SPIRV-Tools/source/opt/loop_utils.cpp
Stephen McGroarty 1c2cbaf569 Add GetContinueBlock to loop class.
Previously, the loop class used the terms latch and continue block
interchangeably. This patch splits the two and corrects and tests some
uses of the old uses of GetLatchBlock.
2018-05-03 14:30:41 -04:00

699 lines
27 KiB
C++

// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "cfa.h"
#include "opt/cfg.h"
#include "opt/ir_builder.h"
#include "opt/ir_context.h"
#include "opt/loop_descriptor.h"
#include "opt/loop_utils.h"
namespace spvtools {
namespace opt {
namespace {
// Return true if |bb| is dominated by at least one block in |exits|
static inline bool DominatesAnExit(
ir::BasicBlock* bb, const std::unordered_set<ir::BasicBlock*>& exits,
const opt::DominatorTree& dom_tree) {
for (ir::BasicBlock* e_bb : exits)
if (dom_tree.Dominates(bb, e_bb)) return true;
return false;
}
// Utility class to rewrite out-of-loop uses of an in-loop definition in terms
// of phi instructions to achieve a LCSSA form.
// For a given definition, the class user registers phi instructions using that
// definition in all loop exit blocks by which the definition escapes.
// Then, when rewriting a use of the definition, the rewriter walks the
// paths from the use the loop exits. At each step, it will insert a phi
// instruction to merge the incoming value according to exit blocks definition.
class LCSSARewriter {
public:
LCSSARewriter(ir::IRContext* context, const opt::DominatorTree& dom_tree,
const std::unordered_set<ir::BasicBlock*>& exit_bb,
ir::BasicBlock* merge_block)
: context_(context),
cfg_(context_->cfg()),
dom_tree_(dom_tree),
exit_bb_(exit_bb),
merge_block_id_(merge_block ? merge_block->id() : 0) {}
struct UseRewriter {
explicit UseRewriter(LCSSARewriter* base, const ir::Instruction& def_insn)
: base_(base), def_insn_(def_insn) {}
// Rewrites the use of |def_insn_| by the instruction |user| at the index
// |operand_index| in terms of phi instruction. This recursively builds new
// phi instructions from |user| to the loop exit blocks' phis. The use of
// |def_insn_| in |user| is replaced by the relevant phi instruction at the
// end of the operation.
// It is assumed that |user| does not dominates any of the loop exit basic
// block. This operation does not update the def/use manager, instead it
// records what needs to be updated. The actual update is performed by
// UpdateManagers.
void RewriteUse(ir::BasicBlock* bb, ir::Instruction* user,
uint32_t operand_index) {
assert(
(user->opcode() != SpvOpPhi || bb != GetParent(user)) &&
"The root basic block must be the incoming edge if |user| is a phi "
"instruction");
assert((user->opcode() == SpvOpPhi || bb == GetParent(user)) &&
"The root basic block must be the instruction parent if |user| is "
"not "
"phi instruction");
ir::Instruction* new_def = GetOrBuildIncoming(bb->id());
user->SetOperand(operand_index, {new_def->result_id()});
rewritten_.insert(user);
}
// In-place update of some managers (avoid full invalidation).
inline void UpdateManagers() {
opt::analysis::DefUseManager* def_use_mgr =
base_->context_->get_def_use_mgr();
// Register all new definitions.
for (ir::Instruction* insn : rewritten_) {
def_use_mgr->AnalyzeInstDef(insn);
}
// Register all new uses.
for (ir::Instruction* insn : rewritten_) {
def_use_mgr->AnalyzeInstUse(insn);
}
}
private:
// Return the basic block that |instr| belongs to.
ir::BasicBlock* GetParent(ir::Instruction* instr) {
return base_->context_->get_instr_block(instr);
}
// Builds a phi instruction for the basic block |bb|. The function assumes
// that |defining_blocks| contains the list of basic block that define the
// usable value for each predecessor of |bb|.
