SPIRV-Tools/source/val/validate_id.cpp
dan sinclair eda2cfbe12
Cleanup includes. (#1795)
This Cl cleans up the include paths to be relative to the top level
directory. Various include-what-you-use fixes have been added.
2018-08-03 15:06:09 -04:00

1648 lines
66 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/val/validate.h"
#include <cassert>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <stack>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
#include "source/diagnostic.h"
#include "source/instruction.h"
#include "source/message.h"
#include "source/opcode.h"
#include "source/operand.h"
#include "source/spirv_validator_options.h"
#include "source/val/function.h"
#include "source/val/validation_state.h"
#include "spirv-tools/libspirv.h"
namespace spvtools {
namespace val {
namespace {
class idUsage {
public:
idUsage(spv_const_context context, const spv_instruction_t* pInsts,
const uint64_t instCountArg, const SpvMemoryModel memoryModelArg,
const SpvAddressingModel addressingModelArg,
const ValidationState_t& module,
const std::vector<uint32_t>& entry_points, spv_position positionArg,
const MessageConsumer& consumer)
: targetEnv(context->target_env),
opcodeTable(context->opcode_table),
operandTable(context->operand_table),
extInstTable(context->ext_inst_table),
firstInst(pInsts),
instCount(instCountArg),
memoryModel(memoryModelArg),
addressingModel(addressingModelArg),
position(positionArg),
consumer_(consumer),
module_(module),
entry_points_(entry_points) {}
bool isValid(const spv_instruction_t* inst);
template <SpvOp>
bool isValid(const spv_instruction_t* inst, const spv_opcode_desc);
private:
const spv_target_env targetEnv;
const spv_opcode_table opcodeTable;
const spv_operand_table operandTable;
const spv_ext_inst_table extInstTable;
const spv_instruction_t* const firstInst;
const uint64_t instCount;
const SpvMemoryModel memoryModel;
const SpvAddressingModel addressingModel;
spv_position position;
const MessageConsumer& consumer_;
const ValidationState_t& module_;
std::vector<uint32_t> entry_points_;
};
#define DIAG(inst) \
position->index = inst ? inst->LineNum() : -1; \
std::string disassembly; \
if (inst) { \
disassembly = module_.Disassemble( \
inst->words().data(), static_cast<uint16_t>(inst->words().size())); \
} \
DiagnosticStream helper(*position, consumer_, disassembly, \
SPV_ERROR_INVALID_DIAGNOSTIC); \
helper
template <>
bool idUsage::isValid<SpvOpMemberName>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto typeIndex = 1;
auto type = module_.FindDef(inst->words[typeIndex]);
if (!type || SpvOpTypeStruct != type->opcode()) {
DIAG(type) << "OpMemberName Type <id> '"
<< module_.getIdName(inst->words[typeIndex])
<< "' is not a struct type.";
return false;
}
auto memberIndex = 2;
auto member = inst->words[memberIndex];
auto memberCount = (uint32_t)(type->words().size() - 2);
if (memberCount <= member) {
DIAG(module_.FindDef(member))
<< "OpMemberName Member <id> '"
<< module_.getIdName(inst->words[memberIndex])
<< "' index is larger than Type <id> '" << module_.getIdName(type->id())
<< "'s member count.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpLine>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto fileIndex = 1;
auto file = module_.FindDef(inst->words[fileIndex]);
if (!file || SpvOpString != file->opcode()) {
DIAG(file) << "OpLine Target <id> '"
<< module_.getIdName(inst->words[fileIndex])
<< "' is not an OpString.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpDecorate>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto decorationIndex = 2;
auto decoration = inst->words[decorationIndex];
if (decoration == SpvDecorationSpecId) {
auto targetIndex = 1;
auto target = module_.FindDef(inst->words[targetIndex]);
if (!target || !spvOpcodeIsScalarSpecConstant(target->opcode())) {
DIAG(target) << "OpDecorate SpectId decoration target <id> '"
<< module_.getIdName(inst->words[decorationIndex])
<< "' is not a scalar specialization constant.";
return false;
}
}
// TODO: Add validations for all decorations.
return true;
}
template <>
bool idUsage::isValid<SpvOpMemberDecorate>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto structTypeIndex = 1;
auto structType = module_.FindDef(inst->words[structTypeIndex]);
if (!structType || SpvOpTypeStruct != structType->opcode()) {
DIAG(structType) << "OpMemberDecorate Structure type <id> '"
<< module_.getIdName(inst->words[structTypeIndex])
<< "' is not a struct type.";
return false;
}
auto memberIndex = 2;
auto member = inst->words[memberIndex];
auto memberCount = static_cast<uint32_t>(structType->words().size() - 2);
if (memberCount < member) {
DIAG(structType) << "Index " << member
<< " provided in OpMemberDecorate for struct <id> "
<< module_.getIdName(inst->words[structTypeIndex])
<< " is out of bounds. The structure has " << memberCount
<< " members. Largest valid index is " << memberCount - 1
<< ".";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpDecorationGroup>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto decorationGroupIndex = 1;
auto decorationGroup = module_.FindDef(inst->words[decorationGroupIndex]);
for (auto pair : decorationGroup->uses()) {
auto use = pair.first;
if (use->opcode() != SpvOpDecorate && use->opcode() != SpvOpGroupDecorate &&
use->opcode() != SpvOpGroupMemberDecorate &&
use->opcode() != SpvOpName) {
DIAG(decorationGroup) << "Result id of OpDecorationGroup can only "
<< "be targeted by OpName, OpGroupDecorate, "
<< "OpDecorate, and OpGroupMemberDecorate";
return false;
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpGroupDecorate>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto decorationGroupIndex = 1;
auto decorationGroup = module_.FindDef(inst->words[decorationGroupIndex]);
if (!decorationGroup || SpvOpDecorationGroup != decorationGroup->opcode()) {
DIAG(decorationGroup) << "OpGroupDecorate Decoration group <id> '"
<< module_.getIdName(
inst->words[decorationGroupIndex])
<< "' is not a decoration group.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpGroupMemberDecorate>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto decorationGroupIndex = 1;
auto decorationGroup = module_.FindDef(inst->words[decorationGroupIndex]);
if (!decorationGroup || SpvOpDecorationGroup != decorationGroup->opcode()) {
DIAG(decorationGroup) << "OpGroupMemberDecorate Decoration group <id> '"
<< module_.getIdName(
inst->words[decorationGroupIndex])
<< "' is not a decoration group.";
return false;
}
// Grammar checks ensures that the number of arguments to this instruction
// is an odd number: 1 decoration group + (id,literal) pairs.
