SPIRV-Tools/source/opt/instrument_pass.h
Jeremy Gebben ee7598d497
instrument: Use Import linkage for instrumentation functions (#5355)
These functions are getting far too complicated to code in SPIRV-Tools
C++. Replace them with import stubs so that the real implementations
can live in Vulkan-ValidationLayers where they belong.

VVL will need to define these functions in spirv and link them to the
instrumented version of the user's shader.

From here on out, VVL can redefine the functions and any data they use
without updating SPIRV-Tools. Changing the function declarations will
still require both VVL and SPIRV-Tools to be updated in lock step.
2023-09-20 10:50:30 -06:00

322 lines
12 KiB
C++

// Copyright (c) 2018 The Khronos Group Inc.
// Copyright (c) 2018 Valve Corporation
// Copyright (c) 2018 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPT_INSTRUMENT_PASS_H_
#define LIBSPIRV_OPT_INSTRUMENT_PASS_H_
#include <list>
#include <memory>
#include <vector>
#include "source/opt/ir_builder.h"
#include "source/opt/pass.h"
#include "spirv-tools/instrument.hpp"
// This is a base class to assist in the creation of passes which instrument
// shader modules. More specifically, passes which replace instructions with a
// larger and more capable set of instructions. Commonly, these new
// instructions will add testing of operands and execute different
// instructions depending on the outcome, including outputting of debug
// information into a buffer created especially for that purpose.
//
// This class contains helper functions to create an InstProcessFunction,
// which is the heart of any derived class implementing a specific
// instrumentation pass. It takes an instruction as an argument, decides
// if it should be instrumented, and generates code to replace it. This class
// also supplies function InstProcessEntryPointCallTree which applies the
// InstProcessFunction to every reachable instruction in a module and replaces
// the instruction with new instructions if generated.
//
// Chief among the helper functions are output code generation functions,
// used to generate code in the shader which writes data to output buffers
// associated with that validation. Currently one such function,
// GenDebugStreamWrite, exists. Other such functions may be added in the
// future. Each is accompanied by documentation describing the format of
// its output buffer.
//
// A validation pass may read or write multiple buffers. All such buffers
// are located in a single debug descriptor set whose index is passed at the
// creation of the instrumentation pass. The bindings of the buffers used by
// a validation pass are permanently assigned and fixed and documented by
// the kDebugOutput* static consts.
namespace spvtools {
namespace opt {
class InstrumentPass : public Pass {
using cbb_ptr = const BasicBlock*;
public:
using InstProcessFunction =
std::function<void(BasicBlock::iterator, UptrVectorIterator<BasicBlock>,
uint32_t, std::vector<std::unique_ptr<BasicBlock>>*)>;
~InstrumentPass() override = default;
IRContext::Analysis GetPreservedAnalyses() override {
return IRContext::kAnalysisDefUse | IRContext::kAnalysisDecorations |
IRContext::kAnalysisCombinators | IRContext::kAnalysisNameMap |
IRContext::kAnalysisBuiltinVarId | IRContext::kAnalysisConstants;
}
protected:
// Create instrumentation pass for |validation_id| which utilizes descriptor
// set |desc_set| for debug input and output buffers and writes |shader_id|
// into debug output records. |opt_direct_reads| indicates that the pass
// will see direct input buffer reads and should prepare to optimize them.