inline ir::Instruction* CreatePhiInstruction(
ir::BasicBlock* bb, const std::vector<uint32_t>& defining_blocks) {
std::vector<uint32_t> incomings;
const std::vector<uint32_t>& bb_preds = base_->cfg_->preds(bb->id());
assert(bb_preds.size() == defining_blocks.size());
for (size_t i = 0; i < bb_preds.size(); i++) {
incomings.push_back(
GetOrBuildIncoming(defining_blocks[i])->result_id());
incomings.push_back(bb_preds[i]);
}
opt::InstructionBuilder builder(
base_->context_, &*bb->begin(),
ir::IRContext::kAnalysisInstrToBlockMapping);
ir::Instruction* incoming_phi =
builder.AddPhi(def_insn_.type_id(), incomings);
rewritten_.insert(incoming_phi);
return incoming_phi;
}
// Builds a phi instruction for the basic block |bb|, all incoming values
// will be |value|.
inline ir::Instruction* CreatePhiInstruction(ir::BasicBlock* bb,
const ir::Instruction& value) {
std::vector<uint32_t> incomings;
const std::vector<uint32_t>& bb_preds = base_->cfg_->preds(bb->id());
for (size_t i = 0; i < bb_preds.size(); i++) {
incomings.push_back(value.result_id());
incomings.push_back(bb_preds[i]);
}
opt::InstructionBuilder builder(
base_->context_, &*bb->begin(),
ir::IRContext::kAnalysisInstrToBlockMapping);
ir::Instruction* incoming_phi =
builder.AddPhi(def_insn_.type_id(), incomings);
rewritten_.insert(incoming_phi);
return incoming_phi;
}
// Return the new def to use for the basic block |bb_id|.
// If |bb_id| does not have a suitable def to use then we:
// - return the common def used by all predecessors;
// - if there is no common def, then we build a new phi instr at the
// beginning of |bb_id| and return this new instruction.
ir::Instruction* GetOrBuildIncoming(uint32_t bb_id) {
assert(base_->cfg_->block(bb_id) != nullptr && "Unknown basic block");
ir::Instruction*& incoming_phi = bb_to_phi_[bb_id];
if (incoming_phi) {
return incoming_phi;
}
ir::BasicBlock* bb = &*base_->cfg_->block(bb_id);
// If this is an exit basic block, look if there already is an eligible
// phi instruction. An eligible phi has |def_insn_| as all incoming
// values.
if (base_->exit_bb_.count(bb)) {
// Look if there is an eligible phi in this block.
if (!bb->WhileEachPhiInst([&incoming_phi, this](ir::Instruction* phi) {
for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) {
if (phi->GetSingleWordInOperand(i) != def_insn_.result_id())
return true;
}
incoming_phi = phi;
rewritten_.insert(incoming_phi);
return false;
})) {
return incoming_phi;
}
incoming_phi = CreatePhiInstruction(bb, def_insn_);
return incoming_phi;
}
// Get the block that defines the value to use for each predecessor.
// If the vector has 1 value, then it means that this block does not need
// to build a phi instruction unless |bb_id| is the loop merge block.
const std::vector<uint32_t>& defining_blocks =
base_->GetDefiningBlocks(bb_id);
// Special case for structured loops: merge block might be different from
// the exit block set. To maintain structured properties it will ease
// transformations if the merge block also holds a phi instruction like
// the exit ones.
if (defining_blocks.size() > 1 || bb_id == base_->merge_block_id_) {
if (defining_blocks.size() > 1) {
incoming_phi = CreatePhiInstruction(bb, defining_blocks);
} else {
assert(bb_id == base_->merge_block_id_);
incoming_phi =
CreatePhiInstruction(bb, *GetOrBuildIncoming(defining_blocks[0]));
}
} else {
incoming_phi = GetOrBuildIncoming(defining_blocks[0]);
}
return incoming_phi;
}
LCSSARewriter* base_;
const ir::Instruction& def_insn_;
std::unordered_map<uint32_t, ir::Instruction*> bb_to_phi_;
std::unordered_set<ir::Instruction*> rewritten_;
};
private:
// Return the new def to use for the basic block |bb_id|.