for (size_t i = 2; i + 1 < inst->words.size(); i = i + 2) {
const uint32_t struct_id = inst->words[i];
const uint32_t index = inst->words[i + 1];
auto struct_instr = module_.FindDef(struct_id);
if (!struct_instr || SpvOpTypeStruct != struct_instr->opcode()) {
DIAG(struct_instr) << "OpGroupMemberDecorate Structure type <id> '"
<< module_.getIdName(struct_id)
<< "' is not a struct type.";
return false;
}
const uint32_t num_struct_members =
static_cast<uint32_t>(struct_instr->words().size() - 2);
if (index >= num_struct_members) {
DIAG(struct_instr)
<< "Index " << index
<< " provided in OpGroupMemberDecorate for struct <id> "
<< module_.getIdName(struct_id)
<< " is out of bounds. The structure has " << num_struct_members
<< " members. Largest valid index is " << num_struct_members - 1
<< ".";
return false;
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpEntryPoint>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto entryPointIndex = 2;
auto entryPoint = module_.FindDef(inst->words[entryPointIndex]);
if (!entryPoint || SpvOpFunction != entryPoint->opcode()) {
DIAG(entryPoint) << "OpEntryPoint Entry Point <id> '"
<< module_.getIdName(inst->words[entryPointIndex])
<< "' is not a function.";
return false;
}
// don't check kernel function signatures
const SpvExecutionModel executionModel = SpvExecutionModel(inst->words[1]);
if (executionModel != SpvExecutionModelKernel) {
// TODO: Check the entry point signature is void main(void), may be subject
// to change
auto entryPointType = module_.FindDef(entryPoint->words()[4]);
if (!entryPointType || 3 != entryPointType->words().size()) {
DIAG(entryPoint) << "OpEntryPoint Entry Point <id> '"
<< module_.getIdName(inst->words[entryPointIndex])
<< "'s function parameter count is not zero.";
return false;
}
}
auto returnType = module_.FindDef(entryPoint->type_id());
if (!returnType || SpvOpTypeVoid != returnType->opcode()) {
DIAG(entryPoint) << "OpEntryPoint Entry Point <id> '"
<< module_.getIdName(inst->words[entryPointIndex])
<< "'s function return type is not void.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpExecutionMode>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto entryPointIndex = 1;
auto entryPointID = inst->words[entryPointIndex];
auto found =
std::find(entry_points_.cbegin(), entry_points_.cend(), entryPointID);
if (found == entry_points_.cend()) {
DIAG(module_.FindDef(entryPointID))
<< "OpExecutionMode Entry Point <id> '"
<< module_.getIdName(inst->words[entryPointIndex])
<< "' is not the Entry Point "
"operand of an OpEntryPoint.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeVector>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto componentIndex = 2;
auto componentType = module_.FindDef(inst->words[componentIndex]);
if (!componentType || !spvOpcodeIsScalarType(componentType->opcode())) {
DIAG(componentType) << "OpTypeVector Component Type <id> '"
<< module_.getIdName(inst->words[componentIndex])
<< "' is not a scalar type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeMatrix>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto columnTypeIndex = 2;
auto columnType = module_.FindDef(inst->words[columnTypeIndex]);
if (!columnType || SpvOpTypeVector != columnType->opcode()) {
DIAG(columnType) << "OpTypeMatrix Column Type <id> '"
<< module_.getIdName(inst->words[columnTypeIndex])
<< "' is not a vector.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeSampler>(const spv_instruction_t*,
const spv_opcode_desc) {
// OpTypeSampler takes no arguments in Rev31 and beyond.
return true;
}
// True if the integer constant is > 0. constWords are words of the
// constant-defining instruction (either OpConstant or
// OpSpecConstant). typeWords are the words of the constant's-type-defining
// OpTypeInt.
bool aboveZero(const std::vector<uint32_t>& constWords,
const std::vector<uint32_t>& typeWords) {
const uint32_t width = typeWords[2];
const bool is_signed = typeWords[3] > 0;
const uint32_t loWord = constWords[3];
if (width > 32) {
// The spec currently doesn't allow integers wider than 64 bits.
const uint32_t hiWord = constWords[4]; // Must exist, per spec.
if (is_signed && (hiWord >> 31)) return false;
return (loWord | hiWord) > 0;
} else {
if (is_signed && (loWord >> 31)) return false;
return loWord > 0;
}
}
template <>
bool idUsage::isValid<SpvOpTypeArray>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto elementTypeIndex = 2;
auto elementType = module_.FindDef(inst->words[elementTypeIndex]);
if (!elementType || !spvOpcodeGeneratesType(elementType->opcode())) {
DIAG(elementType) << "OpTypeArray Element Type <id> '"
<< module_.getIdName(inst->words[elementTypeIndex])
<< "' is not a type.";
return false;
}
auto lengthIndex = 3;
auto length = module_.FindDef(inst->words[lengthIndex]);
if (!length || !spvOpcodeIsConstant(length->opcode())) {
DIAG(length) << "OpTypeArray Length <id> '"
<< module_.getIdName(inst->words[lengthIndex])
<< "' is not a scalar constant type.";
return false;
}
// NOTE: Check the initialiser value of the constant
auto constInst = length->words();
auto constResultTypeIndex = 1;
auto constResultType = module_.FindDef(constInst[constResultTypeIndex]);
if (!constResultType || SpvOpTypeInt != constResultType->opcode()) {
DIAG(length) << "OpTypeArray Length <id> '"
<< module_.getIdName(inst->words[lengthIndex])
<< "' is not a constant integer type.";
return false;
}
switch (length->opcode()) {
case SpvOpSpecConstant:
case SpvOpConstant:
if (aboveZero(length->words(), constResultType->words())) break;
// Else fall through!
case SpvOpConstantNull: {
DIAG(length) << "OpTypeArray Length <id> '"
<< module_.getIdName(inst->words[lengthIndex])
<< "' default value must be at least 1.";
return false;
}
case SpvOpSpecConstantOp:
// Assume it's OK, rather than try to evaluate the operation.