InstrumentPass(uint32_t desc_set, uint32_t shader_id,
bool opt_direct_reads = false)
: Pass(),
desc_set_(desc_set),
shader_id_(shader_id),
opt_direct_reads_(opt_direct_reads) {}
// Initialize state for instrumentation of module.
void InitializeInstrument();
// Call |pfn| on all instructions in all functions in the call tree of the
// entry points in |module|. If code is generated for an instruction, replace
// the instruction's block with the new blocks that are generated. Continue
// processing at the top of the last new block.
bool InstProcessEntryPointCallTree(InstProcessFunction& pfn);
// Move all code in |ref_block_itr| preceding the instruction |ref_inst_itr|
// to be instrumented into block |new_blk_ptr|.
void MovePreludeCode(BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr,
std::unique_ptr<BasicBlock>* new_blk_ptr);
// Move all code in |ref_block_itr| succeeding the instruction |ref_inst_itr|
// to be instrumented into block |new_blk_ptr|.
void MovePostludeCode(UptrVectorIterator<BasicBlock> ref_block_itr,
BasicBlock* new_blk_ptr);
// Return true if all instructions in |ids| are constants or spec constants.
bool AllConstant(const std::vector<uint32_t>& ids);
uint32_t GenReadFunctionCall(uint32_t return_id, uint32_t func_id,
const std::vector<uint32_t>& args,
InstructionBuilder* builder);
// Generate code to convert integer |value_id| to 32bit, if needed. Return
// an id to the 32bit equivalent.
uint32_t Gen32BitCvtCode(uint32_t value_id, InstructionBuilder* builder);
// Generate code to cast integer |value_id| to 32bit unsigned, if needed.
// Return an id to the Uint equivalent.
uint32_t GenUintCastCode(uint32_t value_id, InstructionBuilder* builder);
std::unique_ptr<Function> StartFunction(
uint32_t func_id, const analysis::Type* return_type,
const std::vector<const analysis::Type*>& param_types);
std::vector<uint32_t> AddParameters(
Function& func, const std::vector<const analysis::Type*>& param_types);
std::unique_ptr<Instruction> EndFunction();
// Return new label.
std::unique_ptr<Instruction> NewLabel(uint32_t label_id);
// Set the name function parameter or local variable
std::unique_ptr<Instruction> NewName(uint32_t id,
const std::string& name_str);
// Return id for 32-bit unsigned type
uint32_t GetUintId();
// Return id for 64-bit unsigned type
uint32_t GetUint64Id();
// Return id for 8-bit unsigned type
uint32_t GetUint8Id();
// Return id for 32-bit unsigned type
uint32_t GetBoolId();
// Return id for void type
uint32_t GetVoidId();
// Get registered type structures
analysis::Integer* GetInteger(uint32_t width, bool is_signed);
analysis::Struct* GetStruct(const std::vector<const analysis::Type*>& fields);
analysis::RuntimeArray* GetRuntimeArray(const analysis::Type* element);
analysis::Array* GetArray(const analysis::Type* element, uint32_t size);
analysis::Function* GetFunction(
const analysis::Type* return_val,
const std::vector<const analysis::Type*>& args);
// Return pointer to type for runtime array of uint
analysis::RuntimeArray* GetUintXRuntimeArrayType(
uint32_t width, analysis::RuntimeArray** rarr_ty);
// Return pointer to type for runtime array of uint
analysis::RuntimeArray* GetUintRuntimeArrayType(uint32_t width);
// Add storage buffer extension if needed
void AddStorageBufferExt();
// Return id for 32-bit float type
uint32_t GetFloatId();
// Return id for v4float type
uint32_t GetVec4FloatId();
// Return id for uint vector type of |length|
uint32_t GetVecUintId(uint32_t length);
// Return id for v4uint type
uint32_t GetVec4UintId();
// Return id for v3uint type
uint32_t GetVec3UintId();
// Split block |block_itr| into two new blocks where the second block
// contains |inst_itr| and place in |new_blocks|.
void SplitBlock(BasicBlock::iterator inst_itr,
UptrVectorIterator<BasicBlock> block_itr,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks);
// Apply instrumentation function |pfn| to every instruction in |func|.
