SPIRV-Tools/source/text.cpp
2015-11-10 15:57:22 -05:00

739 lines
27 KiB
C++

// Copyright (c) 2015 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and/or associated documentation files (the
// "Materials"), to deal in the Materials without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Materials, and to
// permit persons to whom the Materials are furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Materials.
//
// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
// KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
// SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
// https://www.khronos.org/registry/
//
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
#include "text.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <memory>
#include <string>
#include <sstream>
#include <unordered_map>
#include <vector>
#include "assembly_grammar.h"
#include "binary.h"
#include "diagnostic.h"
#include "ext_inst.h"
#include "instruction.h"
#include <libspirv/libspirv.h>
#include "opcode.h"
#include "operand.h"
#include "text_handler.h"
#include "util/bitutils.h"
bool spvIsValidIDCharacter(const char value) {
return value == '_' || 0 != ::isalnum(value);
}
// Returns true if the given string represents a valid ID name.
bool spvIsValidID(const char* textValue) {
const char* c = textValue;
for (; *c != '\0'; ++c) {
if (!spvIsValidIDCharacter(*c)) {
return false;
}
}
// If the string was empty, then the ID also is not valid.
return c != textValue;
}
// Text API
spv_result_t spvTextToLiteral(const char* textValue, spv_literal_t* pLiteral) {
bool isSigned = false;
int numPeriods = 0;
bool isString = false;
const size_t len = strlen(textValue);
if (len == 0) return SPV_FAILED_MATCH;
for (uint64_t index = 0; index < len; ++index) {
switch (textValue[index]) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
break;
case '.':
numPeriods++;
break;
case '-':
if (index == 0) {
isSigned = true;
} else {
isString = true;
}
break;
default:
isString = true;
index = len; // break out of the loop too.
break;
}
}
pLiteral->type = spv_literal_type_t(99);
if (isString || numPeriods > 1 || (isSigned && len == 1)) {
if (len < 2 || textValue[0] != '"' || textValue[len - 1] != '"')
return SPV_FAILED_MATCH;
bool escaping = false;
size_t write_index = 0;
for (const char* val = textValue + 1; val != textValue + len - 1; ++val) {
if ((*val == '\\') && (!escaping)) {
escaping = true;
} else {
// Have to save space for the null-terminator
if (write_index >= sizeof(pLiteral->value.str) - 1)
return SPV_ERROR_OUT_OF_MEMORY;
pLiteral->value.str[write_index] = *val;
escaping = false;
++write_index;
}
}
pLiteral->type = SPV_LITERAL_TYPE_STRING;
pLiteral->value.str[write_index] = '\0';
} else if (numPeriods == 1) {
double d = std::strtod(textValue, nullptr);
float f = (float)d;
if (d == (double)f) {
pLiteral->type = SPV_LITERAL_TYPE_FLOAT_32;
pLiteral->value.f = f;
} else {
pLiteral->type = SPV_LITERAL_TYPE_FLOAT_64;
pLiteral->value.d = d;
}
} else if (isSigned) {
int64_t i64 = strtoll(textValue, nullptr, 10);
int32_t i32 = (int32_t)i64;
if (i64 == (int64_t)i32) {
pLiteral->type = SPV_LITERAL_TYPE_INT_32;
pLiteral->value.i32 = i32;
} else {
pLiteral->type = SPV_LITERAL_TYPE_INT_64;
pLiteral->value.i64 = i64;
}
} else {
uint64_t u64 = strtoull(textValue, nullptr, 10);
uint32_t u32 = (uint32_t)u64;
if (u64 == (uint64_t)u32) {
pLiteral->type = SPV_LITERAL_TYPE_UINT_32;
pLiteral->value.u32 = u32;
} else {
pLiteral->type = SPV_LITERAL_TYPE_UINT_64;
pLiteral->value.u64 = u64;
}
}
return SPV_SUCCESS;
}
namespace {
/// Parses an immediate integer from text, guarding against overflow. If
/// successful, adds the parsed value to pInst, advances the context past it,
/// and returns SPV_SUCCESS. Otherwise, leaves pInst alone, emits diagnostics,
/// and returns SPV_ERROR_INVALID_TEXT.