break;
default:
assert(0 && "bug in spvOpcodeIsConstant() or result type isn't int");
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeRuntimeArray>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto elementTypeIndex = 2;
auto elementType = module_.FindDef(inst->words[elementTypeIndex]);
if (!elementType || !spvOpcodeGeneratesType(elementType->opcode())) {
DIAG(elementType) << "OpTypeRuntimeArray Element Type <id> '"
<< module_.getIdName(inst->words[elementTypeIndex])
<< "' is not a type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeStruct>(const spv_instruction_t* inst,
const spv_opcode_desc) {
ValidationState_t& vstate = const_cast<ValidationState_t&>(module_);
const uint32_t struct_id = inst->words[1];
auto structType = module_.FindDef(struct_id);
for (size_t memberTypeIndex = 2; memberTypeIndex < inst->words.size();
++memberTypeIndex) {
auto memberTypeId = inst->words[memberTypeIndex];
auto memberType = module_.FindDef(memberTypeId);
if (!memberType || !spvOpcodeGeneratesType(memberType->opcode())) {
DIAG(memberType) << "OpTypeStruct Member Type <id> '"
<< module_.getIdName(inst->words[memberTypeIndex])
<< "' is not a type.";
return false;
}
if (SpvOpTypeStruct == memberType->opcode() &&
module_.IsStructTypeWithBuiltInMember(memberTypeId)) {
DIAG(memberType)
<< "Structure <id> " << module_.getIdName(memberTypeId)
<< " contains members with BuiltIn decoration. Therefore this "
"structure may not be contained as a member of another structure "
"type. Structure <id> "
<< module_.getIdName(struct_id) << " contains structure <id> "
<< module_.getIdName(memberTypeId) << ".";
return false;
}
if (module_.IsForwardPointer(memberTypeId)) {
if (memberType->opcode() != SpvOpTypePointer) {
DIAG(memberType) << "Found a forward reference to a non-pointer "
"type in OpTypeStruct instruction.";
return false;
}
// If we're dealing with a forward pointer:
// Find out the type that the pointer is pointing to (must be struct)
// word 3 is the <id> of the type being pointed to.
auto typePointingTo = module_.FindDef(memberType->words()[3]);
if (typePointingTo && typePointingTo->opcode() != SpvOpTypeStruct) {
// Forward declared operands of a struct may only point to a struct.
DIAG(memberType)
<< "A forward reference operand in an OpTypeStruct must be an "
"OpTypePointer that points to an OpTypeStruct. "
"Found OpTypePointer that points to Op"
<< spvOpcodeString(static_cast<SpvOp>(typePointingTo->opcode()))
<< ".";
return false;
}
}
}
std::unordered_set<uint32_t> built_in_members;
for (auto decoration : vstate.id_decorations(struct_id)) {
if (decoration.dec_type() == SpvDecorationBuiltIn &&
decoration.struct_member_index() != Decoration::kInvalidMember) {
built_in_members.insert(decoration.struct_member_index());
}
}
int num_struct_members = static_cast<int>(inst->words.size() - 2);
int num_builtin_members = static_cast<int>(built_in_members.size());
if (num_builtin_members > 0 && num_builtin_members != num_struct_members) {
DIAG(structType)
<< "When BuiltIn decoration is applied to a structure-type member, "
"all members of that structure type must also be decorated with "
"BuiltIn (No allowed mixing of built-in variables and "
"non-built-in variables within a single structure). Structure id "
<< struct_id << " does not meet this requirement.";
return false;
}
if (num_builtin_members > 0) {
vstate.RegisterStructTypeWithBuiltInMember(struct_id);
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypePointer>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto typeIndex = 3;
auto type = module_.FindDef(inst->words[typeIndex]);
if (!type || !spvOpcodeGeneratesType(type->opcode())) {
DIAG(type) << "OpTypePointer Type <id> '"
<< module_.getIdName(inst->words[typeIndex])
<< "' is not a type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypeFunction>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto returnTypeIndex = 2;
auto returnType = module_.FindDef(inst->words[returnTypeIndex]);
if (!returnType || !spvOpcodeGeneratesType(returnType->opcode())) {
DIAG(returnType) << "OpTypeFunction Return Type <id> '"
<< module_.getIdName(inst->words[returnTypeIndex])
<< "' is not a type.";
return false;
}
size_t num_args = 0;
for (size_t paramTypeIndex = 3; paramTypeIndex < inst->words.size();
++paramTypeIndex, ++num_args) {
auto paramType = module_.FindDef(inst->words[paramTypeIndex]);
if (!paramType || !spvOpcodeGeneratesType(paramType->opcode())) {
DIAG(paramType) << "OpTypeFunction Parameter Type <id> '"
<< module_.getIdName(inst->words[paramTypeIndex])
<< "' is not a type.";
return false;
}
}
const uint32_t num_function_args_limit =
module_.options()->universal_limits_.max_function_args;
if (num_args > num_function_args_limit) {
DIAG(returnType) << "OpTypeFunction may not take more than "
<< num_function_args_limit
<< " arguments. OpTypeFunction <id> '"
<< module_.getIdName(inst->words[1]) << "' has "
<< num_args << " arguments.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpTypePipe>(const spv_instruction_t*,
const spv_opcode_desc) {
// OpTypePipe has no ID arguments.