// If |bb_id| does not have a suitable def to use then we:
// - return the common def used by all predecessors;
// - if there is no common def, then we build a new phi instr at the
// beginning of |bb_id| and return this new instruction.
const std::vector<uint32_t>& GetDefiningBlocks(uint32_t bb_id) {
assert(cfg_->block(bb_id) != nullptr && "Unknown basic block");
std::vector<uint32_t>& defining_blocks = bb_to_defining_blocks_[bb_id];
if (defining_blocks.size()) return defining_blocks;
// Check if one of the loop exit basic block dominates |bb_id|.
for (const ir::BasicBlock* e_bb : exit_bb_) {
if (dom_tree_.Dominates(e_bb->id(), bb_id)) {
defining_blocks.push_back(e_bb->id());
return defining_blocks;
}
}
// Process parents, they will returns their suitable blocks.
// If they are all the same, this means this basic block is dominated by a
// common block, so we won't need to build a phi instruction.
for (uint32_t pred_id : cfg_->preds(bb_id)) {
const std::vector<uint32_t>& pred_blocks = GetDefiningBlocks(pred_id);
if (pred_blocks.size() == 1)
defining_blocks.push_back(pred_blocks[0]);
else
defining_blocks.push_back(pred_id);
}
assert(defining_blocks.size());
if (std::all_of(defining_blocks.begin(), defining_blocks.end(),
[&defining_blocks](uint32_t id) {
return id == defining_blocks[0];
})) {
// No need for a phi.
defining_blocks.resize(1);
}
return defining_blocks;
}
ir::IRContext* context_;
ir::CFG* cfg_;
const opt::DominatorTree& dom_tree_;
const std::unordered_set<ir::BasicBlock*>& exit_bb_;
uint32_t merge_block_id_;
// This map represent the set of known paths. For each key, the vector
// represent the set of blocks holding the definition to be used to build the
// phi instruction.
// If the vector has 0 value, then the path is unknown yet, and must be built.
// If the vector has 1 value, then the value defined by that basic block
// should be used.
// If the vector has more than 1 value, then a phi node must be created, the
// basic block ordering is the same as the predecessor ordering.
std::unordered_map<uint32_t, std::vector<uint32_t>> bb_to_defining_blocks_;
};
// Make the set |blocks| closed SSA. The set is closed SSA if all the uses
// outside the set are phi instructions in exiting basic block set (hold by
// |lcssa_rewriter|).
inline void MakeSetClosedSSA(ir::IRContext* context, ir::Function* function,
const std::unordered_set<uint32_t>& blocks,
const std::unordered_set<ir::BasicBlock*>& exit_bb,
LCSSARewriter* lcssa_rewriter) {
ir::CFG& cfg = *context->cfg();
opt::DominatorTree& dom_tree =
context->GetDominatorAnalysis(function)->GetDomTree();
opt::analysis::DefUseManager* def_use_manager = context->get_def_use_mgr();
for (uint32_t bb_id : blocks) {
ir::BasicBlock* bb = cfg.block(bb_id);
// If bb does not dominate an exit block, then it cannot have escaping defs.
if (!DominatesAnExit(bb, exit_bb, dom_tree)) continue;
for (ir::Instruction& inst : *bb) {
LCSSARewriter::UseRewriter rewriter(lcssa_rewriter, inst);
def_use_manager->ForEachUse(
&inst, [&blocks, &rewriter, &exit_bb, context](
ir::Instruction* use, uint32_t operand_index) {
ir::BasicBlock* use_parent = context->get_instr_block(use);
assert(use_parent);
if (blocks.count(use_parent->id())) return;
if (use->opcode() == SpvOpPhi) {
// If the use is a Phi instruction and the incoming block is
// coming from the loop, then that's consistent with LCSSA form.
if (exit_bb.count(use_parent)) {
return;
} else {
// That's not an exit block, but the user is a phi instruction.
