SPIRV-Tools/source/fuzz/fuzzer_pass_construct_composites.cpp
Alastair Donaldson 8d4261bc44
spirv-fuzz: Introduce TransformationContext (#3272)
Some transformations (e.g. TransformationAddFunction) rely on running
the validator to decide whether the transformation is applicable.  A
recent change allowed spirv-fuzz to take validator options, to cater
for the case where a module should be considered valid under
particular conditions.  However, validation during the checking of
transformations had no access to these validator options.

This change introduced TransformationContext, which currently consists
of a fact manager and a set of validator options, but could in the
future have other fields corresponding to other objects that it is
useful to have access to when applying transformations.  Now, instead
of checking and applying transformations in the context of a
FactManager, a TransformationContext is used.  This gives access to
the fact manager as before, and also access to the validator options
when they are needed.
2020-04-02 15:54:46 +01:00

365 lines
16 KiB
C++

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/fuzzer_pass_construct_composites.h"
#include <cmath>
#include <memory>
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/transformation_composite_construct.h"
#include "source/util/make_unique.h"
namespace spvtools {
namespace fuzz {
FuzzerPassConstructComposites::FuzzerPassConstructComposites(
opt::IRContext* ir_context, TransformationContext* transformation_context,
FuzzerContext* fuzzer_context,
protobufs::TransformationSequence* transformations)
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
transformations) {}
FuzzerPassConstructComposites::~FuzzerPassConstructComposites() = default;
void FuzzerPassConstructComposites::Apply() {
// Gather up the ids of all composite types.
std::vector<uint32_t> composite_type_ids;
for (auto& inst : GetIRContext()->types_values()) {
if (fuzzerutil::IsCompositeType(
GetIRContext()->get_type_mgr()->GetType(inst.result_id()))) {
composite_type_ids.push_back(inst.result_id());
}
}
ForEachInstructionWithInstructionDescriptor(
[this, &composite_type_ids](
opt::Function* function, opt::BasicBlock* block,
opt::BasicBlock::iterator inst_it,
const protobufs::InstructionDescriptor& instruction_descriptor)
-> void {
// Check whether it is legitimate to insert a composite construction
// before the instruction.
if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(
SpvOpCompositeConstruct, inst_it)) {
return;
}
// Randomly decide whether to try inserting an object copy here.
if (!GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfConstructingComposite())) {
return;
}
// For each instruction that is available at this program point (i.e. an
// instruction that is global or whose definition strictly dominates the
// program point) and suitable for making a synonym of, associate it
// with the id of its result type.
TypeIdToInstructions type_id_to_available_instructions;
for (auto instruction : FindAvailableInstructions(
function, block, inst_it, fuzzerutil::CanMakeSynonymOf)) {
RecordAvailableInstruction(instruction,
&type_id_to_available_instructions);
}
// At this point, |composite_type_ids| captures all the composite types
// we could try to create, while |type_id_to_available_instructions|
// captures all the available result ids we might use, organized by
// type.
// Now we try to find a composite that we can construct. We might not
// manage, if there is a paucity of available ingredients in the module
// (e.g. if our only available composite was a boolean vector and we had
// no instructions generating boolean result types available).
//
// If we succeed, |chosen_composite_type| will end up being non-zero,
// and |constructor_arguments| will end up giving us result ids suitable
// for constructing a composite of that type. Otherwise these variables
// will remain 0 and null respectively.
uint32_t chosen_composite_type = 0;
std::unique_ptr<std::vector<uint32_t>> constructor_arguments = nullptr;
// Initially, all composite type ids are available for us to try. Keep
// trying until we run out of options.
auto composites_to_try_constructing = composite_type_ids;
while (!composites_to_try_constructing.empty()) {
// Remove a composite type from the composite types left for us to
// try.
auto index =
GetFuzzerContext()->RandomIndex(composites_to_try_constructing);
auto next_composite_to_try_constructing =
composites_to_try_constructing[index];
composites_to_try_constructing.erase(
composites_to_try_constructing.begin() + index);
// Now try to construct a composite of this type, using an appropriate
// helper method depending on the kind of composite type.
auto composite_type = GetIRContext()->get_type_mgr()->GetType(
next_composite_to_try_constructing);
if (auto array_type = composite_type->AsArray()) {
constructor_arguments = TryConstructingArrayComposite(
*array_type, type_id_to_available_instructions);
} else if (auto matrix_type = composite_type->AsMatrix()) {
constructor_arguments = TryConstructingMatrixComposite(
*matrix_type, type_id_to_available_instructions);
} else if (auto struct_type = composite_type->AsStruct()) {
constructor_arguments = TryConstructingStructComposite(
*struct_type, type_id_to_available_instructions);
} else {
auto vector_type = composite_type->AsVector();
assert(vector_type &&
"The space of possible composite types should be covered by "
"the above cases.");
constructor_arguments = TryConstructingVectorComposite(
*vector_type, type_id_to_available_instructions);
}
if (constructor_arguments != nullptr) {
// We succeeded! Note the composite type we finally settled on, and
// exit from the loop.