return true;
}
template <>
bool idUsage::isValid<SpvOpConstantTrue>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypeBool != resultType->opcode()) {
DIAG(resultType) << "OpConstantTrue Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' is not a boolean type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpConstantFalse>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypeBool != resultType->opcode()) {
DIAG(resultType) << "OpConstantFalse Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' is not a boolean type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpConstantComposite>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || !spvOpcodeIsComposite(resultType->opcode())) {
DIAG(resultType) << "OpConstantComposite Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' is not a composite type.";
return false;
}
auto constituentCount = inst->words.size() - 3;
switch (resultType->opcode()) {
case SpvOpTypeVector: {
auto componentCount = resultType->words()[3];
if (componentCount != constituentCount) {
// TODO: Output ID's on diagnostic
DIAG(module_.FindDef(inst->words.back()))
<< "OpConstantComposite Constituent <id> count does not match "
"Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s vector component count.";
return false;
}
auto componentType = module_.FindDef(resultType->words()[2]);
assert(componentType);
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituent) << "OpConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' is not a constant or undef.";
return false;
}
auto constituentResultType = module_.FindDef(constituent->type_id());
if (!constituentResultType ||
componentType->opcode() != constituentResultType->opcode()) {
DIAG(constituent) << "OpConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "'s type does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s vector element type.";
return false;
}
}
} break;
case SpvOpTypeMatrix: {
auto columnCount = resultType->words()[3];
if (columnCount != constituentCount) {
// TODO: Output ID's on diagnostic
DIAG(module_.FindDef(inst->words.back()))
<< "OpConstantComposite Constituent <id> count does not match "
"Result Type <id> '"
<< module_.getIdName(resultType->id()) << "'s matrix column count.";
return false;
}
auto columnType = module_.FindDef(resultType->words()[2]);
assert(columnType);
auto componentCount = columnType->words()[3];
auto componentType = module_.FindDef(columnType->words()[2]);
assert(componentType);
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent || !(SpvOpConstantComposite == constituent->opcode() ||
SpvOpUndef == constituent->opcode())) {
// The message says "... or undef" because the spec does not say
// undef is a constant.
DIAG(constituent) << "OpConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' is not a constant composite or undef.";
return false;
}
auto vector = module_.FindDef(constituent->type_id());
assert(vector);
if (columnType->opcode() != vector->opcode()) {
DIAG(constituent) << "OpConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' type does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s matrix column type.";
return false;
}
auto vectorComponentType = module_.FindDef(vector->words()[2]);
assert(vectorComponentType);
if (componentType->id() != vectorComponentType->id()) {
DIAG(constituent)
<< "OpConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' component type does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s matrix column component type.";
return false;
}
if (componentCount != vector->words()[3]) {
DIAG(constituent)
<< "OpConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' vector component count does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s vector component count.";
return false;
}
}
} break;
case SpvOpTypeArray: {
auto elementType = module_.FindDef(resultType->words()[2]);
assert(elementType);
auto length = module_.FindDef(resultType->words()[3]);
assert(length);
if (length->words()[3] != constituentCount) {
DIAG(module_.FindDef(inst->words.back()))
<< "OpConstantComposite Constituent count does not match "
"Result Type <id> '"
<< module_.getIdName(resultType->id()) << "'s array length.";
return false;
}
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituent) << "OpConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' is not a constant or undef.";
return false;
}
auto constituentType = module_.FindDef(constituent->type_id());
assert(constituentType);
if (elementType->id() != constituentType->id()) {
DIAG(constituent) << "OpConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "'s type does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s array element type.";
return false;
}
}
} break;
case SpvOpTypeStruct: {
auto memberCount = resultType->words().size() - 2;
if (memberCount != constituentCount) {
DIAG(resultType) << "OpConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' count does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s struct member count.";
return false;
}
for (uint32_t constituentIndex = 3, memberIndex = 2;
constituentIndex < inst->words.size();
constituentIndex++, memberIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituent) << "OpConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' is not a constant or undef.";
return false;
}
auto constituentType = module_.FindDef(constituent->type_id());
assert(constituentType);
auto memberType = module_.FindDef(resultType->words()[memberIndex]);
assert(memberType);
if (memberType->id() != constituentType->id()) {
DIAG(constituent)
<< "OpConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' type does not match the Result Type <id> '"
<< module_.getIdName(resultType->id()) << "'s member type.";
return false;
}
}
} break;
default: { assert(0 && "Unreachable!"); } break;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpConstantSampler>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypeSampler != resultType->opcode()) {
DIAG(resultType) << "OpConstantSampler Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' is not a sampler type.";
return false;
}
return true;
}
// True if instruction defines a type that can have a null value, as defined by
// the SPIR-V spec. Tracks composite-type components through module to check
// nullability transitively.
bool IsTypeNullable(const std::vector<uint32_t>& instruction,
const ValidationState_t& module) {
uint16_t opcode;
uint16_t word_count;
spvOpcodeSplit(instruction[0], &word_count, &opcode);
switch (static_cast<SpvOp>(opcode)) {
case SpvOpTypeBool:
case SpvOpTypeInt:
case SpvOpTypeFloat:
case SpvOpTypePointer:
case SpvOpTypeEvent:
case SpvOpTypeDeviceEvent:
case SpvOpTypeReserveId:
case SpvOpTypeQueue:
return true;
case SpvOpTypeArray:
case SpvOpTypeMatrix:
case SpvOpTypeVector: {
auto base_type = module.FindDef(instruction[2]);
return base_type && IsTypeNullable(base_type->words(), module);
}
case SpvOpTypeStruct: {
for (size_t elementIndex = 2; elementIndex < instruction.size();
++elementIndex) {
auto element = module.FindDef(instruction[elementIndex]);
if (!element || !IsTypeNullable(element->words(), module)) return false;
}
return true;
}
default:
return false;
}
}
template <>
bool idUsage::isValid<SpvOpConstantNull>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || !IsTypeNullable(resultType->words(), module_)) {
DIAG(resultType) << "OpConstantNull Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' cannot have a null value.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpSpecConstantTrue>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypeBool != resultType->opcode()) {
DIAG(resultType) << "OpSpecConstantTrue Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' is not a boolean type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpSpecConstantFalse>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || SpvOpTypeBool != resultType->opcode()) {
DIAG(resultType) << "OpSpecConstantFalse Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' is not a boolean type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpSampledImage>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 2;
auto resultID = inst->words[resultTypeIndex];
auto sampledImageInstr = module_.FindDef(resultID);
// We need to validate 2 things:
// * All OpSampledImage instructions must be in the same block in which their
// Result <id> are consumed.