// Consider the incoming branch only.
use_parent = context->get_instr_block(
use->GetSingleWordOperand(operand_index + 1));
}
}
// Rewrite the use. Note that this call does not invalidate the
// def/use manager. So this operation is safe.
rewriter.RewriteUse(use_parent, use, operand_index);
});
rewriter.UpdateManagers();
}
}
}
} // namespace
void LoopUtils::CreateLoopDedicatedExits() {
ir::Function* function = loop_->GetHeaderBlock()->GetParent();
ir::LoopDescriptor& loop_desc = *context_->GetLoopDescriptor(function);
ir::CFG& cfg = *context_->cfg();
opt::analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();
const ir::IRContext::Analysis PreservedAnalyses =
ir::IRContext::kAnalysisDefUse |
ir::IRContext::kAnalysisInstrToBlockMapping;
// Gathers the set of basic block that are not in this loop and have at least
// one predecessor in the loop and one not in the loop.
std::unordered_set<uint32_t> exit_bb_set;
loop_->GetExitBlocks(&exit_bb_set);
std::unordered_set<ir::BasicBlock*> new_loop_exits;
bool made_change = false;
// For each block, we create a new one that gathers all branches from
// the loop and fall into the block.
for (uint32_t non_dedicate_id : exit_bb_set) {
ir::BasicBlock* non_dedicate = cfg.block(non_dedicate_id);
const std::vector<uint32_t>& bb_pred = cfg.preds(non_dedicate_id);
// Ignore the block if all the predecessors are in the loop.
if (std::all_of(bb_pred.begin(), bb_pred.end(),
[this](uint32_t id) { return loop_->IsInsideLoop(id); })) {
new_loop_exits.insert(non_dedicate);
continue;
}
made_change = true;
ir::Function::iterator insert_pt = function->begin();
for (; insert_pt != function->end() && &*insert_pt != non_dedicate;
++insert_pt) {
}
assert(insert_pt != function->end() && "Basic Block not found");
// Create the dedicate exit basic block.
ir::BasicBlock& exit = *insert_pt.InsertBefore(
std::unique_ptr<ir::BasicBlock>(new ir::BasicBlock(
std::unique_ptr<ir::Instruction>(new ir::Instruction(
context_, SpvOpLabel, 0, context_->TakeNextId(), {})))));
exit.SetParent(function);
// Redirect in loop predecessors to |exit| block.
for (uint32_t exit_pred_id : bb_pred) {
if (loop_->IsInsideLoop(exit_pred_id)) {
ir::BasicBlock* pred_block = cfg.block(exit_pred_id);
pred_block->ForEachSuccessorLabel([non_dedicate, &exit](uint32_t* id) {
if (*id == non_dedicate->id()) *id = exit.id();
});
// Update the CFG.
// |non_dedicate|'s predecessor list will be updated at the end of the
// loop.
cfg.RegisterBlock(pred_block);
}
}
// Register the label to the def/use manager, requires for the phi patching.
def_use_mgr->AnalyzeInstDefUse(exit.GetLabelInst());
context_->set_instr_block(exit.GetLabelInst(), &exit);
opt::InstructionBuilder builder(context_, &exit, PreservedAnalyses);
// Now jump from our dedicate basic block to the old exit.
// We also reset the insert point so all instructions are inserted before
// the branch.
builder.SetInsertPoint(builder.AddBranch(non_dedicate->id()));
non_dedicate->ForEachPhiInst([&builder, &exit, def_use_mgr,
this](ir::Instruction* phi) {
// New phi operands for this instruction.
std::vector<uint32_t> new_phi_op;
// Phi operands for the dedicated exit block.
std::vector<uint32_t> exit_phi_op;
for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) {
uint32_t def_id = phi->GetSingleWordInOperand(i);
uint32_t incoming_id = phi->GetSingleWordInOperand(i + 1);
if (loop_->IsInsideLoop(incoming_id)) {
exit_phi_op.push_back(def_id);
exit_phi_op.push_back(incoming_id);
} else {
new_phi_op.push_back(def_id);
new_phi_op.push_back(incoming_id);
}
}
// Build the new phi instruction dedicated exit block.
ir::Instruction* exit_phi = builder.AddPhi(phi->type_id(), exit_phi_op);
// Build the new incoming branch.