// If code is generated for an instruction, replace the instruction's
// block with the new blocks that are generated. Continue processing at the
// top of the last new block.
virtual bool InstrumentFunction(Function* func, uint32_t stage_idx,
InstProcessFunction& pfn);
// Call |pfn| on all functions in the call tree of the function
// ids in |roots|.
bool InstProcessCallTreeFromRoots(InstProcessFunction& pfn,
std::queue<uint32_t>* roots,
uint32_t stage_idx);
// Generate instructions into |builder| which will load |var_id| and return
// its result id.
uint32_t GenVarLoad(uint32_t var_id, InstructionBuilder* builder);
uint32_t GenStageInfo(uint32_t stage_idx, InstructionBuilder* builder);
// Return true if instruction must be in the same block that its result
// is used.
bool IsSameBlockOp(const Instruction* inst) const;
// Clone operands which must be in same block as consumer instructions.
// Look in same_blk_pre for instructions that need cloning. Look in
// same_blk_post for instructions already cloned. Add cloned instruction
// to same_blk_post.
void CloneSameBlockOps(
std::unique_ptr<Instruction>* inst,
std::unordered_map<uint32_t, uint32_t>* same_blk_post,
std::unordered_map<uint32_t, Instruction*>* same_blk_pre,
BasicBlock* block_ptr);
// Update phis in succeeding blocks to point to new last block
void UpdateSucceedingPhis(
std::vector<std::unique_ptr<BasicBlock>>& new_blocks);
// Debug descriptor set index
uint32_t desc_set_;
// Shader module ID written into output record
uint32_t shader_id_;
// Map from function id to function pointer.
std::unordered_map<uint32_t, Function*> id2function_;
// Map from block's label id to block. TODO(dnovillo): This is superfluous wrt
// CFG. It has functionality not present in CFG. Consolidate.
std::unordered_map<uint32_t, BasicBlock*> id2block_;
// Map from instruction's unique id to offset in original file.
std::unordered_map<uint32_t, uint32_t> uid2offset_;
// id for debug output function
std::unordered_map<uint32_t, uint32_t> param2output_func_id_;
// ids for debug input functions
std::unordered_map<uint32_t, uint32_t> param2input_func_id_;
// id for 32-bit float type
uint32_t float_id_{0};
// id for v4float type
uint32_t v4float_id_{0};
// id for v4uint type
uint32_t v4uint_id_{0};
// id for v3uint type
uint32_t v3uint_id_{0};
// id for 32-bit unsigned type
uint32_t uint_id_{0};
// id for 64-bit unsigned type
uint32_t uint64_id_{0};
// id for 8-bit unsigned type
uint32_t uint8_id_{0};
// id for bool type
uint32_t bool_id_{0};
// id for void type
uint32_t void_id_{0};
// boolean to remember storage buffer extension
bool storage_buffer_ext_defined_{false};
// runtime array of uint type
analysis::RuntimeArray* uint64_rarr_ty_{nullptr};
// runtime array of uint type
analysis::RuntimeArray* uint32_rarr_ty_{nullptr};
// Pre-instrumentation same-block insts
std::unordered_map<uint32_t, Instruction*> same_block_pre_;
// Post-instrumentation same-block op ids
std::unordered_map<uint32_t, uint32_t> same_block_post_;
// Map function calls to result id. Clear for every function.
// This is for debug input reads with constant arguments that
// have been generated into the first block of the function.
// This mechanism is used to avoid multiple identical debug
// input buffer reads.
struct vector_hash_ {
std::size_t operator()(const std::vector<uint32_t>& v) const {
std::size_t hash = v.size();
for (auto& u : v) {
hash ^= u + 0x9e3779b9 + (hash << 11) + (hash >> 21);
}
return hash;
}
};
std::unordered_map<std::vector<uint32_t>, uint32_t, vector_hash_> call2id_;
// Function currently being instrumented
Function* curr_func_{nullptr};
// Optimize direct debug input buffer reads. Specifically, move all such
// reads with constant args to first block and reuse them.
bool opt_direct_reads_{false};
};
} // namespace opt
} // namespace spvtools
#endif // LIBSPIRV_OPT_INSTRUMENT_PASS_H_