first block. First determine if the caller is in a
|
|
// single block loop. We'll wait to move the OpLoopMerge until the end
|
|
// of the regular inlining logic, and only if necessary.
|
|
bool caller_is_single_block_loop = false;
|
|
bool caller_is_loop_header = false;
|
|
if (auto* loop_merge = call_block_itr->GetLoopMergeInst()) {
|
|
caller_is_loop_header = true;
|
|
caller_is_single_block_loop =
|
|
call_block_itr->id() ==
|
|
loop_merge->GetSingleWordInOperand(kSpvLoopMergeContinueTargetIdInIdx);
|
|
}
|
|
|
|
bool callee_begins_with_structured_header =
|
|
(*(calleeFn->begin())).GetMergeInst() != nullptr;
|
|
|
|
// Clone and map callee code. Copy caller block code to beginning of
|
|
// first block and end of last block.
|
|
bool prevInstWasReturn = false;
|
|
uint32_t singleTripLoopHeaderId = 0;
|
|
uint32_t singleTripLoopContinueId = 0;
|
|
uint32_t returnLabelId = 0;
|
|
bool multiBlocks = false;
|
|
const uint32_t calleeTypeId = calleeFn->type_id();
|
|
// new_blk_ptr is a new basic block in the caller. New instructions are
|
|
// written to it. It is created when we encounter the OpLabel
|
|
// of the first callee block. It is appended to new_blocks only when
|
|
// it is complete.
|
|
std::unique_ptr<ir::BasicBlock> new_blk_ptr;
|
|
calleeFn->ForEachInst([&new_blocks, &callee2caller, &call_block_itr,
|
|
&call_inst_itr, &new_blk_ptr, &prevInstWasReturn,
|
|
&returnLabelId, &returnVarId, caller_is_loop_header,
|
|
callee_begins_with_structured_header, &calleeTypeId,
|
|
&multiBlocks, &postCallSB, &preCallSB, multiReturn,
|
|
&singleTripLoopHeaderId, &singleTripLoopContinueId,
|
|
&callee_result_ids, this](const ir::Instruction* cpi) {
|
|
switch (cpi->opcode()) {
|
|
case SpvOpFunction:
|
|
case SpvOpFunctionParameter:
|
|
case SpvOpVariable:
|
|
// Already processed
|
|
break;
|
|
case SpvOpLabel: {
|
|
// If previous instruction was early return, insert branch
|
|
// instruction to return block.
|
|
if (prevInstWasReturn) {
|
|
if (returnLabelId == 0) returnLabelId = this->TakeNextId();
|
|
AddBranch(returnLabelId, &new_blk_ptr);
|
|
prevInstWasReturn = false;
|
|
}
|
|
// Finish current block (if it exists) and get label for next block.
|
|
uint32_t labelId;
|
|
bool firstBlock = false;
|
|
if (new_blk_ptr != nullptr) {
|
|
new_blocks->push_back(std::move(new_blk_ptr));
|
|
// If result id is already mapped, use it, otherwise get a new
|
|
// one.
|
|
const uint32_t rid = cpi->result_id();
|
|
const auto mapItr = callee2caller.find(rid);
|
|
labelId = (mapItr != callee2caller.end()) ? mapItr->second
|
|
: this->TakeNextId();
|
|
} else {
|
|
// First block needs to use label of original block
|
|
// but map callee label in case of phi reference.
|
|
labelId = call_block_itr->id();
|
|
callee2caller[cpi->result_id()] = labelId;
|
|
firstBlock = true;
|
|
}
|
|
// Create first/next block.
|
|
new_blk_ptr.reset(new ir::BasicBlock(NewLabel(labelId)));
|
|
if (firstBlock) {
|
|
// Copy contents of original caller block up to call instruction.
|
|
for (auto cii = call_block_itr->begin(); cii != call_inst_itr;
|
|
++cii) {
|
|
std::unique_ptr<ir::Instruction> cp_inst(new ir::Instruction(*cii));
|
|
// Remember same-block ops for possible regeneration.
|
|
if (IsSameBlockOp(&*cp_inst)) {
|
|
auto* sb_inst_ptr = cp_inst.get();
|
|
preCallSB[cp_inst->result_id()] = sb_inst_ptr;
|
|
}
|
|
new_blk_ptr->AddInstruction(std::move(cp_inst));
|
|
}
|
|
if (caller_is_loop_header &&
|
|
callee_begins_with_structured_header) {
|
|
// We can't place both the caller's merge instruction and another
|
|
// merge instruction in the same block. So split the calling block.