new_phi_op.push_back(exit_phi->result_id());
new_phi_op.push_back(exit.id());
// Rewrite operands.
uint32_t idx = 0;
for (; idx < new_phi_op.size(); idx++)
phi->SetInOperand(idx, {new_phi_op[idx]});
// Remove extra operands, from last to first (more efficient).
for (uint32_t j = phi->NumInOperands() - 1; j >= idx; j--)
phi->RemoveInOperand(j);
// Update the def/use manager for this |phi|.
def_use_mgr->AnalyzeInstUse(phi);
});
// Update the CFG.
cfg.RegisterBlock(&exit);
cfg.RemoveNonExistingEdges(non_dedicate->id());
new_loop_exits.insert(&exit);
// If non_dedicate is in a loop, add the new dedicated exit in that loop.
if (ir::Loop* parent_loop = loop_desc[non_dedicate])
parent_loop->AddBasicBlock(&exit);
}
if (new_loop_exits.size() == 1) {
loop_->SetMergeBlock(*new_loop_exits.begin());
}
if (made_change) {
context_->InvalidateAnalysesExceptFor(
PreservedAnalyses | ir::IRContext::kAnalysisCFG |
ir::IRContext::Analysis::kAnalysisLoopAnalysis);
}
}
void LoopUtils::MakeLoopClosedSSA() {
CreateLoopDedicatedExits();
ir::Function* function = loop_->GetHeaderBlock()->GetParent();
ir::CFG& cfg = *context_->cfg();
opt::DominatorTree& dom_tree =
context_->GetDominatorAnalysis(function)->GetDomTree();
std::unordered_set<ir::BasicBlock*> exit_bb;
{
std::unordered_set<uint32_t> exit_bb_id;
loop_->GetExitBlocks(&exit_bb_id);
for (uint32_t bb_id : exit_bb_id) {
exit_bb.insert(cfg.block(bb_id));
}
}
LCSSARewriter lcssa_rewriter(context_, dom_tree, exit_bb,
loop_->GetMergeBlock());
MakeSetClosedSSA(context_, function, loop_->GetBlocks(), exit_bb,
&lcssa_rewriter);
// Make sure all defs post-dominated by the merge block have their last use no
// further than the merge block.
if (loop_->GetMergeBlock()) {
std::unordered_set<uint32_t> merging_bb_id;
loop_->GetMergingBlocks(&merging_bb_id);
merging_bb_id.erase(loop_->GetMergeBlock()->id());
// Reset the exit set, now only the merge block is the exit.
exit_bb.clear();
exit_bb.insert(loop_->GetMergeBlock());
// LCSSARewriter is reusable here only because it forces the creation of a
// phi instruction in the merge block.
MakeSetClosedSSA(context_, function, merging_bb_id, exit_bb,
&lcssa_rewriter);
}
context_->InvalidateAnalysesExceptFor(
ir::IRContext::Analysis::kAnalysisCFG |
ir::IRContext::Analysis::kAnalysisDominatorAnalysis |
ir::IRContext::Analysis::kAnalysisLoopAnalysis);
}
ir::Loop* LoopUtils::CloneLoop(LoopCloningResult* cloning_result) const {
// Compute the structured order of the loop basic blocks and store it in the
// vector ordered_loop_blocks.
std::vector<ir::BasicBlock*> ordered_loop_blocks;
loop_->ComputeLoopStructuredOrder(&ordered_loop_blocks);
// Clone the loop.
return CloneLoop(cloning_result, ordered_loop_blocks);
}
ir::Loop* LoopUtils::CloneAndAttachLoopToHeader(
LoopCloningResult* cloning_result) {
// Clone the loop.
ir::Loop* new_loop = CloneLoop(cloning_result);
// Create a new exit block/label for the new loop.
std::unique_ptr<ir::Instruction> new_label{new ir::Instruction(
context_, SpvOp::SpvOpLabel, 0, context_->TakeNextId(), {})};
std::unique_ptr<ir::BasicBlock> new_exit_bb{
new ir::BasicBlock(std::move(new_label))};
new_exit_bb->SetParent(loop_->GetMergeBlock()->GetParent());
// Create an unconditional branch to the header block.