// * Result <id> from OpSampledImage instructions must not appear as operands
// to OpPhi instructions or OpSelect instructions, or any instructions other
// than the image lookup and query instructions specified to take an operand
// whose type is OpTypeSampledImage.
std::vector<uint32_t> consumers = module_.getSampledImageConsumers(resultID);
if (!consumers.empty()) {
for (auto consumer_id : consumers) {
auto consumer_instr = module_.FindDef(consumer_id);
auto consumer_opcode = consumer_instr->opcode();
if (consumer_instr->block() != sampledImageInstr->block()) {
DIAG(sampledImageInstr)
<< "All OpSampledImage instructions must be in the same block in "
"which their Result <id> are consumed. OpSampledImage Result "
"Type <id> '"
<< module_.getIdName(resultID)
<< "' has a consumer in a different basic "
"block. The consumer instruction <id> is '"
<< module_.getIdName(consumer_id) << "'.";
return false;
}
// TODO: The following check is incomplete. We should also check that the
// Sampled Image is not used by instructions that should not take
// SampledImage as an argument. We could find the list of valid
// instructions by scanning for "Sampled Image" in the operand description
// field in the grammar file.
if (consumer_opcode == SpvOpPhi || consumer_opcode == SpvOpSelect) {
DIAG(sampledImageInstr)
<< "Result <id> from OpSampledImage instruction must not appear as "
"operands of Op"
<< spvOpcodeString(static_cast<SpvOp>(consumer_opcode)) << "."
<< " Found result <id> '" << module_.getIdName(resultID)
<< "' as an operand of <id> '" << module_.getIdName(consumer_id)
<< "'.";
return false;
}
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpSpecConstantComposite>(const spv_instruction_t* inst,
const spv_opcode_desc) {
// The result type must be a composite type.
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType || !spvOpcodeIsComposite(resultType->opcode())) {
DIAG(resultType) << "OpSpecConstantComposite Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' is not a composite type.";
return false;
}
// Validation checks differ based on the type of composite type.
auto constituentCount = inst->words.size() - 3;
switch (resultType->opcode()) {
// For Vectors, the following must be met:
// * Number of constituents in the result type and the vector must match.
// * All the components of the vector must have the same type (or specialize
// to the same type). OpConstant and OpSpecConstant are allowed.
// To check that condition, we check each supplied value argument's type
// against the element type of the result type.
case SpvOpTypeVector: {
auto componentCount = resultType->words()[3];
if (componentCount != constituentCount) {
DIAG(module_.FindDef(inst->words.back()))
<< "OpSpecConstantComposite Constituent <id> count does not match "
"Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s vector component count.";
return false;
}
auto componentType = module_.FindDef(resultType->words()[2]);
assert(componentType);
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituent) << "OpSpecConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' is not a constant or undef.";
return false;
}
auto constituentResultType = module_.FindDef(constituent->type_id());
if (!constituentResultType ||
componentType->opcode() != constituentResultType->opcode()) {
DIAG(constituent) << "OpSpecConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "'s type does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s vector element type.";
return false;
}
}
break;
}
case SpvOpTypeMatrix: {
auto columnCount = resultType->words()[3];
if (columnCount != constituentCount) {
DIAG(module_.FindDef(inst->words.back()))
<< "OpSpecConstantComposite Constituent <id> count does not match "
"Result Type <id> '"
<< module_.getIdName(resultType->id()) << "'s matrix column count.";
return false;
}
auto columnType = module_.FindDef(resultType->words()[2]);
assert(columnType);
auto componentCount = columnType->words()[3];
auto componentType = module_.FindDef(columnType->words()[2]);
assert(componentType);
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
auto constituentOpCode = constituent->opcode();
if (!constituent || !(SpvOpSpecConstantComposite == constituentOpCode ||
SpvOpConstantComposite == constituentOpCode ||
SpvOpUndef == constituentOpCode)) {
// The message says "... or undef" because the spec does not say
// undef is a constant.
DIAG(constituent) << "OpSpecConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' is not a constant composite or undef.";
return false;
}
auto vector = module_.FindDef(constituent->type_id());
assert(vector);
if (columnType->opcode() != vector->opcode()) {
DIAG(constituent) << "OpSpecConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' type does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s matrix column type.";
return false;
}
auto vectorComponentType = module_.FindDef(vector->words()[2]);
assert(vectorComponentType);
if (componentType->id() != vectorComponentType->id()) {
DIAG(constituent)
<< "OpSpecConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' component type does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s matrix column component type.";
return false;
}
if (componentCount != vector->words()[3]) {
DIAG(constituent)
<< "OpSpecConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' vector component count does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s vector component count.";
return false;
}
}
break;
}
case SpvOpTypeArray: {
auto elementType = module_.FindDef(resultType->words()[2]);
assert(elementType);
auto length = module_.FindDef(resultType->words()[3]);
assert(length);
if (length->words()[3] != constituentCount) {
DIAG(module_.FindDef(inst->words.back()))
<< "OpSpecConstantComposite Constituent count does not match "
"Result Type <id> '"
<< module_.getIdName(resultType->id()) << "'s array length.";
return false;
}
for (size_t constituentIndex = 3; constituentIndex < inst->words.size();
constituentIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituent) << "OpSpecConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' is not a constant or undef.";
return false;
}
auto constituentType = module_.FindDef(constituent->type_id());
assert(constituentType);
if (elementType->id() != constituentType->id()) {
DIAG(constituent) << "OpSpecConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "'s type does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s array element type.";
return false;
}
}
break;
}
case SpvOpTypeStruct: {
auto memberCount = resultType->words().size() - 2;
if (memberCount != constituentCount) {
DIAG(resultType) << "OpSpecConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' count does not match Result Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s struct member count.";
return false;
}
for (uint32_t constituentIndex = 3, memberIndex = 2;
constituentIndex < inst->words.size();
constituentIndex++, memberIndex++) {
auto constituent = module_.FindDef(inst->words[constituentIndex]);
if (!constituent ||
!spvOpcodeIsConstantOrUndef(constituent->opcode())) {
DIAG(constituent) << "OpSpecConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' is not a constant or undef.";
return false;
}
auto constituentType = module_.FindDef(constituent->type_id());
assert(constituentType);
auto memberType = module_.FindDef(resultType->words()[memberIndex]);
assert(memberType);
if (memberType->id() != constituentType->id()) {
DIAG(constituent)
<< "OpSpecConstantComposite Constituent <id> '"
<< module_.getIdName(inst->words[constituentIndex])
<< "' type does not match the Result Type <id> '"
<< module_.getIdName(resultType->id()) << "'s member type.";
return false;
}
}
break;
}
default: { assert(0 && "Unreachable!"); } break;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpFunction>(const spv_instruction_t* inst,
const spv_opcode_desc) {
const auto* thisInst = module_.FindDef(inst->words[2u]);
if (!thisInst) return false;
for (uint32_t entryId : module_.FunctionEntryPoints(thisInst->id())) {
const Function* thisFunc = module_.function(thisInst->id());
assert(thisFunc);
const auto* models = module_.GetExecutionModels(entryId);
if (models) {
assert(models->size());
for (auto model : *models) {
std::string reason;
if (!thisFunc->IsCompatibleWithExecutionModel(model, &reason)) {
DIAG(module_.FindDef(inst->words[2]))
<< "OpEntryPoint Entry Point <id> '" << module_.getIdName(entryId)
<< "'s callgraph contains function <id> "
<< module_.getIdName(thisInst->id())
<< ", which cannot be used with the current execution model:\n"
<< reason;
return false;
}
}
}
}
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType) return false;
auto functionTypeIndex = 4;
auto functionType = module_.FindDef(inst->words[functionTypeIndex]);
if (!functionType || SpvOpTypeFunction != functionType->opcode()) {
DIAG(functionType) << "OpFunction Function Type <id> '"
<< module_.getIdName(inst->words[functionTypeIndex])
<< "' is not a function type.";
return false;
}
auto returnType = module_.FindDef(functionType->words()[2]);
assert(returnType);
if (returnType->id() != resultType->id()) {
DIAG(resultType) << "OpFunction Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' does not match the Function Type <id> '"
<< module_.getIdName(resultType->id())
<< "'s return type.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpFunctionParameter>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType) return false;
// NOTE: Find OpFunction & ensure OpFunctionParameter is not out of place.
