SPIRV-Tools/test/opt/dominator_tree/generated.cpp
Victor Lomuller efc5061929 Dominator analysis interface clean.
Remove the CFG requirement when querying a dominator/post-dominator from an IRContext.

Updated all uses of the function and tests.
2018-04-20 15:41:59 -04:00

909 lines
32 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gmock/gmock.h>
#include <array>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "../assembly_builder.h"
#include "../function_utils.h"
#include "../pass_fixture.h"
#include "../pass_utils.h"
#include "opt/dominator_analysis.h"
#include "opt/iterator.h"
#include "opt/pass.h"
namespace {
using namespace spvtools;
using ::testing::UnorderedElementsAre;
using PassClassTest = PassTest<::testing::Test>;
// Check that x dominates y, and
// if x != y then
// x strictly dominates y and
// y does not dominate x and
// y does not strictly dominate x
// if x == x then
// x does not strictly dominate itself
void check_dominance(const opt::DominatorAnalysisBase& dom_tree,
const ir::Function* fn, uint32_t x, uint32_t y) {
SCOPED_TRACE("Check dominance properties for Basic Block " +
std::to_string(x) + " and " + std::to_string(y));
EXPECT_TRUE(dom_tree.Dominates(spvtest::GetBasicBlock(fn, x),
spvtest::GetBasicBlock(fn, y)));
EXPECT_TRUE(dom_tree.Dominates(x, y));
if (x == y) {
EXPECT_FALSE(dom_tree.StrictlyDominates(x, x));
} else {
EXPECT_TRUE(dom_tree.StrictlyDominates(x, y));
EXPECT_FALSE(dom_tree.Dominates(y, x));
EXPECT_FALSE(dom_tree.StrictlyDominates(y, x));
}
}
// Check that x does not dominates y and vise versa
void check_no_dominance(const opt::DominatorAnalysisBase& dom_tree,
const ir::Function* fn, uint32_t x, uint32_t y) {
SCOPED_TRACE("Check no domination for Basic Block " + std::to_string(x) +
" and " + std::to_string(y));
EXPECT_FALSE(dom_tree.Dominates(spvtest::GetBasicBlock(fn, x),
spvtest::GetBasicBlock(fn, y)));
EXPECT_FALSE(dom_tree.Dominates(x, y));
EXPECT_FALSE(dom_tree.StrictlyDominates(spvtest::GetBasicBlock(fn, x),
spvtest::GetBasicBlock(fn, y)));
EXPECT_FALSE(dom_tree.StrictlyDominates(x, y));
EXPECT_FALSE(dom_tree.Dominates(spvtest::GetBasicBlock(fn, y),
spvtest::GetBasicBlock(fn, x)));
EXPECT_FALSE(dom_tree.Dominates(y, x));
EXPECT_FALSE(dom_tree.StrictlyDominates(spvtest::GetBasicBlock(fn, y),
spvtest::GetBasicBlock(fn, x)));
EXPECT_FALSE(dom_tree.StrictlyDominates(y, x));
}
TEST_F(PassClassTest, DominatorSimpleCFG) {
const std::string text = R"(
OpCapability Addresses
OpCapability Kernel
OpMemoryModel Physical64 OpenCL
OpEntryPoint Kernel %1 "main"
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%4 = OpTypeBool
%5 = OpTypeInt 32 0
%6 = OpConstant %5 0
%7 = OpConstantFalse %4
%8 = OpConstantTrue %4
%9 = OpConstant %5 1
%1 = OpFunction %2 None %3
%10 = OpLabel
OpBranch %11
%11 = OpLabel
OpSwitch %6 %12 1 %13
%12 = OpLabel
OpBranch %14
%13 = OpLabel
OpBranch %14
%14 = OpLabel
OpBranchConditional %8 %11 %15
%15 = OpLabel
OpReturn
OpFunctionEnd
)";
// clang-format on
std::unique_ptr<ir::IRContext> context =
BuildModule(SPV_ENV_UNIVERSAL_1_0, nullptr, text,
SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS);
ir::Module* module = context->module();
EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n"
<< text << std::endl;
const ir::Function* fn = spvtest::GetFunction(module, 1);
const ir::BasicBlock* entry = spvtest::GetBasicBlock(fn, 10);
EXPECT_EQ(entry, fn->entry().get())
<< "The entry node is not the expected one";
// Test normal dominator tree
{