|
|
// Insert an unconditional branch to a new guard block. Later,
|
|
// once we know the ID of the last block, we will move the caller's
|
|
// OpLoopMerge from the last generated block into the first block.
|
|
// We also wait to avoid invalidating various iterators.
|
|
const auto guard_block_id = this->TakeNextId();
|
|
AddBranch(guard_block_id, &new_blk_ptr);
|
|
new_blocks->push_back(std::move(new_blk_ptr));
|
|
// Start the next block.
|
|
new_blk_ptr.reset(new ir::BasicBlock(NewLabel(guard_block_id)));
|
|
// Reset the mapping of the callee's entry block to point to
|
|
// the guard block. Do this so we can fix up phis later on to
|
|
// satisfy dominance.
|
|
callee2caller[cpi->result_id()] = guard_block_id;
|
|
}
|
|
// If callee has multiple returns, insert a header block for
|
|
// single-trip loop that will encompass callee code. Start postheader
|
|
// block.
|
|
//
|
|
// Note: Consider the following combination:
|
|
// - the caller is a single block loop
|
|
// - the callee does not begin with a structure header
|
|
// - the callee has multiple returns.
|
|
// We still need to split the caller block and insert a guard block.
|
|
// But we only need to do it once. We haven't done it yet, but the
|
|
// single-trip loop header will serve the same purpose.
|
|
if (multiReturn) {
|
|
singleTripLoopHeaderId = this->TakeNextId();
|
|
AddBranch(singleTripLoopHeaderId, &new_blk_ptr);
|
|
new_blocks->push_back(std::move(new_blk_ptr));
|
|
new_blk_ptr.reset(new ir::BasicBlock(NewLabel(
|
|
singleTripLoopHeaderId)));
|
|
returnLabelId = this->TakeNextId();
|
|
singleTripLoopContinueId = this->TakeNextId();
|
|
AddLoopMerge(returnLabelId, singleTripLoopContinueId, &new_blk_ptr);
|
|
uint32_t postHeaderId = this->TakeNextId();
|
|
AddBranch(postHeaderId, &new_blk_ptr);
|
|
new_blocks->push_back(std::move(new_blk_ptr));
|
|
new_blk_ptr.reset(new ir::BasicBlock(NewLabel(postHeaderId)));
|
|
multiBlocks = true;
|
|
// Reset the mapping of the callee's entry block to point to
|
|
// the post-header block. Do this so we can fix up phis later
|
|
// on to satisfy dominance.
|
|
callee2caller[cpi->result_id()] = postHeaderId;
|
|
}
|
|
} else {
|
|
multiBlocks = true;
|
|
}
|
|
} break;
|
|
case SpvOpReturnValue: {
|
|
// Store return value to return variable.
|
|
assert(returnVarId != 0);
|
|
uint32_t valId = cpi->GetInOperand(kSpvReturnValueId).words[0];
|
|
const auto mapItr = callee2caller.find(valId);
|
|
if (mapItr != callee2caller.end()) {
|
|
valId = mapItr->second;
|
|
}
|
|
AddStore(returnVarId, valId, &new_blk_ptr);
|
|
|
|
// Remember we saw a return; if followed by a label, will need to
|
|
// insert branch.
|
|
prevInstWasReturn = true;
|
|
} break;
|
|
case SpvOpReturn: {
|
|
// Remember we saw a return; if followed by a label, will need to
|
|
// insert branch.
|
|
prevInstWasReturn = true;
|
|
} break;
|
|
case SpvOpFunctionEnd: {
|
|
// If there was an early return, we generated a return label id
|
|
// for it. Now we have to generate the return block with that Id.
|
|
if (returnLabelId != 0) {
|
|
// If previous instruction was return, insert branch instruction
|
|
// to return block.
|
|
if (prevInstWasReturn) AddBranch(returnLabelId, &new_blk_ptr);
|
|
if (multiReturn) {
|
|
// If we generated a loop header to for the single-trip loop
|
|
// to accommodate multiple returns, insert the continue
|
|
// target block now, with a false branch back to the loop header.
