SPIRV-Tools/source/validate_datarules.cpp
Diego Novillo d2938e4842 Re-format files in source, source/opt, source/util, source/val and tools.
NFC. This just makes sure every file is formatted following the
formatting definition in .clang-format.

Re-formatted with:

$ clang-format -i $(find source tools include -name '*.cpp')
$ clang-format -i $(find source tools include -name '*.h')
2017-11-08 14:03:08 -05:00

274 lines
11 KiB
C++

// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Ensures Data Rules are followed according to the specifications.
#include "validate.h"
#include <cassert>
#include <sstream>
#include <string>
#include "diagnostic.h"
#include "opcode.h"
#include "operand.h"
#include "val/instruction.h"
#include "val/validation_state.h"
using libspirv::CapabilitySet;
using libspirv::DiagnosticStream;
using libspirv::ValidationState_t;
namespace {
// Validates that the number of components in the vector is valid.
// Vector types can only be parameterized as having 2, 3, or 4 components.
// If the Vector16 capability is added, 8 and 16 components are also allowed.
spv_result_t ValidateVecNumComponents(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
// Operand 2 specifies the number of components in the vector.
const uint32_t num_components = inst->words[inst->operands[2].offset];
if (num_components == 2 || num_components == 3 || num_components == 4) {
return SPV_SUCCESS;
}
if (num_components == 8 || num_components == 16) {
if (_.HasCapability(SpvCapabilityVector16)) {
return SPV_SUCCESS;
}
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Having " << num_components << " components for "
<< spvOpcodeString(static_cast<SpvOp>(inst->opcode))
<< " requires the Vector16 capability";
}
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Illegal number of components (" << num_components << ") for "
<< spvOpcodeString(static_cast<SpvOp>(inst->opcode));
}
// Validates that the number of bits specifed for a float type is valid.
// Scalar floating-point types can be parameterized only with 32-bits.
// Float16 capability allows using a 16-bit OpTypeFloat.
// Float16Buffer capability allows creation of a 16-bit OpTypeFloat.
// Float64 capability allows using a 64-bit OpTypeFloat.
spv_result_t ValidateFloatSize(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
// Operand 1 is the number of bits for this float
const uint32_t num_bits = inst->words[inst->operands[1].offset];
if (num_bits == 32) {
return SPV_SUCCESS;
}
if (num_bits == 16) {
if (_.features().declare_float16_type) {
return SPV_SUCCESS;
}
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Using a 16-bit floating point "
<< "type requires the Float16 or Float16Buffer capability,"
" or an extension that explicitly enables 16-bit floating point.";
}
if (num_bits == 64) {
if (_.HasCapability(SpvCapabilityFloat64)) {
return SPV_SUCCESS;
}
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Using a 64-bit floating point "
<< "type requires the Float64 capability.";
}
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Invalid number of bits (" << num_bits << ") used for OpTypeFloat.";
}
// Validates that the number of bits specified for an Int type is valid.
// Scalar integer types can be parameterized only with 32-bits.
// Int8, Int16, and Int64 capabilities allow using 8-bit, 16-bit, and 64-bit
// integers, respectively.
spv_result_t ValidateIntSize(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
// Operand 1 is the number of bits for this integer.
const uint32_t num_bits = inst->words[inst->operands[1].offset];
if (num_bits == 32) {
return SPV_SUCCESS;
}
if (num_bits == 8) {
if (_.HasCapability(SpvCapabilityInt8)) {
return SPV_SUCCESS;
}
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Using an 8-bit integer type requires the Int8 capability.";
}
if (num_bits == 16) {
if (_.features().declare_int16_type) {
return SPV_SUCCESS;
}
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Using a 16-bit integer type requires the Int16 capability,"
" or an extension that explicitly enables 16-bit integers.";
}
if (num_bits == 64) {
if (_.HasCapability(SpvCapabilityInt64)) {
return SPV_SUCCESS;
}
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Using a 64-bit integer type requires the Int64 capability.";
}
return _.diag(SPV_ERROR_INVALID_DATA)
<< "Invalid number of bits (" << num_bits << ") used for OpTypeInt.";
}
// Validates that the matrix is parameterized with floating-point types.
spv_result_t ValidateMatrixColumnType(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
// Find the component type of matrix columns (must be vector).
// Operand 1 is the <id> of the type specified for matrix columns.