spv_result_t encodeImmediate(libspirv::AssemblyContext* context,
const char* text, spv_instruction_t* pInst) {
assert(*text == '!');
uint32_t parse_result;
if (auto error =
context->parseNumber(text + 1, SPV_ERROR_INVALID_TEXT, &parse_result,
"Invalid immediate integer: !"))
return error;
context->binaryEncodeU32(parse_result, pInst);
context->seekForward(strlen(text));
return SPV_SUCCESS;
}
} // anonymous namespace
/// @brief Translate an Opcode operand to binary form
///
/// @param[in] grammar the grammar to use for compilation
/// @param[in, out] context the dynamic compilation info
/// @param[in] type of the operand
/// @param[in] textValue word of text to be parsed
/// @param[out] pInst return binary Opcode
/// @param[in,out] pExpectedOperands the operand types expected
///
/// @return result code
spv_result_t spvTextEncodeOperand(const libspirv::AssemblyGrammar& grammar,
libspirv::AssemblyContext* context,
const spv_operand_type_t type,
const char* textValue,
spv_instruction_t* pInst,
spv_operand_pattern_t* pExpectedOperands) {
// NOTE: Handle immediate int in the stream
if ('!' == textValue[0]) {
if (auto error = encodeImmediate(context, textValue, pInst)) {
return error;
}
*pExpectedOperands =
spvAlternatePatternFollowingImmediate(*pExpectedOperands);
return SPV_SUCCESS;
}
// Optional literal operands can fail to parse. In that case use
// SPV_FAILED_MATCH to avoid emitting a diagostic. Use the following
// for those situations.
spv_result_t error_code_for_literals =
spvOperandIsOptional(type) ? SPV_FAILED_MATCH : SPV_ERROR_INVALID_TEXT;
switch (type) {
case SPV_OPERAND_TYPE_EXECUTION_SCOPE:
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_TYPE_ID:
case SPV_OPERAND_TYPE_ID_IN_OPTIONAL_TUPLE:
case SPV_OPERAND_TYPE_OPTIONAL_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS:
case SPV_OPERAND_TYPE_RESULT_ID: {
if ('%' == textValue[0]) {
textValue++;
} else {
return context->diagnostic() << "Expected id to start with %.";
}
if (!spvIsValidID(textValue)) {
return context->diagnostic() << "Invalid ID " << textValue;
}
const uint32_t id = context->spvNamedIdAssignOrGet(textValue);
if (type == SPV_OPERAND_TYPE_TYPE_ID) pInst->resultTypeId = id;
spvInstructionAddWord(pInst, id);
} break;
case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: {
// The assembler accepts the symbolic name for an extended instruction,
// and emits its corresponding number.
spv_ext_inst_desc extInst;
if (grammar.lookupExtInst(pInst->extInstType, textValue, &extInst)) {
return context->diagnostic() << "Invalid extended instruction name '"
<< textValue << "'.";
}
spvInstructionAddWord(pInst, extInst->ext_inst);
// Prepare to parse the operands for the extended instructions.
spvPrependOperandTypes(extInst->operandTypes, pExpectedOperands);
return SPV_SUCCESS;
} break;
case SPV_OPERAND_TYPE_LITERAL_INTEGER:
case SPV_OPERAND_TYPE_MULTIWORD_LITERAL_NUMBER:
case SPV_OPERAND_TYPE_LITERAL_INTEGER_IN_OPTIONAL_TUPLE:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_NUMBER:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER: {
libspirv::IdType expected_type = libspirv::kUnknownType;
if (type != SPV_OPERAND_TYPE_OPTIONAL_LITERAL_NUMBER) {
// From now, it's safe to assume that the current operand is an unsigned
// integer, apart from the special cases handled below.
expected_type = {32, false, libspirv::IdTypeClass::kScalarIntegerType};
// The encoding for OpConstant, OpSpecConstant and OpSwitch all
// depend on either their own result-id or the result-id of
// one of their parameters.
if (SpvOpConstant == pInst->opcode ||
SpvOpSpecConstant == pInst->opcode) {
// Special cases for encoding possibly non-32-bit literals here.