|
|
new_blocks->push_back(std::move(new_blk_ptr));
|
|
new_blk_ptr.reset(
|
|
new ir::BasicBlock(NewLabel(singleTripLoopContinueId)));
|
|
AddBranchCond(GetFalseId(), singleTripLoopHeaderId, returnLabelId,
|
|
&new_blk_ptr);
|
|
}
|
|
// Generate the return block.
|
|
new_blocks->push_back(std::move(new_blk_ptr));
|
|
new_blk_ptr.reset(new ir::BasicBlock(NewLabel(returnLabelId)));
|
|
multiBlocks = true;
|
|
}
|
|
// Load return value into result id of call, if it exists.
|
|
if (returnVarId != 0) {
|
|
const uint32_t resId = call_inst_itr->result_id();
|
|
assert(resId != 0);
|
|
AddLoad(calleeTypeId, resId, returnVarId, &new_blk_ptr);
|
|
}
|
|
// Copy remaining instructions from caller block.
|
|
auto cii = call_inst_itr;
|
|
for (++cii; cii != call_block_itr->end(); ++cii) {
|
|
std::unique_ptr<ir::Instruction> cp_inst(new ir::Instruction(*cii));
|
|
// If multiple blocks generated, regenerate any same-block
|
|
// instruction that has not been seen in this last block.
|
|
if (multiBlocks) {
|
|
CloneSameBlockOps(&cp_inst, &postCallSB, &preCallSB, &new_blk_ptr);
|
|
// Remember same-block ops in this block.
|
|
if (IsSameBlockOp(&*cp_inst)) {
|
|
const uint32_t rid = cp_inst->result_id();
|
|
postCallSB[rid] = rid;
|
|
}
|
|
}
|
|
new_blk_ptr->AddInstruction(std::move(cp_inst));
|
|
}
|
|
// Finalize inline code.
|
|
new_blocks->push_back(std::move(new_blk_ptr));
|
|
} break;
|
|
default: {
|
|
// Copy callee instruction and remap all input Ids.
|
|
std::unique_ptr<ir::Instruction> cp_inst(new ir::Instruction(*cpi));
|
|
cp_inst->ForEachInId([&callee2caller, &callee_result_ids,
|
|
this](uint32_t* iid) {
|
|
const auto mapItr = callee2caller.find(*iid);
|
|
if (mapItr != callee2caller.end()) {
|
|
*iid = mapItr->second;
|
|
} else if (callee_result_ids.find(*iid) != callee_result_ids.end()) {
|
|
// Forward reference. Allocate a new id, map it,
|
|
// use it and check for it when remapping result ids
|
|
const uint32_t nid = this->TakeNextId();
|
|
callee2caller[*iid] = nid;
|
|
*iid = nid;
|
|
}
|
|
});
|
|
// If result id is non-zero, remap it. If already mapped, use mapped
|
|
// value, else use next id.
|
|
const uint32_t rid = cp_inst->result_id();
|
|
if (rid != 0) {
|
|
const auto mapItr = callee2caller.find(rid);
|
|
uint32_t nid;
|
|
if (mapItr != callee2caller.end()) {
|
|
nid = mapItr->second;
|
|
}
|
|
else {
|
|
nid = this->TakeNextId();
|
|
callee2caller[rid] = nid;
|
|
}
|
|
cp_inst->SetResultId(nid);
|
|
}
|
|
new_blk_ptr->AddInstruction(std::move(cp_inst));
|
|
} break;
|
|
}
|
|
});
|
|
|
|
if (caller_is_loop_header && (new_blocks->size() > 1)) {
|
|
// Move the OpLoopMerge from the last block back to the first, where
|
|
// it belongs.
|
|
auto& first = new_blocks->front();
|
|
auto& last = new_blocks->back();
|
|
assert(first != last);
|
|
|
|
// Insert a modified copy of the loop merge into the first block.
|
|
auto loop_merge_itr = last->tail();
|
|
--loop_merge_itr;
|
|
assert(loop_merge_itr->opcode() == SpvOpLoopMerge);
|
|
std::unique_ptr<ir::Instruction> cp_inst(
|
|
new ir::Instruction(*loop_merge_itr));
|
|
if (caller_is_single_block_loop) {
|
|
// Also, update its continue target to point to the last block.
|
|
cp_inst->SetInOperand(kSpvLoopMergeContinueTargetIdInIdx, {last->id()});
|
|
}
|
|
first->tail().InsertBefore(std::move(cp_inst));
|
|
|
|
// Remove the loop merge from the last block.