chosen_composite_type = next_composite_to_try_constructing;
break;
}
}
if (!chosen_composite_type) {
// We did not manage to make a composite; return 0 to indicate that no
// instructions were added.
assert(constructor_arguments == nullptr);
return;
}
assert(constructor_arguments != nullptr);
// Make and apply a transformation.
TransformationCompositeConstruct transformation(
chosen_composite_type, *constructor_arguments,
instruction_descriptor, GetFuzzerContext()->GetFreshId());
assert(transformation.IsApplicable(GetIRContext(),
*GetTransformationContext()) &&
"This transformation should be applicable by construction.");
transformation.Apply(GetIRContext(), GetTransformationContext());
*GetTransformations()->add_transformation() =
transformation.ToMessage();
});
}
void FuzzerPassConstructComposites::RecordAvailableInstruction(
opt::Instruction* inst,
TypeIdToInstructions* type_id_to_available_instructions) {
if (type_id_to_available_instructions->count(inst->type_id()) == 0) {
(*type_id_to_available_instructions)[inst->type_id()] = {};
}
type_id_to_available_instructions->at(inst->type_id()).push_back(inst);
}
std::unique_ptr<std::vector<uint32_t>>
FuzzerPassConstructComposites::TryConstructingArrayComposite(
const opt::analysis::Array& array_type,
const TypeIdToInstructions& type_id_to_available_instructions) {
// At present we assume arrays have a constant size.
assert(array_type.length_info().words.size() == 2);
assert(array_type.length_info().words[0] ==
opt::analysis::Array::LengthInfo::kConstant);
auto result = MakeUnique<std::vector<uint32_t>>();
// Get the element type for the array.
auto element_type_id =
GetIRContext()->get_type_mgr()->GetId(array_type.element_type());
// Get all instructions at our disposal that compute something of this element
// type.
auto available_instructions =
type_id_to_available_instructions.find(element_type_id);
if (available_instructions == type_id_to_available_instructions.cend()) {
// If there are not any instructions available that compute the element type
// of the array then we are not in a position to construct a composite with
// this array type.
return nullptr;
}
for (uint32_t index = 0; index < array_type.length_info().words[1]; index++) {
result->push_back(available_instructions
->second[GetFuzzerContext()->RandomIndex(
available_instructions->second)]
->result_id());
}
return result;
}
std::unique_ptr<std::vector<uint32_t>>
FuzzerPassConstructComposites::TryConstructingMatrixComposite(
const opt::analysis::Matrix& matrix_type,
const TypeIdToInstructions& type_id_to_available_instructions) {
auto result = MakeUnique<std::vector<uint32_t>>();
// Get the element type for the matrix.
auto element_type_id =
GetIRContext()->get_type_mgr()->GetId(matrix_type.element_type());
// Get all instructions at our disposal that compute something of this element
// type.
auto available_instructions =
type_id_to_available_instructions.find(element_type_id);
if (available_instructions == type_id_to_available_instructions.cend()) {
// If there are not any instructions available that compute the element type
// of the matrix then we are not in a position to construct a composite with
// this matrix type.
return nullptr;
}
for (uint32_t index = 0; index < matrix_type.element_count(); index++) {
result->push_back(available_instructions
->second[GetFuzzerContext()->RandomIndex(
available_instructions->second)]
->result_id());
}
return result;
}
std::unique_ptr<std::vector<uint32_t>>
FuzzerPassConstructComposites::TryConstructingStructComposite(
const opt::analysis::Struct& struct_type,
const TypeIdToInstructions& type_id_to_available_instructions) {
auto result = MakeUnique<std::vector<uint32_t>>();
// Consider the type of each field of the struct.
for (auto element_type : struct_type.element_types()) {
auto element_type_id = GetIRContext()->get_type_mgr()->GetId(element_type);
// Find the instructions at our disposal that compute something of the field
// type.
auto available_instructions =
type_id_to_available_instructions.find(element_type_id);
if (available_instructions == type_id_to_available_instructions.cend()) {
// If there are no such instructions, we cannot construct a composite of
// this struct type.