opt::DominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// Inspect the actual tree
opt::DominatorTree& tree = dom_tree.GetDomTree();
EXPECT_EQ(tree.GetRoot()->bb_, cfg.pseudo_entry_block());
EXPECT_TRUE(
dom_tree.Dominates(cfg.pseudo_entry_block()->id(), entry->id()));
// (strict) dominance checks
for (uint32_t id : {10, 11, 12, 13, 14, 15})
check_dominance(dom_tree, fn, id, id);
check_dominance(dom_tree, fn, 10, 11);
check_dominance(dom_tree, fn, 10, 12);
check_dominance(dom_tree, fn, 10, 13);
check_dominance(dom_tree, fn, 10, 14);
check_dominance(dom_tree, fn, 10, 15);
check_dominance(dom_tree, fn, 11, 12);
check_dominance(dom_tree, fn, 11, 13);
check_dominance(dom_tree, fn, 11, 14);
check_dominance(dom_tree, fn, 11, 15);
check_dominance(dom_tree, fn, 14, 15);
check_no_dominance(dom_tree, fn, 12, 13);
check_no_dominance(dom_tree, fn, 12, 14);
check_no_dominance(dom_tree, fn, 13, 14);
// check with some invalid inputs
EXPECT_FALSE(dom_tree.Dominates(nullptr, entry));
EXPECT_FALSE(dom_tree.Dominates(entry, nullptr));
EXPECT_FALSE(dom_tree.Dominates(static_cast<ir::BasicBlock*>(nullptr),
static_cast<ir::BasicBlock*>(nullptr)));
EXPECT_FALSE(dom_tree.Dominates(10, 1));
EXPECT_FALSE(dom_tree.Dominates(1, 10));
EXPECT_FALSE(dom_tree.Dominates(1, 1));
EXPECT_FALSE(dom_tree.StrictlyDominates(nullptr, entry));
EXPECT_FALSE(dom_tree.StrictlyDominates(entry, nullptr));
EXPECT_FALSE(dom_tree.StrictlyDominates(nullptr, nullptr));
EXPECT_FALSE(dom_tree.StrictlyDominates(10, 1));
EXPECT_FALSE(dom_tree.StrictlyDominates(1, 10));
EXPECT_FALSE(dom_tree.StrictlyDominates(1, 1));
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_entry_block()), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(entry), cfg.pseudo_entry_block());
EXPECT_EQ(dom_tree.ImmediateDominator(nullptr), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 11)),
spvtest::GetBasicBlock(fn, 10));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 12)),
spvtest::GetBasicBlock(fn, 11));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 13)),
spvtest::GetBasicBlock(fn, 11));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 14)),
spvtest::GetBasicBlock(fn, 11));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 15)),
spvtest::GetBasicBlock(fn, 14));
}
// Test post dominator tree
{
opt::PostDominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// Inspect the actual tree
opt::DominatorTree& tree = dom_tree.GetDomTree();
EXPECT_EQ(tree.GetRoot()->bb_, cfg.pseudo_exit_block());
EXPECT_TRUE(dom_tree.Dominates(cfg.pseudo_exit_block()->id(), 15));
// (strict) dominance checks
for (uint32_t id : {10, 11, 12, 13, 14, 15})
check_dominance(dom_tree, fn, id, id);
check_dominance(dom_tree, fn, 14, 10);
check_dominance(dom_tree, fn, 14, 11);
check_dominance(dom_tree, fn, 14, 12);
check_dominance(dom_tree, fn, 14, 13);
check_dominance(dom_tree, fn, 15, 10);
check_dominance(dom_tree, fn, 15, 11);
check_dominance(dom_tree, fn, 15, 12);
check_dominance(dom_tree, fn, 15, 13);
check_dominance(dom_tree, fn, 15, 14);
check_no_dominance(dom_tree, fn, 13, 12);
check_no_dominance(dom_tree, fn, 12, 11);
check_no_dominance(dom_tree, fn, 13, 11);
// check with some invalid inputs
EXPECT_FALSE(dom_tree.Dominates(nullptr, entry));
EXPECT_FALSE(dom_tree.Dominates(entry, nullptr));
EXPECT_FALSE(dom_tree.Dominates(static_cast<ir::BasicBlock*>(nullptr),
static_cast<ir::BasicBlock*>(nullptr)));
EXPECT_FALSE(dom_tree.Dominates(10, 1));
EXPECT_FALSE(dom_tree.Dominates(1, 10));
EXPECT_FALSE(dom_tree.Dominates(1, 1));