expected_type =
context->getTypeOfTypeGeneratingValue(pInst->resultTypeId);
if (!libspirv::isScalarFloating(expected_type) &&
!libspirv::isScalarIntegral(expected_type)) {
spv_opcode_desc d;
const char* opcode_name = "opcode";
if (SPV_SUCCESS == grammar.lookupOpcode(pInst->opcode, &d)) {
opcode_name = d->name;
}
return context->diagnostic()
<< "Type for " << opcode_name
<< " must be a scalar floating point or integer type";
}
} else if (pInst->opcode == SpvOpSwitch) {
// We need to know the type of the selector.
expected_type = context->getTypeOfValueInstruction(pInst->words[1]);
if (!libspirv::isScalarIntegral(expected_type)) {
context->diagnostic()
<< "The selector operand for OpSwitch must be the result"
" of an instruction that generates an integer scalar";
return SPV_ERROR_INVALID_TEXT;
}
}
}
if (auto error = context->binaryEncodeNumericLiteral(
textValue, error_code_for_literals, expected_type, pInst)) {
return error;
}
} break;
case SPV_OPERAND_TYPE_LITERAL_STRING:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: {
spv_literal_t literal = {};
spv_result_t error = spvTextToLiteral(textValue, &literal);
if (error != SPV_SUCCESS) {
if (error == SPV_ERROR_OUT_OF_MEMORY) return error;
return context->diagnostic(error_code_for_literals)
<< "Invalid literal string '" << textValue << "'.";
}
if (literal.type != SPV_LITERAL_TYPE_STRING) {
return context->diagnostic()
<< "Expected literal string, found literal number '" << textValue
<< "'.";
}
// NOTE: Special case for extended instruction library import
if (SpvOpExtInstImport == pInst->opcode) {
pInst->extInstType = spvExtInstImportTypeGet(literal.value.str);
}
if (context->binaryEncodeString(literal.value.str, pInst))
return SPV_ERROR_INVALID_TEXT;
} break;
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
case SPV_OPERAND_TYPE_LOOP_CONTROL:
case SPV_OPERAND_TYPE_OPTIONAL_IMAGE:
case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_SELECTION_CONTROL: {
uint32_t value;
if (grammar.parseMaskOperand(type, textValue, &value)) {
return context->diagnostic() << "Invalid " << spvOperandTypeStr(type)
<< " '" << textValue << "'.";
}
if (auto error = context->binaryEncodeU32(value, pInst)) return error;
// Prepare to parse the operands for this logical operand.
grammar.prependOperandTypesForMask(type, value, pExpectedOperands);
} break;
case SPV_OPERAND_TYPE_OPTIONAL_CIV: {
auto error = spvTextEncodeOperand(
grammar, context, SPV_OPERAND_TYPE_OPTIONAL_LITERAL_NUMBER, textValue,
pInst, pExpectedOperands);
if (error == SPV_FAILED_MATCH) {
// It's not a literal number -- is it a literal string?
error = spvTextEncodeOperand(grammar, context,
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING,
textValue, pInst, pExpectedOperands);
}
if (error == SPV_FAILED_MATCH) {
// It's not a literal -- is it an ID?
error =
spvTextEncodeOperand(grammar, context, SPV_OPERAND_TYPE_OPTIONAL_ID,
textValue, pInst, pExpectedOperands);
}
if (error) {
return context->diagnostic(error)
<< "Invalid word following !<integer>: " << textValue;
}
if (pExpectedOperands->empty()) {
pExpectedOperands->push_back(SPV_OPERAND_TYPE_OPTIONAL_CIV);
}
} break;
default: {
// NOTE: All non literal operands are handled here using the operand
// table.
spv_operand_desc entry;
if (grammar.lookupOperand(type, textValue, strlen(textValue), &entry)) {
return context->diagnostic() << "Invalid " << spvOperandTypeStr(type)
<< " '" << textValue << "'.";
}
if (context->binaryEncodeU32(entry->value, pInst)) {
return context->diagnostic() << "Invalid " << spvOperandTypeStr(type)
<< " '" << textValue << "'.";
}
// Prepare to parse the operands for this logical operand.
spvPrependOperandTypes(entry->operandTypes, pExpectedOperands);
} break;
}
return SPV_SUCCESS;
}
namespace {
/// Encodes an instruction started by !<integer> at the given position in text.