|
|
loop_merge_itr.Erase();
|
|
}
|
|
|
|
// Update block map given replacement blocks.
|
|
for (auto& blk : *new_blocks) {
|
|
id2block_[blk->id()] = &*blk;
|
|
}
|
|
}
|
|
|
|
bool InlinePass::IsInlinableFunctionCall(const ir::Instruction* inst) {
|
|
if (inst->opcode() != SpvOp::SpvOpFunctionCall) return false;
|
|
const uint32_t calleeFnId =
|
|
inst->GetSingleWordOperand(kSpvFunctionCallFunctionId);
|
|
const auto ci = inlinable_.find(calleeFnId);
|
|
return ci != inlinable_.cend();
|
|
}
|
|
|
|
void InlinePass::UpdateSucceedingPhis(
|
|
std::vector<std::unique_ptr<ir::BasicBlock>>& new_blocks) {
|
|
const auto firstBlk = new_blocks.begin();
|
|
const auto lastBlk = new_blocks.end() - 1;
|
|
const uint32_t firstId = (*firstBlk)->id();
|
|
const uint32_t lastId = (*lastBlk)->id();
|
|
(*lastBlk)->ForEachSuccessorLabel(
|
|
[&firstId, &lastId, this](uint32_t succ) {
|
|
ir::BasicBlock* sbp = this->id2block_[succ];
|
|
sbp->ForEachPhiInst([&firstId, &lastId](ir::Instruction* phi) {
|
|
phi->ForEachInId([&firstId, &lastId](uint32_t* id) {
|
|
if (*id == firstId) *id = lastId;
|
|
});
|
|
});
|
|
});
|
|
}
|
|
|
|
bool InlinePass::HasMultipleReturns(ir::Function* func) {
|
|
bool seenReturn = false;
|
|
bool multipleReturns = false;
|
|
for (auto& blk : *func) {
|
|
auto terminal_ii = blk.cend();
|
|
--terminal_ii;
|
|
if (terminal_ii->opcode() == SpvOpReturn ||
|
|
terminal_ii->opcode() == SpvOpReturnValue) {
|
|
if (seenReturn) {
|
|
multipleReturns = true;
|
|
break;
|
|
}
|
|
seenReturn = true;
|
|
}
|
|
}
|
|
return multipleReturns;
|
|
}
|
|
|
|
uint32_t InlinePass::MergeBlockIdIfAny(const ir::BasicBlock& blk) {
|
|
auto merge_ii = blk.cend();
|
|
--merge_ii;
|
|
uint32_t mbid = 0;
|
|
if (merge_ii != blk.cbegin()) {
|
|
--merge_ii;
|
|
if (merge_ii->opcode() == SpvOpLoopMerge)
|
|
mbid = merge_ii->GetSingleWordOperand(kSpvLoopMergeMergeBlockId);
|
|
else if (merge_ii->opcode() == SpvOpSelectionMerge)
|
|
mbid = merge_ii->GetSingleWordOperand(kSpvSelectionMergeMergeBlockId);
|
|
}
|
|
return mbid;
|
|
}
|
|
|
|
void InlinePass::ComputeStructuredSuccessors(ir::Function* func) {
|
|
// If header, make merge block first successor.
|
|
for (auto& blk : *func) {
|
|
uint32_t mbid = MergeBlockIdIfAny(blk);
|
|
if (mbid != 0)
|
|
block2structured_succs_[&blk].push_back(id2block_[mbid]);
|
|
// add true successors
|
|
blk.ForEachSuccessorLabel([&blk, this](uint32_t sbid) {
|
|
block2structured_succs_[&blk].push_back(id2block_[sbid]);
|
|
});
|
|
}
|
|
}
|
|
|
|
InlinePass::GetBlocksFunction InlinePass::StructuredSuccessorsFunction() {
|
|
return [this](const ir::BasicBlock* block) {
|
|
return &(block2structured_succs_[block]);
|
|
};
|
|
}
|
|
|
|
bool InlinePass::HasNoReturnInLoop(ir::Function* func) {
|
|
// If control not structured, do not do loop/return analysis
|
|
// TODO: Analyze returns in non-structured control flow
|
|
if (!module_->HasCapability(SpvCapabilityShader))
|
|
return false;
|
|
// Compute structured block order. This order has the property
|
|
// that dominators are before all blocks they dominate and merge blocks
|
|
// are after all blocks that are in the control constructs of their header.
