SPIRV-Tools/source/opt/cfg_cleanup_pass.cpp
2017-10-20 16:51:20 -04:00

286 lines
9.9 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file implements a pass to cleanup the CFG to remove superfluous
// constructs (e.g., unreachable basic blocks, empty control flow structures,
// etc)
#include <queue>
#include <unordered_set>
#include "cfg_cleanup_pass.h"
#include "function.h"
#include "module.h"
namespace spvtools {
namespace opt {
uint32_t CFGCleanupPass::TypeToUndef(uint32_t type_id) {
const auto uitr = type2undefs_.find(type_id);
if (uitr != type2undefs_.end()) {
return uitr->second;
}
const uint32_t undefId = TakeNextId();
std::unique_ptr<ir::Instruction> undef_inst(
new ir::Instruction(SpvOpUndef, type_id, undefId, {}));
def_use_mgr_->AnalyzeInstDefUse(&*undef_inst);
module_->AddGlobalValue(std::move(undef_inst));
type2undefs_[type_id] = undefId;
return undefId;
}
// Remove all |phi| operands coming from unreachable blocks (i.e., blocks not in
// |reachable_blocks|). There are two types of removal that this function can
// perform:
//
// 1- Any operand that comes directly from an unreachable block is completely
// removed. Since the block is unreachable, the edge between the unreachable
// block and the block holding |phi| has been removed.
//
// 2- Any operand that comes via a live block and was defined at an unreachable
// block gets its value replaced with an OpUndef value. Since the argument
// was generated in an unreachable block, it no longer exists, so it cannot
// be referenced. However, since the value does not reach |phi| directly
// from the unreachable block, the operand cannot be removed from |phi|.
// Therefore, we replace the argument value with OpUndef.
//
// For example, in the switch() below, assume that we want to remove the
// argument with value %11 coming from block %41.
//
// [ ... ]
// %41 = OpLabel <--- Unreachable block
// %11 = OpLoad %int %y
// [ ... ]
// OpSelectionMerge %16 None
// OpSwitch %12 %16 10 %13 13 %14 18 %15
// %13 = OpLabel
// OpBranch %16
// %14 = OpLabel
// OpStore %outparm %int_14
// OpBranch %16
// %15 = OpLabel
// OpStore %outparm %int_15
// OpBranch %16
// %16 = OpLabel
// %30 = OpPhi %int %11 %41 %int_42 %13 %11 %14 %11 %15
//
// Since %41 is now an unreachable block, the first operand of |phi| needs to
// be removed completely. But the operands (%11 %14) and (%11 %15) cannot be
// removed because %14 and %15 are reachable blocks. Since %11 no longer exist,
// in those arguments, we replace all references to %11 with an OpUndef value.
// This results in |phi| looking like:
//
// %50 = OpUndef %int
// [ ... ]
// %30 = OpPhi %int %int_42 %13 %50 %14 %50 %15
void CFGCleanupPass::RemovePhiOperands(
ir::Instruction* phi,
std::unordered_set<ir::BasicBlock*> reachable_blocks) {
std::vector<ir::Operand> keep_operands;
uint32_t type_id = 0;
// The id of an undefined value we've generated.
uint32_t undef_id = 0;
// Traverse all the operands in |phi|. Build the new operand vector by adding
// all the original operands from |phi| except the unwanted ones.
for (uint32_t i = 0; i < phi->NumOperands();) {
if (i < 2) {
// The first two arguments are always preserved.
keep_operands.push_back(phi->GetOperand(i));
++i;
continue;
}
// The remaining Phi arguments come in pairs. Index 'i' contains the
// variable id, index 'i + 1' is the originating block id.
assert(i % 2 == 0 && i < phi->NumOperands() - 1 &&
"malformed Phi arguments");
ir::BasicBlock *in_block = label2block_[phi->GetSingleWordOperand(i + 1)];
if (reachable_blocks.find(in_block) == reachable_blocks.end()) {
// If the incoming block is unreachable, remove both operands as this
// means that the |phi| has lost an incoming edge.
i += 2;
continue;
}
// In all other cases, the operand must be kept but may need to be changed.
uint32_t arg_id = phi->GetSingleWordOperand(i);
ir::BasicBlock *def_block = def_block_[arg_id];
if (def_block &&
reachable_blocks.find(def_block_[arg_id]) == reachable_blocks.end()) {
// If the current |phi| argument was defined in an unreachable block, it
// means that this |phi| argument is no longer defined. Replace it with
// |undef_id|.
if (!undef_id) {
type_id = def_use_mgr_->GetDef(arg_id)->type_id();
undef_id = TypeToUndef(type_id);
}
keep_operands.push_back(
ir::Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {undef_id}));
} else {
// Otherwise, the argument comes from a reachable block or from no block
// at all (meaning that it was defined in the global section of the
// program). In both cases, keep the argument intact.