///
/// Puts the encoded words into *pInst. If successful, moves position past the
/// instruction and returns SPV_SUCCESS. Otherwise, returns an error code and
/// leaves position pointing to the error in text.
spv_result_t encodeInstructionStartingWithImmediate(
const libspirv::AssemblyGrammar& grammar,
libspirv::AssemblyContext* context, spv_instruction_t* pInst) {
std::string firstWord;
spv_position_t nextPosition = {};
auto error = context->getWord(firstWord, &nextPosition);
if (error) return context->diagnostic(error) << "Internal Error";
if ((error = encodeImmediate(context, firstWord.c_str(), pInst))) {
return error;
}
while (context->advance() != SPV_END_OF_STREAM) {
// A beginning of a new instruction means we're done.
if (context->isStartOfNewInst()) return SPV_SUCCESS;
// Otherwise, there must be an operand that's either a literal, an ID, or
// an immediate.
std::string operandValue;
if ((error = context->getWord(operandValue, &nextPosition)))
return context->diagnostic(error) << "Internal Error";
if (operandValue == "=")
return context->diagnostic() << firstWord << " not allowed before =.";
// Needed to pass to spvTextEncodeOpcode(), but it shouldn't ever be
// expanded.
spv_operand_pattern_t dummyExpectedOperands;
error = spvTextEncodeOperand(
grammar, context, SPV_OPERAND_TYPE_OPTIONAL_CIV, operandValue.c_str(),
pInst, &dummyExpectedOperands);
if (error) return error;
context->setPosition(nextPosition);
}
return SPV_SUCCESS;
}
} // anonymous namespace
/// @brief Translate single Opcode and operands to binary form
///
/// @param[in] grammar the grammar to use for compilation
/// @param[in, out] context the dynamic compilation info
/// @param[in] text stream to translate
/// @param[in] format the assembly syntax format of text
/// @param[out] pInst returned binary Opcode
/// @param[in,out] pPosition in the text stream
///
/// @return result code
spv_result_t spvTextEncodeOpcode(const libspirv::AssemblyGrammar& grammar,
libspirv::AssemblyContext* context,
spv_assembly_syntax_format_t format,
spv_instruction_t* pInst) {
// Check for !<integer> first.
if ('!' == context->peek()) {
return encodeInstructionStartingWithImmediate(grammar, context, pInst);
}
// An assembly instruction has two possible formats:
// 1(CAF): <opcode> <operand>..., e.g., "OpTypeVoid %void".
// 2(AAF): <result-id> = <opcode> <operand>..., e.g., "%void = OpTypeVoid".
std::string firstWord;
spv_position_t nextPosition = {};
spv_result_t error = context->getWord(firstWord, &nextPosition);
if (error) return context->diagnostic() << "Internal Error";
std::string opcodeName;
std::string result_id;
spv_position_t result_id_position = {};
if (context->startsWithOp()) {
opcodeName = firstWord;
} else {
// If the first word of this instruction is not an opcode, we must be
// processing AAF now.
if (SPV_ASSEMBLY_SYNTAX_FORMAT_ASSIGNMENT != format) {
return context->diagnostic()
<< "Expected <opcode> at the beginning of an instruction, found '"
<< firstWord << "'.";
}
result_id = firstWord;
if ('%' != result_id.front()) {
return context->diagnostic()
<< "Expected <opcode> or <result-id> at the beginning "
"of an instruction, found '"
<< result_id << "'.";
}
result_id_position = context->position();
// The '=' sign.
context->setPosition(nextPosition);
if (context->advance())
return context->diagnostic() << "Expected '=', found end of stream.";
std::string equal_sign;
error = context->getWord(equal_sign, &nextPosition);
if ("=" != equal_sign)
return context->diagnostic() << "'=' expected after result id.";
// The <opcode> after the '=' sign.
context->setPosition(nextPosition);
if (context->advance())
return context->diagnostic() << "Expected opcode, found end of stream.";
error = context->getWord(opcodeName, &nextPosition);
if (error) return context->diagnostic(error) << "Internal Error";
if (!context->startsWithOp()) {
return context->diagnostic() << "Invalid Opcode prefix '" << opcodeName
<< "'.";
}
}
// NOTE: The table contains Opcode names without the "Op" prefix.