|
|
ComputeStructuredSuccessors(func);
|
|
auto ignore_block = [](cbb_ptr) {};
|
|
auto ignore_edge = [](cbb_ptr, cbb_ptr) {};
|
|
std::list<const ir::BasicBlock*> structuredOrder;
|
|
spvtools::CFA<ir::BasicBlock>::DepthFirstTraversal(
|
|
&*func->begin(), StructuredSuccessorsFunction(), ignore_block,
|
|
[&](cbb_ptr b) { structuredOrder.push_front(b); }, ignore_edge);
|
|
// Search for returns in loops. Only need to track outermost loop
|
|
bool return_in_loop = false;
|
|
uint32_t outerLoopMergeId = 0;
|
|
for (auto& blk : structuredOrder) {
|
|
// Exiting current outer loop
|
|
if (blk->id() == outerLoopMergeId)
|
|
outerLoopMergeId = 0;
|
|
// Return block
|
|
auto terminal_ii = blk->cend();
|
|
--terminal_ii;
|
|
if (terminal_ii->opcode() == SpvOpReturn ||
|
|
terminal_ii->opcode() == SpvOpReturnValue) {
|
|
if (outerLoopMergeId != 0) {
|
|
return_in_loop = true;
|
|
break;
|
|
}
|
|
}
|
|
else if (terminal_ii != blk->cbegin()) {
|
|
auto merge_ii = terminal_ii;
|
|
--merge_ii;
|
|
// Entering outermost loop
|
|
if (merge_ii->opcode() == SpvOpLoopMerge && outerLoopMergeId == 0)
|
|
outerLoopMergeId = merge_ii->GetSingleWordOperand(
|
|
kSpvLoopMergeMergeBlockId);
|
|
}
|
|
}
|
|
return !return_in_loop;
|
|
}
|
|
|
|
void InlinePass::AnalyzeReturns(ir::Function* func) {
|
|
// Look for multiple returns
|
|
if (!HasMultipleReturns(func)) {
|
|
no_return_in_loop_.insert(func->result_id());
|
|
return;
|
|
}
|
|
multi_return_funcs_.insert(func->result_id());
|
|
// If multiple returns, see if any are in a loop
|
|
if (HasNoReturnInLoop(func))
|
|
no_return_in_loop_.insert(func->result_id());
|
|
}
|
|
|
|
bool InlinePass::IsInlinableFunction(ir::Function* func) {
|
|
// We can only inline a function if it has blocks.
|
|
if (func->cbegin() == func->cend())
|
|
return false;
|
|
// Do not inline functions with returns in loops. Currently early return
|
|
// functions are inlined by wrapping them in a one trip loop and implementing
|
|
// the returns as a branch to the loop's merge block. However, this can only
|
|
// done validly if the return was not in a loop in the original function.
|
|
// Also remember functions with multiple (early) returns.
|
|
AnalyzeReturns(func);
|
|
return no_return_in_loop_.find(func->result_id()) !=
|
|
no_return_in_loop_.cend();
|
|
}
|
|
|
|
void InlinePass::InitializeInline(ir::Module* module) {
|
|
def_use_mgr_.reset(new analysis::DefUseManager(consumer(), module));
|
|
|
|
// Initialize next unused Id.
|
|
next_id_ = module->id_bound();
|
|
|
|
// Save module.
|
|
module_ = module;
|
|
|
|
false_id_ = 0;
|
|
|
|
// clear collections
|
|
id2function_.clear();
|
|
id2block_.clear();
|
|
block2structured_succs_.clear();
|
|
inlinable_.clear();
|
|
no_return_in_loop_.clear();
|
|
multi_return_funcs_.clear();
|
|
|
|
for (auto& fn : *module_) {
|
|
// Initialize function and block maps.
|
|
id2function_[fn.result_id()] = &fn;
|
|
for (auto& blk : fn) {
|
|
id2block_[blk.id()] = &blk;
|
|
}
|
|
// Compute inlinability
|
|
if (IsInlinableFunction(&fn))
|
|
inlinable_.insert(fn.result_id());
|
|
}
|
|
};
|
|
|
|
|
|
InlinePass::InlinePass()
|
|
: module_(nullptr), def_use_mgr_(nullptr), next_id_(0) {}
|
|
|
|
} // namespace opt
|
|
} // namespace spvtools
|