size_t paramIndex = 0;
assert(firstInst < inst && "Invalid instruction pointer");
while (firstInst != --inst) {
if (SpvOpFunction == inst->opcode) {
break;
} else if (SpvOpFunctionParameter == inst->opcode) {
paramIndex++;
}
}
auto functionType = module_.FindDef(inst->words[4]);
assert(functionType);
if (paramIndex >= functionType->words().size() - 3) {
DIAG(module_.FindDef(inst->words[0]))
<< "Too many OpFunctionParameters for " << inst->words[2]
<< ": expected " << functionType->words().size() - 3
<< " based on the function's type";
return false;
}
auto paramType = module_.FindDef(functionType->words()[paramIndex + 3]);
assert(paramType);
if (resultType->id() != paramType->id()) {
DIAG(resultType) << "OpFunctionParameter Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "' does not match the OpTypeFunction parameter "
"type of the same index.";
return false;
}
return true;
}
template <>
bool idUsage::isValid<SpvOpFunctionCall>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto resultTypeIndex = 1;
auto resultType = module_.FindDef(inst->words[resultTypeIndex]);
if (!resultType) return false;
auto functionIndex = 3;
auto function = module_.FindDef(inst->words[functionIndex]);
if (!function || SpvOpFunction != function->opcode()) {
DIAG(function) << "OpFunctionCall Function <id> '"
<< module_.getIdName(inst->words[functionIndex])
<< "' is not a function.";
return false;
}
auto returnType = module_.FindDef(function->type_id());
assert(returnType);
if (returnType->id() != resultType->id()) {
DIAG(resultType) << "OpFunctionCall Result Type <id> '"
<< module_.getIdName(inst->words[resultTypeIndex])
<< "'s type does not match Function <id> '"
<< module_.getIdName(returnType->id())
<< "'s return type.";
return false;
}
auto functionType = module_.FindDef(function->words()[4]);
assert(functionType);
auto functionCallArgCount = inst->words.size() - 4;
auto functionParamCount = functionType->words().size() - 3;
if (functionParamCount != functionCallArgCount) {
DIAG(module_.FindDef(inst->words.back()))
<< "OpFunctionCall Function <id>'s parameter count does not match "
"the argument count.";
return false;
}
for (size_t argumentIndex = 4, paramIndex = 3;
argumentIndex < inst->words.size(); argumentIndex++, paramIndex++) {
auto argument = module_.FindDef(inst->words[argumentIndex]);
if (!argument) return false;
auto argumentType = module_.FindDef(argument->type_id());
assert(argumentType);
auto parameterType = module_.FindDef(functionType->words()[paramIndex]);
assert(parameterType);
if (argumentType->id() != parameterType->id()) {
DIAG(argument) << "OpFunctionCall Argument <id> '"
<< module_.getIdName(inst->words[argumentIndex])
<< "'s type does not match Function <id> '"
<< module_.getIdName(parameterType->id())
<< "'s parameter type.";
return false;
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpPhi>(const spv_instruction_t* inst,
const spv_opcode_desc /*opcodeEntry*/) {
auto thisInst = module_.FindDef(inst->words[2]);
SpvOp typeOp = module_.GetIdOpcode(thisInst->type_id());
if (!spvOpcodeGeneratesType(typeOp)) {
DIAG(thisInst) << "OpPhi's type <id> "
<< module_.getIdName(thisInst->type_id())
<< " is not a type instruction.";
return false;
}
auto block = thisInst->block();
size_t numInOps = inst->words.size() - 3;
if (numInOps % 2 != 0) {
DIAG(thisInst)
<< "OpPhi does not have an equal number of incoming values and "
"basic blocks.";
return false;
}
// Create a uniqued vector of predecessor ids for comparison against
// incoming values. OpBranchConditional %cond %label %label produces two
// predecessors in the CFG.
std::vector<uint32_t> predIds;
std::transform(block->predecessors()->begin(), block->predecessors()->end(),
std::back_inserter(predIds),
[](const BasicBlock* b) { return b->id(); });
std::sort(predIds.begin(), predIds.end());
predIds.erase(std::unique(predIds.begin(), predIds.end()), predIds.end());
size_t numEdges = numInOps / 2;
if (numEdges != predIds.size()) {
DIAG(thisInst) << "OpPhi's number of incoming blocks (" << numEdges
<< ") does not match block's predecessor count ("
<< block->predecessors()->size() << ").";
return false;
}
for (size_t i = 3; i < inst->words.size(); ++i) {
auto incId = inst->words[i];
if (i % 2 == 1) {
// Incoming value type must match the phi result type.