const char* pInstName = opcodeName.data() + 2;
spv_opcode_desc opcodeEntry;
error = grammar.lookupOpcode(pInstName, &opcodeEntry);
if (error) {
return context->diagnostic(error) << "Invalid Opcode name '"
<< context->getWord() << "'";
}
if (SPV_ASSEMBLY_SYNTAX_FORMAT_ASSIGNMENT == format) {
// If this instruction has <result-id>, check it follows AAF.
if (opcodeEntry->hasResult && result_id.empty()) {
return context->diagnostic()
<< "Expected <result-id> at the beginning of an "
"instruction, found '"
<< firstWord << "'.";
}
}
pInst->opcode = opcodeEntry->opcode;
context->setPosition(nextPosition);
// Reserve the first word for the instruction.
spvInstructionAddWord(pInst, 0);
// Maintains the ordered list of expected operand types.
// For many instructions we only need the {numTypes, operandTypes}
// entries in opcodeEntry. However, sometimes we need to modify
// the list as we parse the operands. This occurs when an operand
// has its own logical operands (such as the LocalSize operand for
// ExecutionMode), or for extended instructions that may have their
// own operands depending on the selected extended instruction.
spv_operand_pattern_t expectedOperands(
opcodeEntry->operandTypes,
opcodeEntry->operandTypes + opcodeEntry->numTypes);
while (!expectedOperands.empty()) {
const spv_operand_type_t type = expectedOperands.front();
expectedOperands.pop_front();
// Expand optional tuples lazily.
if (spvExpandOperandSequenceOnce(type, &expectedOperands)) continue;
if (type == SPV_OPERAND_TYPE_RESULT_ID && !result_id.empty()) {
// Handle the <result-id> for value generating instructions.
// We've already consumed it from the text stream. Here
// we inject its words into the instruction.
spv_position_t temp_pos = context->position();
error = spvTextEncodeOperand(grammar, context, SPV_OPERAND_TYPE_RESULT_ID,
result_id.c_str(), pInst, nullptr);
result_id_position = context->position();
// Because we are injecting we have to reset the position afterwards.
context->setPosition(temp_pos);
if (error) return error;
} else {
// Find the next word.
error = context->advance();
if (error == SPV_END_OF_STREAM) {
if (spvOperandIsOptional(type)) {
// This would have been the last potential operand for the
// instruction,
// and we didn't find one. We're finished parsing this instruction.
break;
} else {
return context->diagnostic()
<< "Expected operand, found end of stream.";
}
}
assert(error == SPV_SUCCESS && "Somebody added another way to fail");
if (context->isStartOfNewInst()) {
if (spvOperandIsOptional(type)) {
break;
} else {
return context->diagnostic()
<< "Expected operand, found next instruction instead.";
}
}
std::string operandValue;
error = context->getWord(operandValue, &nextPosition);
if (error) return context->diagnostic(error) << "Internal Error";
error = spvTextEncodeOperand(grammar, context, type, operandValue.c_str(),
pInst, &expectedOperands);
if (error == SPV_FAILED_MATCH && spvOperandIsOptional(type))
return SPV_SUCCESS;
if (error) return error;
context->setPosition(nextPosition);
}
}
if (spvOpcodeGeneratesType(pInst->opcode)) {
if (context->recordTypeDefinition(pInst) != SPV_SUCCESS) {
return SPV_ERROR_INVALID_TEXT;
}
} else if (opcodeEntry->hasType) {
// SPIR-V dictates that if an instruction has both a return value and a
// type ID then the type id is first, and the return value is second.
assert(opcodeEntry->hasResult &&
"Unknown opcode: has a type but no result.");
context->recordTypeIdForValue(pInst->words[2], pInst->words[1]);
}
if (pInst->words.size() > SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX) {
return context->diagnostic()
<< "Instruction too long: " << pInst->words.size()
<< " words, but the limit is "
<< SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX;
}
pInst->words[0] = spvOpcodeMake(pInst->words.size(), opcodeEntry->opcode);
return SPV_SUCCESS;
}
namespace {
/// @brief Populate a binary stream's words with this generator's header.