opt::InstructionBuilder builder{context_, new_exit_bb.get()};
builder.AddBranch(loop_->GetHeaderBlock()->id());
// Save the ids of the new and old merge block.
const uint32_t old_merge_block = loop_->GetMergeBlock()->id();
const uint32_t new_merge_block = new_exit_bb->id();
// Replace the uses of the old merge block in the new loop with the new merge
// block.
for (std::unique_ptr<ir::BasicBlock>& basic_block :
cloning_result->cloned_bb_) {
for (ir::Instruction& inst : *basic_block) {
// For each operand in each instruction check if it is using the old merge
// block and change it to be the new merge block.
auto replace_merge_use = [old_merge_block,
new_merge_block](uint32_t* id) {
if (*id == old_merge_block) *id = new_merge_block;
};
inst.ForEachInOperand(replace_merge_use);
}
}
const uint32_t old_header = loop_->GetHeaderBlock()->id();
const uint32_t new_header = new_loop->GetHeaderBlock()->id();
opt::analysis::DefUseManager* def_use = context_->get_def_use_mgr();
def_use->ForEachUse(
old_header, [new_header, this](ir::Instruction* inst, uint32_t operand) {
if (!this->loop_->IsInsideLoop(inst))
inst->SetOperand(operand, {new_header});
});
def_use->ForEachUse(
loop_->GetOrCreatePreHeaderBlock()->id(),
[new_merge_block, this](ir::Instruction* inst, uint32_t operand) {
if (this->loop_->IsInsideLoop(inst))
inst->SetOperand(operand, {new_merge_block});
});
new_loop->SetMergeBlock(new_exit_bb.get());
new_loop->SetPreHeaderBlock(loop_->GetPreHeaderBlock());
// Add the new block into the cloned instructions.
cloning_result->cloned_bb_.push_back(std::move(new_exit_bb));
return new_loop;
}
ir::Loop* LoopUtils::CloneLoop(
LoopCloningResult* cloning_result,
const std::vector<ir::BasicBlock*>& ordered_loop_blocks) const {
analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();
std::unique_ptr<ir::Loop> new_loop = MakeUnique<ir::Loop>(context_);
ir::CFG& cfg = *context_->cfg();
// Clone and place blocks in a SPIR-V compliant order (dominators first).
for (ir::BasicBlock* old_bb : ordered_loop_blocks) {
// For each basic block in the loop, we clone it and register the mapping
// between old and new ids.
ir::BasicBlock* new_bb = old_bb->Clone(context_);
new_bb->SetParent(&function_);
new_bb->GetLabelInst()->SetResultId(context_->TakeNextId());
def_use_mgr->AnalyzeInstDef(new_bb->GetLabelInst());
context_->set_instr_block(new_bb->GetLabelInst(), new_bb);
cloning_result->cloned_bb_.emplace_back(new_bb);
cloning_result->old_to_new_bb_[old_bb->id()] = new_bb;
cloning_result->new_to_old_bb_[new_bb->id()] = old_bb;
cloning_result->value_map_[old_bb->id()] = new_bb->id();
if (loop_->IsInsideLoop(old_bb)) new_loop->AddBasicBlock(new_bb);
for (auto new_inst = new_bb->begin(), old_inst = old_bb->begin();
new_inst != new_bb->end(); ++new_inst, ++old_inst) {
cloning_result->ptr_map_[&*new_inst] = &*old_inst;
if (new_inst->HasResultId()) {
new_inst->SetResultId(context_->TakeNextId());
cloning_result->value_map_[old_inst->result_id()] =
new_inst->result_id();
// Only look at the defs for now, uses are not updated yet.
def_use_mgr->AnalyzeInstDef(&*new_inst);
}
}
}
// All instructions (including all labels) have been cloned,
// remap instruction operands id with the new ones.