return nullptr;
}
result->push_back(available_instructions
->second[GetFuzzerContext()->RandomIndex(
available_instructions->second)]
->result_id());
}
return result;
}
std::unique_ptr<std::vector<uint32_t>>
FuzzerPassConstructComposites::TryConstructingVectorComposite(
const opt::analysis::Vector& vector_type,
const TypeIdToInstructions& type_id_to_available_instructions) {
// Get details of the type underlying the vector, and the width of the vector,
// for convenience.
auto element_type = vector_type.element_type();
auto element_count = vector_type.element_count();
// Collect a mapping, from type id to width, for scalar/vector types that are
// smaller in width than |vector_type|, but that have the same underlying
// type. For example, if |vector_type| is vec4, the mapping will be:
// { float -> 1, vec2 -> 2, vec3 -> 3 }
// The mapping will have missing entries if some of these types do not exist.
std::map<uint32_t, uint32_t> smaller_vector_type_id_to_width;
// Add the underlying type. This id must exist, in order for |vector_type| to
// exist.
auto scalar_type_id = GetIRContext()->get_type_mgr()->GetId(element_type);
smaller_vector_type_id_to_width[scalar_type_id] = 1;
// Now add every vector type with width at least 2, and less than the width of
// |vector_type|.
for (uint32_t width = 2; width < element_count; width++) {
opt::analysis::Vector smaller_vector_type(vector_type.element_type(),
width);
auto smaller_vector_type_id =
GetIRContext()->get_type_mgr()->GetId(&smaller_vector_type);
// We might find that there is no declared type of this smaller width.
// For example, a module can declare vec4 without having declared vec2 or
// vec3.
if (smaller_vector_type_id) {
smaller_vector_type_id_to_width[smaller_vector_type_id] = width;
}
}
// Now we know the types that are available to us, we set about populating a
// vector of the right length. We do this by deciding, with no order in mind,
// which instructions we will use to populate the vector, and subsequently
// randomly choosing an order. This is to avoid biasing construction of
// vectors with smaller vectors to the left and scalars to the right. That is
// a concern because, e.g. in the case of populating a vec4, if we populate
// the constructor instructions left-to-right, we can always choose a vec3 to
// construct the first three elements, but can only choose a vec3 to construct
// the last three elements if we chose a float to construct the first element
// (otherwise there will not be space left for a vec3).
uint32_t vector_slots_used = 0;
// The instructions we will use to construct the vector, in no particular
// order at this stage.
std::vector<opt::Instruction*> instructions_to_use;
while (vector_slots_used < vector_type.element_count()) {
std::vector<opt::Instruction*> instructions_to_choose_from;
for (auto& entry : smaller_vector_type_id_to_width) {
if (entry.second >
std::min(vector_type.element_count() - 1,
vector_type.element_count() - vector_slots_used)) {
continue;
}
auto available_instructions =
type_id_to_available_instructions.find(entry.first);
if (available_instructions == type_id_to_available_instructions.cend()) {
continue;
}
instructions_to_choose_from.insert(instructions_to_choose_from.end(),
available_instructions->second.begin(),
available_instructions->second.end());
}
if (instructions_to_choose_from.empty()) {
// We may get unlucky and find that there are not any instructions to
// choose from. In this case we give up constructing a composite of this
// vector type. It might be that we could construct the composite in
// another manner, so we could opt to retry a few times here, but it is
// simpler to just give up on the basis that this will not happen
// frequently.
return nullptr;
}
auto instruction_to_use =
instructions_to_choose_from[GetFuzzerContext()->RandomIndex(
instructions_to_choose_from)];
instructions_to_use.push_back(instruction_to_use);
auto chosen_type =
GetIRContext()->get_type_mgr()->GetType(instruction_to_use->type_id());
if (chosen_type->AsVector()) {
assert(chosen_type->AsVector()->element_type() == element_type);
assert(chosen_type->AsVector()->element_count() < element_count);
assert(chosen_type->AsVector()->element_count() <=
element_count - vector_slots_used);
vector_slots_used += chosen_type->AsVector()->element_count();
} else {
assert(chosen_type == element_type);
vector_slots_used += 1;
}
}
assert(vector_slots_used == vector_type.element_count());
auto result = MakeUnique<std::vector<uint32_t>>();
std::vector<uint32_t> operands;
while (!instructions_to_use.empty()) {
auto index = GetFuzzerContext()->RandomIndex(instructions_to_use);
result->push_back(instructions_to_use[index]->result_id());
instructions_to_use.erase(instructions_to_use.begin() + index);
}
assert(result->size() > 1);
return result;
}
} // namespace fuzz
} // namespace spvtools