///
/// @param[in,out] words the array of words
/// @param[in] bound the upper ID bound
///
/// @return result code
spv_result_t SetHeader(uint32_t* words, const uint32_t bound) {
if (!words) return SPV_ERROR_INVALID_BINARY;
words[SPV_INDEX_MAGIC_NUMBER] = SPV_MAGIC_NUMBER;
words[SPV_INDEX_VERSION_NUMBER] = SPV_VERSION_NUMBER;
words[SPV_INDEX_GENERATOR_NUMBER] = SPV_GENERATOR_KHRONOS;
words[SPV_INDEX_BOUND] = bound;
words[SPV_INDEX_SCHEMA] = 0; // NOTE: Reserved
return SPV_SUCCESS;
}
// Translates a given assembly language module into binary form.
// If a diagnostic is generated, it is not yet marked as being
// for a text-based input.
spv_result_t spvTextToBinaryInternal(const libspirv::AssemblyGrammar& grammar,
const spv_text text,
spv_assembly_syntax_format_t format,
spv_binary* pBinary,
spv_diagnostic* pDiagnostic) {
if (!pDiagnostic) return SPV_ERROR_INVALID_DIAGNOSTIC;
libspirv::AssemblyContext context(text, pDiagnostic);
if (!text->str)
return context.diagnostic() << "Missing assembly text.";
if (!grammar.isValid()) {
return SPV_ERROR_INVALID_TABLE;
}
if (!pBinary) return SPV_ERROR_INVALID_POINTER;
// NOTE: Ensure diagnostic is zero initialised
*pDiagnostic = {};
std::vector<spv_instruction_t> instructions;
// Skip past whitespace and comments.
context.advance();
spv_ext_inst_type_t extInstType = SPV_EXT_INST_TYPE_NONE;
while (context.hasText()) {
instructions.push_back({});
spv_instruction_t& inst = instructions.back();
inst.extInstType = extInstType;
if (spvTextEncodeOpcode(grammar, &context, format, &inst)) {
return SPV_ERROR_INVALID_TEXT;
}
extInstType = inst.extInstType;
if (context.advance()) break;
}
size_t totalSize = SPV_INDEX_INSTRUCTION;
for (auto& inst : instructions) {
totalSize += inst.words.size();
}
uint32_t* data = new uint32_t[totalSize];
if (!data) return SPV_ERROR_OUT_OF_MEMORY;
uint64_t currentIndex = SPV_INDEX_INSTRUCTION;
for (auto& inst : instructions) {
memcpy(data + currentIndex, inst.words.data(),
sizeof(uint32_t) * inst.words.size());
currentIndex += inst.words.size();
}
if (auto error = SetHeader(data, context.getBound()))
return error;
spv_binary binary = new spv_binary_t();
if (!binary) {
delete[] data;
return SPV_ERROR_OUT_OF_MEMORY;
}
binary->code = data;
binary->wordCount = totalSize;
*pBinary = binary;
return SPV_SUCCESS;
}
} // anonymous namespace
spv_result_t spvTextToBinary(const char* input_text,
const uint64_t input_text_size,
const spv_opcode_table opcodeTable,
const spv_operand_table operandTable,
const spv_ext_inst_table extInstTable,
spv_binary* pBinary, spv_diagnostic* pDiagnostic) {
return spvTextWithFormatToBinary(
input_text, input_text_size, SPV_ASSEMBLY_SYNTAX_FORMAT_DEFAULT,
opcodeTable, operandTable, extInstTable, pBinary, pDiagnostic);
}
spv_result_t spvTextWithFormatToBinary(
const char* input_text, const uint64_t input_text_size,
spv_assembly_syntax_format_t format, const spv_opcode_table opcodeTable,
const spv_operand_table operandTable, const spv_ext_inst_table extInstTable,
spv_binary* pBinary, spv_diagnostic* pDiagnostic) {
spv_text_t text = {input_text, input_text_size};
libspirv::AssemblyGrammar grammar(operandTable, opcodeTable, extInstTable);
spv_result_t result =
spvTextToBinaryInternal(grammar, &text, format, pBinary, pDiagnostic);
if (pDiagnostic && *pDiagnostic) (*pDiagnostic)->isTextSource = true;
return result;
}
void spvTextDestroy(spv_text text) {
if (!text) return;
if (text->str) {
delete[] text->str;
}
delete text;
}