keep_operands.push_back(phi->GetOperand(i));
}
keep_operands.push_back(phi->GetOperand(i + 1));
i += 2;
}
phi->ReplaceOperands(keep_operands);
}
void CFGCleanupPass::RemoveBlock(ir::Function::iterator* bi) {
auto& rm_block = **bi;
// Remove instructions from the block.
rm_block.ForEachInst([&rm_block, this](ir::Instruction* inst) {
// Note that we do not kill the block label instruction here. The label
// instruction is needed to identify the block, which is needed by the
// removal of phi operands.
if (inst != rm_block.GetLabelInst()) {
KillNamesAndDecorates(inst);
def_use_mgr_->KillInst(inst);
}
});
// Remove the label instruction last.
auto label = rm_block.GetLabelInst();
KillNamesAndDecorates(label);
def_use_mgr_->KillInst(label);
*bi = bi->Erase();
}
bool CFGCleanupPass::RemoveUnreachableBlocks(ir::Function* func) {
bool modified = false;
// Mark reachable all blocks reachable from the function's entry block.
std::unordered_set<ir::BasicBlock*> reachable_blocks;
std::unordered_set<ir::BasicBlock*> visited_blocks;
std::queue<ir::BasicBlock*> worklist;
reachable_blocks.insert(func->entry().get());
// Initially mark the function entry point as reachable.
worklist.push(func->entry().get());
auto mark_reachable = [&reachable_blocks, &visited_blocks, &worklist,
this](uint32_t label_id) {
auto successor = label2block_[label_id];
if (visited_blocks.count(successor) == 0) {
reachable_blocks.insert(successor);
worklist.push(successor);
visited_blocks.insert(successor);
}
};
// Transitively mark all blocks reachable from the entry as reachable.
while (!worklist.empty()) {
ir::BasicBlock* block = worklist.front();
worklist.pop();
// All the successors of a live block are also live.
block->ForEachSuccessorLabel(mark_reachable);
// All the Merge and ContinueTarget blocks of a live block are also live.
block->ForMergeAndContinueLabel(mark_reachable);
}
// Update operands of Phi nodes that reference unreachable blocks.
for (auto& block : *func) {
// If the block is about to be removed, don't bother updating its
// Phi instructions.
if (reachable_blocks.count(&block) == 0) {
continue;
}
// If the block is reachable and has Phi instructions, remove all
// operands from its Phi instructions that reference unreachable blocks.
// If the block has no Phi instructions, this is a no-op.
block.ForEachPhiInst(
[&block, &reachable_blocks, this](ir::Instruction* phi) {
RemovePhiOperands(phi, reachable_blocks);
});
}
// Erase unreachable blocks.
for (auto ebi = func->begin(); ebi != func->end();) {
if (reachable_blocks.count(&*ebi) == 0) {
RemoveBlock(&ebi);
modified = true;
} else {
++ebi;
}
}
return modified;
}
bool CFGCleanupPass::CFGCleanup(ir::Function* func) {
bool modified = false;
modified |= RemoveUnreachableBlocks(func);
return modified;
}
void CFGCleanupPass::Initialize(ir::Module* module) {
// Initialize the DefUse manager. TODO(dnovillo): Re-factor all this into the
// module or some other context class for the optimizer.
module_ = module;
def_use_mgr_.reset(new analysis::DefUseManager(consumer(), module));
FindNamedOrDecoratedIds();
// Initialize next unused Id. TODO(dnovillo): Re-factor into the module or
// some other context class for the optimizer.
next_id_ = module_->id_bound();
// Initialize block lookup map.
label2block_.clear();
for (auto& fn : *module) {
for (auto& block : fn) {
label2block_[block.id()] = &block;
// Build a map between SSA names to the block they are defined in.
// TODO(dnovillo): This is expensive and unnecessary if ir::Instruction
// instances could figure out what basic block they belong to. Remove this
// once this is possible.
block.ForEachInst([this, &block](ir::Instruction* inst) {
uint32_t result_id = inst->result_id();
if (result_id > 0) {
def_block_[result_id] = &block;
}
});
}
}
}
Pass::Status CFGCleanupPass::Process(ir::Module* module) {
Initialize(module);
// Process all entry point functions.
ProcessFunction pfn = [this](ir::Function* fp) { return CFGCleanup(fp); };
bool modified = ProcessReachableCallTree(pfn, module);
FinalizeNextId(module_);
return modified ? Pass::Status::SuccessWithChange
: Pass::Status::SuccessWithoutChange;
}
} // namespace opt
} // namespace spvtools