auto incTypeId = module_.GetTypeId(incId);
if (thisInst->type_id() != incTypeId) {
DIAG(thisInst) << "OpPhi's result type <id> "
<< module_.getIdName(thisInst->type_id())
<< " does not match incoming value <id> "
<< module_.getIdName(incId) << " type <id> "
<< module_.getIdName(incTypeId) << ".";
return false;
}
} else {
if (module_.GetIdOpcode(incId) != SpvOpLabel) {
DIAG(thisInst) << "OpPhi's incoming basic block <id> "
<< module_.getIdName(incId) << " is not an OpLabel.";
return false;
}
// Incoming basic block must be an immediate predecessor of the phi's
// block.
if (!std::binary_search(predIds.begin(), predIds.end(), incId)) {
DIAG(thisInst) << "OpPhi's incoming basic block <id> "
<< module_.getIdName(incId)
<< " is not a predecessor of <id> "
<< module_.getIdName(block->id()) << ".";
return false;
}
}
}
return true;
}
template <>
bool idUsage::isValid<SpvOpBranchConditional>(const spv_instruction_t* inst,
const spv_opcode_desc) {
const size_t numOperands = inst->words.size() - 1;
const size_t condOperandIndex = 1;
const size_t targetTrueIndex = 2;
const size_t targetFalseIndex = 3;
// num_operands is either 3 or 5 --- if 5, the last two need to be literal
// integers
if (numOperands != 3 && numOperands != 5) {
Instruction* fake_inst = nullptr;
DIAG(fake_inst) << "OpBranchConditional requires either 3 or 5 parameters";
return false;
}
bool ret = true;
// grab the condition operand and check that it is a bool
const auto condOp = module_.FindDef(inst->words[condOperandIndex]);
if (!condOp || !module_.IsBoolScalarType(condOp->type_id())) {
DIAG(condOp)
<< "Condition operand for OpBranchConditional must be of boolean type";
ret = false;
}
// target operands must be OpLabel
// note that we don't need to check that the target labels are in the same
// function,
// PerformCfgChecks already checks for that
const auto targetOpTrue = module_.FindDef(inst->words[targetTrueIndex]);
if (!targetOpTrue || SpvOpLabel != targetOpTrue->opcode()) {
DIAG(targetOpTrue)
<< "The 'True Label' operand for OpBranchConditional must be the "
"ID of an OpLabel instruction";
ret = false;
}
const auto targetOpFalse = module_.FindDef(inst->words[targetFalseIndex]);
if (!targetOpFalse || SpvOpLabel != targetOpFalse->opcode()) {
DIAG(targetOpFalse)
<< "The 'False Label' operand for OpBranchConditional must be the "
"ID of an OpLabel instruction";
ret = false;
}
return ret;
}
template <>
bool idUsage::isValid<SpvOpReturnValue>(const spv_instruction_t* inst,
const spv_opcode_desc) {
auto valueIndex = 1;
auto value = module_.FindDef(inst->words[valueIndex]);
if (!value || !value->type_id()) {
DIAG(value) << "OpReturnValue Value <id> '"
<< module_.getIdName(inst->words[valueIndex])
<< "' does not represent a value.";
return false;
}
auto valueType = module_.FindDef(value->type_id());
if (!valueType || SpvOpTypeVoid == valueType->opcode()) {
DIAG(value) << "OpReturnValue value's type <id> '"
<< module_.getIdName(value->type_id())
<< "' is missing or void.";
return false;
}
const bool uses_variable_pointer =
module_.features().variable_pointers ||
module_.features().variable_pointers_storage_buffer;
if (addressingModel == SpvAddressingModelLogical &&
SpvOpTypePointer == valueType->opcode() && !uses_variable_pointer &&
!module_.options()->relax_logical_pointer) {
DIAG(value)
<< "OpReturnValue value's type <id> '"
<< module_.getIdName(value->type_id())
<< "' is a pointer, which is invalid in the Logical addressing model.";
return false;
}
// NOTE: Find OpFunction
const spv_instruction_t* function = inst - 1;
while (firstInst != function) {
if (SpvOpFunction == function->opcode) break;
function--;
}
if (SpvOpFunction != function->opcode) {
DIAG(value) << "OpReturnValue is not in a basic block.";
return false;
}
auto returnType = module_.FindDef(function->words[1]);
if (!returnType || returnType->id() != valueType->id()) {
DIAG(value) << "OpReturnValue Value <id> '"
<< module_.getIdName(inst->words[valueIndex])
<< "'s type does not match OpFunction's return type.";
return false;
}
return true;
}
#undef DIAG
bool idUsage::isValid(const spv_instruction_t* inst) {
spv_opcode_desc opcodeEntry = nullptr;
if (spvOpcodeTableValueLookup(targetEnv, opcodeTable, inst->opcode,
&opcodeEntry))
return false;
#define CASE(OpCode) \
case Spv##OpCode: \
return isValid<Spv##OpCode>(inst, opcodeEntry);
switch (inst->opcode) {
CASE(OpMemberName)
CASE(OpLine)
CASE(OpDecorate)
CASE(OpMemberDecorate)
CASE(OpDecorationGroup)
CASE(OpGroupDecorate)
CASE(OpGroupMemberDecorate)
CASE(OpEntryPoint)
CASE(OpExecutionMode)
CASE(OpTypeVector)
CASE(OpTypeMatrix)
CASE(OpTypeSampler)
CASE(OpTypeArray)
CASE(OpTypeRuntimeArray)
CASE(OpTypeStruct)
CASE(OpTypePointer)
CASE(OpTypeFunction)
CASE(OpTypePipe)
CASE(OpConstantTrue)
CASE(OpConstantFalse)
CASE(OpConstantComposite)
CASE(OpConstantSampler)
CASE(OpConstantNull)
CASE(OpSpecConstantTrue)
CASE(OpSpecConstantFalse)
CASE(OpSpecConstantComposite)
CASE(OpSampledImage)
CASE(OpFunction)
CASE(OpFunctionParameter)
CASE(OpFunctionCall)
// Other composite opcodes are validated in validate_composites.cpp.
// Arithmetic opcodes are validated in validate_arithmetics.cpp.
// Bitwise opcodes are validated in validate_bitwise.cpp.
// Logical opcodes are validated in validate_logicals.cpp.
// Derivative opcodes are validated in validate_derivatives.cpp.
CASE(OpPhi)
// OpBranch is validated in validate_cfg.cpp.