auto type_id = inst->words[inst->operands[1].offset];
auto col_type_instr = _.FindDef(type_id);
if (col_type_instr->opcode() != SpvOpTypeVector) {
return _.diag(SPV_ERROR_INVALID_ID)
<< "Columns in a matrix must be of type vector.";
}
// Trace back once more to find out the type of components in the vector.
// Operand 1 is the <id> of the type of data in the vector.
auto comp_type_id =
col_type_instr->words()[col_type_instr->operands()[1].offset];
auto comp_type_instruction = _.FindDef(comp_type_id);
if (comp_type_instruction->opcode() != SpvOpTypeFloat) {
return _.diag(SPV_ERROR_INVALID_DATA) << "Matrix types can only be "
"parameterized with "
"floating-point types.";
}
return SPV_SUCCESS;
}
// Validates that the matrix has 2,3, or 4 columns.
spv_result_t ValidateMatrixNumCols(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
// Operand 2 is the number of columns in the matrix.
const uint32_t num_cols = inst->words[inst->operands[2].offset];
if (num_cols != 2 && num_cols != 3 && num_cols != 4) {
return _.diag(SPV_ERROR_INVALID_DATA) << "Matrix types can only be "
"parameterized as having only 2, "
"3, or 4 columns.";
}
return SPV_SUCCESS;
}
// Validates that OpSpecConstant specializes to either int or float type.
spv_result_t ValidateSpecConstNumerical(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
// Operand 0 is the <id> of the type that we're specializing to.
auto type_id = inst->words[inst->operands[0].offset];
auto type_instruction = _.FindDef(type_id);
auto type_opcode = type_instruction->opcode();
if (type_opcode != SpvOpTypeInt && type_opcode != SpvOpTypeFloat) {
return _.diag(SPV_ERROR_INVALID_DATA) << "Specialization constant must be "
"an integer or floating-point "
"number.";
}
return SPV_SUCCESS;
}
// Validates that OpSpecConstantTrue and OpSpecConstantFalse specialize to bool.
spv_result_t ValidateSpecConstBoolean(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
// Find out the type that we're specializing to.
auto type_instruction = _.FindDef(inst->type_id);
if (type_instruction->opcode() != SpvOpTypeBool) {
return _.diag(SPV_ERROR_INVALID_ID) << "Specialization constant must be "
"a boolean type.";
}
return SPV_SUCCESS;
}
// Records the <id> of the forward pointer to be used for validation.
spv_result_t ValidateForwardPointer(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
// Record the <id> (which is operand 0) to ensure it's used properly.
// OpTypeStruct can only include undefined pointers that are
// previously declared as a ForwardPointer
return (_.RegisterForwardPointer(inst->words[inst->operands[0].offset]));
}
// Validates that any undefined component of the struct is a forward pointer.
// It is valid to declare a forward pointer, and use its <id> as one of the
// components of a struct.
spv_result_t ValidateStruct(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
// Struct components are operands 1, 2, etc.
for (unsigned i = 1; i < inst->num_operands; i++) {
auto type_id = inst->words[inst->operands[i].offset];
auto type_instruction = _.FindDef(type_id);
if (type_instruction == nullptr && !_.IsForwardPointer(type_id)) {
return _.diag(SPV_ERROR_INVALID_ID)
<< "Forward reference operands in an OpTypeStruct must first be "
"declared using OpTypeForwardPointer.";
}
}
return SPV_SUCCESS;
}
} // anonymous namespace
namespace libspirv {
// Validates that Data Rules are followed according to the specifications.
// (Data Rules subsection of 2.16.1 Universal Validation Rules)
spv_result_t DataRulesPass(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
switch (inst->opcode) {
case SpvOpTypeVector: {
if (auto error = ValidateVecNumComponents(_, inst)) return error;
break;
}
case SpvOpTypeFloat: {
if (auto error = ValidateFloatSize(_, inst)) return error;
break;
}
case SpvOpTypeInt: {
if (auto error = ValidateIntSize(_, inst)) return error;
break;
}
case SpvOpTypeMatrix: {
if (auto error = ValidateMatrixColumnType(_, inst)) return error;
if (auto error = ValidateMatrixNumCols(_, inst)) return error;
break;
}
// TODO(ehsan): Add OpSpecConstantComposite validation code.
// TODO(ehsan): Add OpSpecConstantOp validation code (if any).
case SpvOpSpecConstant: {
if (auto error = ValidateSpecConstNumerical(_, inst)) return error;
break;
}
case SpvOpSpecConstantFalse:
case SpvOpSpecConstantTrue: {
if (auto error = ValidateSpecConstBoolean(_, inst)) return error;
break;
}
case SpvOpTypeForwardPointer: {
if (auto error = ValidateForwardPointer(_, inst)) return error;
break;
}
case SpvOpTypeStruct: {
if (auto error = ValidateStruct(_, inst)) return error;
break;
}
// TODO(ehsan): add more data rules validation here.
default: { break; }
}
return SPV_SUCCESS;
}
} // namespace libspirv