for (std::unique_ptr<ir::BasicBlock>& bb_ref : cloning_result->cloned_bb_) {
ir::BasicBlock* bb = bb_ref.get();
for (ir::Instruction& insn : *bb) {
insn.ForEachInId([cloning_result](uint32_t* old_id) {
// If the operand is defined in the loop, remap the id.
auto id_it = cloning_result->value_map_.find(*old_id);
if (id_it != cloning_result->value_map_.end()) {
*old_id = id_it->second;
}
});
// Only look at what the instruction uses. All defs are register, so all
// should be fine now.
def_use_mgr->AnalyzeInstUse(&insn);
context_->set_instr_block(&insn, bb);
}
cfg.RegisterBlock(bb);
}
PopulateLoopNest(new_loop.get(), *cloning_result);
return new_loop.release();
}
void LoopUtils::PopulateLoopNest(
ir::Loop* new_loop, const LoopCloningResult& cloning_result) const {
std::unordered_map<ir::Loop*, ir::Loop*> loop_mapping;
loop_mapping[loop_] = new_loop;
if (loop_->HasParent()) loop_->GetParent()->AddNestedLoop(new_loop);
PopulateLoopDesc(new_loop, loop_, cloning_result);
for (ir::Loop& sub_loop :
ir::make_range(++opt::TreeDFIterator<ir::Loop>(loop_),
opt::TreeDFIterator<ir::Loop>())) {
ir::Loop* cloned = new ir::Loop(context_);
if (ir::Loop* parent = loop_mapping[sub_loop.GetParent()])
parent->AddNestedLoop(cloned);
loop_mapping[&sub_loop] = cloned;
PopulateLoopDesc(cloned, &sub_loop, cloning_result);
}
loop_desc_->AddLoopNest(std::unique_ptr<ir::Loop>(new_loop));
}
// Populates |new_loop| descriptor according to |old_loop|'s one.
void LoopUtils::PopulateLoopDesc(
ir::Loop* new_loop, ir::Loop* old_loop,
const LoopCloningResult& cloning_result) const {
for (uint32_t bb_id : old_loop->GetBlocks()) {
ir::BasicBlock* bb = cloning_result.old_to_new_bb_.at(bb_id);
new_loop->AddBasicBlock(bb);
}
new_loop->SetHeaderBlock(
cloning_result.old_to_new_bb_.at(old_loop->GetHeaderBlock()->id()));
if (old_loop->GetLatchBlock())
new_loop->SetLatchBlock(
cloning_result.old_to_new_bb_.at(old_loop->GetLatchBlock()->id()));
if (old_loop->GetContinueBlock())
new_loop->SetContinueBlock(
cloning_result.old_to_new_bb_.at(old_loop->GetContinueBlock()->id()));
if (old_loop->GetMergeBlock()) {
auto it =
cloning_result.old_to_new_bb_.find(old_loop->GetMergeBlock()->id());
ir::BasicBlock* bb = it != cloning_result.old_to_new_bb_.end()
? it->second
: old_loop->GetMergeBlock();
new_loop->SetMergeBlock(bb);
}
if (old_loop->GetPreHeaderBlock()) {
auto it =
cloning_result.old_to_new_bb_.find(old_loop->GetPreHeaderBlock()->id());
if (it != cloning_result.old_to_new_bb_.end()) {
new_loop->SetPreHeaderBlock(it->second);
}
}
}
// Class to gather some metrics about a region of interest.
void CodeMetrics::Analyze(const ir::Loop& loop) {
ir::CFG& cfg = *loop.GetContext()->cfg();
roi_size_ = 0;
block_sizes_.clear();
for (uint32_t id : loop.GetBlocks()) {
const ir::BasicBlock* bb = cfg.block(id);
size_t bb_size = 0;
bb->ForEachInst([&bb_size](const ir::Instruction* insn) {
if (insn->opcode() == SpvOpLabel) return;
if (insn->IsNop()) return;
if (insn->opcode() == SpvOpPhi) return;
bb_size++;
});
block_sizes_[bb->id()] = bb_size;
roi_size_ += bb_size;
}
}
} // namespace opt
} // namespace spvtools