// See tests in test/val/val_cfg_test.cpp.
CASE(OpBranchConditional)
CASE(OpReturnValue)
default:
return true;
}
#undef TODO
#undef CASE
}
} // namespace
spv_result_t UpdateIdUse(ValidationState_t& _, const Instruction* inst) {
for (auto& operand : inst->operands()) {
const spv_operand_type_t& type = operand.type;
const uint32_t operand_id = inst->word(operand.offset);
if (spvIsIdType(type) && type != SPV_OPERAND_TYPE_RESULT_ID) {
if (auto def = _.FindDef(operand_id))
def->RegisterUse(inst, operand.offset);
}
}
return SPV_SUCCESS;
}
/// This function checks all ID definitions dominate their use in the CFG.
///
/// This function will iterate over all ID definitions that are defined in the
/// functions of a module and make sure that the definitions appear in a
/// block that dominates their use.
///
/// NOTE: This function does NOT check module scoped functions which are
/// checked during the initial binary parse in the IdPass below
spv_result_t CheckIdDefinitionDominateUse(const ValidationState_t& _) {
std::unordered_set<const Instruction*> phi_instructions;
for (const auto& definition : _.all_definitions()) {
// Check only those definitions defined in a function
if (const Function* func = definition.second->function()) {
if (const BasicBlock* block = definition.second->block()) {
if (!block->reachable()) continue;
// If the Id is defined within a block then make sure all references to
// that Id appear in a blocks that are dominated by the defining block
for (auto& use_index_pair : definition.second->uses()) {
const Instruction* use = use_index_pair.first;
if (const BasicBlock* use_block = use->block()) {
if (use_block->reachable() == false) continue;
if (use->opcode() == SpvOpPhi) {
phi_instructions.insert(use);
} else if (!block->dominates(*use->block())) {
return _.diag(SPV_ERROR_INVALID_ID, use_block->label())
<< "ID " << _.getIdName(definition.first)
<< " defined in block " << _.getIdName(block->id())
<< " does not dominate its use in block "
<< _.getIdName(use_block->id());
}
}
}
} else {
// If the Ids defined within a function but not in a block(i.e. function
// parameters, block ids), then make sure all references to that Id
// appear within the same function
for (auto use : definition.second->uses()) {
const Instruction* inst = use.first;
if (inst->function() && inst->function() != func) {
return _.diag(SPV_ERROR_INVALID_ID, _.FindDef(func->id()))
<< "ID " << _.getIdName(definition.first)
<< " used in function "
<< _.getIdName(inst->function()->id())
<< " is used outside of it's defining function "
<< _.getIdName(func->id());
}
}
}
}
// NOTE: Ids defined outside of functions must appear before they are used
// This check is being performed in the IdPass function
}
// Check all OpPhi parent blocks are dominated by the variable's defining
// blocks
for (const Instruction* phi : phi_instructions) {
if (phi->block()->reachable() == false) continue;
for (size_t i = 3; i < phi->operands().size(); i += 2) {
const Instruction* variable = _.FindDef(phi->word(i));
const BasicBlock* parent =
phi->function()->GetBlock(phi->word(i + 1)).first;
if (variable->block() && parent->reachable() &&
!variable->block()->dominates(*parent)) {
return _.diag(SPV_ERROR_INVALID_ID, phi)
<< "In OpPhi instruction " << _.getIdName(phi->id()) << ", ID "
<< _.getIdName(variable->id())
<< " definition does not dominate its parent "
<< _.getIdName(parent->id());
}
}
}
return SPV_SUCCESS;
}
// Performs SSA validation on the IDs of an instruction. The
// can_have_forward_declared_ids functor should return true if the
// instruction operand's ID can be forward referenced.
spv_result_t IdPass(ValidationState_t& _, Instruction* inst) {
auto can_have_forward_declared_ids =
spvOperandCanBeForwardDeclaredFunction(inst->opcode());
// Keep track of a result id defined by this instruction. 0 means it
// does not define an id.
uint32_t result_id = 0;
for (unsigned i = 0; i < inst->operands().size(); i++) {
const spv_parsed_operand_t& operand = inst->operand(i);
const spv_operand_type_t& type = operand.type;
// We only care about Id operands, which are a single word.
const uint32_t operand_word = inst->word(operand.offset);
auto ret = SPV_ERROR_INTERNAL;
switch (type) {
case SPV_OPERAND_TYPE_RESULT_ID:
// NOTE: Multiple Id definitions are being checked by the binary parser.
//
// Defer undefined-forward-reference removal until after we've analyzed
// the remaining operands to this instruction. Deferral only matters
// for OpPhi since it's the only case where it defines its own forward
// reference. Other instructions that can have forward references
// either don't define a value or the forward reference is to a function
// Id (and hence defined outside of a function body).
result_id = operand_word;
// NOTE: The result Id is added (in RegisterInstruction) *after* all of
// the other Ids have been checked to avoid premature use in the same
// instruction.
ret = SPV_SUCCESS;
break;
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_TYPE_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
case SPV_OPERAND_TYPE_SCOPE_ID:
if (_.IsDefinedId(operand_word)) {
ret = SPV_SUCCESS;
} else if (can_have_forward_declared_ids(i)) {
ret = _.ForwardDeclareId(operand_word);
} else {
ret = _.diag(SPV_ERROR_INVALID_ID, inst)
<< "ID " << _.getIdName(operand_word)
<< " has not been defined";
}
break;
default:
ret = SPV_SUCCESS;
break;
}
if (SPV_SUCCESS != ret) return ret;
}
if (result_id) _.RemoveIfForwardDeclared(result_id);
_.RegisterInstruction(inst);
return SPV_SUCCESS;
}
spv_result_t spvValidateInstructionIDs(const spv_instruction_t* pInsts,
const uint64_t instCount,
const ValidationState_t& state,
spv_position position) {
idUsage idUsage(state.context(), pInsts, instCount, state.memory_model(),
state.addressing_model(), state, state.entry_points(),
position, state.context()->consumer);
for (uint64_t instIndex = 0; instIndex < instCount; ++instIndex) {
if (!idUsage.isValid(&pInsts[instIndex])) return SPV_ERROR_INVALID_ID;
}
return SPV_SUCCESS;
}
} // namespace val
} // namespace spvtools