EXPECT_FALSE(dom_tree.StrictlyDominates(nullptr, entry));
EXPECT_FALSE(dom_tree.StrictlyDominates(entry, nullptr));
EXPECT_FALSE(dom_tree.StrictlyDominates(nullptr, nullptr));
EXPECT_FALSE(dom_tree.StrictlyDominates(10, 1));
EXPECT_FALSE(dom_tree.StrictlyDominates(1, 10));
EXPECT_FALSE(dom_tree.StrictlyDominates(1, 1));
EXPECT_EQ(dom_tree.ImmediateDominator(nullptr), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 11)),
spvtest::GetBasicBlock(fn, 14));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 12)),
spvtest::GetBasicBlock(fn, 14));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 13)),
spvtest::GetBasicBlock(fn, 14));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 14)),
spvtest::GetBasicBlock(fn, 15));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 15)),
cfg.pseudo_exit_block());
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_exit_block()), nullptr);
}
}
TEST_F(PassClassTest, DominatorIrreducibleCFG) {
const std::string text = R"(
OpCapability Addresses
OpCapability Kernel
OpMemoryModel Physical64 OpenCL
OpEntryPoint Kernel %1 "main"
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%4 = OpTypeBool
%5 = OpTypeInt 32 0
%6 = OpConstantFalse %4
%7 = OpConstantTrue %4
%1 = OpFunction %2 None %3
%8 = OpLabel
OpBranch %9
%9 = OpLabel
OpBranchConditional %7 %10 %11
%10 = OpLabel
OpBranch %11
%11 = OpLabel
OpBranchConditional %7 %10 %12
%12 = OpLabel
OpReturn
OpFunctionEnd
)";
// clang-format on
std::unique_ptr<ir::IRContext> context =
BuildModule(SPV_ENV_UNIVERSAL_1_0, nullptr, text,
SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS);
ir::Module* module = context->module();
EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n"
<< text << std::endl;
const ir::Function* fn = spvtest::GetFunction(module, 1);
const ir::BasicBlock* entry = spvtest::GetBasicBlock(fn, 8);
EXPECT_EQ(entry, fn->entry().get())
<< "The entry node is not the expected one";
// Check normal dominator tree
{
opt::DominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// Inspect the actual tree
opt::DominatorTree& tree = dom_tree.GetDomTree();
EXPECT_EQ(tree.GetRoot()->bb_, cfg.pseudo_entry_block());
EXPECT_TRUE(
dom_tree.Dominates(cfg.pseudo_entry_block()->id(), entry->id()));
// (strict) dominance checks
for (uint32_t id : {8, 9, 10, 11, 12})
check_dominance(dom_tree, fn, id, id);
check_dominance(dom_tree, fn, 8, 9);
check_dominance(dom_tree, fn, 8, 10);
check_dominance(dom_tree, fn, 8, 11);
check_dominance(dom_tree, fn, 8, 12);
check_dominance(dom_tree, fn, 9, 10);
check_dominance(dom_tree, fn, 9, 11);
check_dominance(dom_tree, fn, 9, 12);
check_dominance(dom_tree, fn, 11, 12);
check_no_dominance(dom_tree, fn, 10, 11);
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_entry_block()), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(entry), cfg.pseudo_entry_block());
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 9)),
spvtest::GetBasicBlock(fn, 8));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 10)),
spvtest::GetBasicBlock(fn, 9));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 11)),
spvtest::GetBasicBlock(fn, 9));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 12)),
spvtest::GetBasicBlock(fn, 11));
}
// Check post dominator tree
{
opt::PostDominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// Inspect the actual tree
opt::DominatorTree& tree = dom_tree.GetDomTree();
EXPECT_EQ(tree.GetRoot()->bb_, cfg.pseudo_exit_block());
EXPECT_TRUE(dom_tree.Dominates(cfg.pseudo_exit_block()->id(), 12));
// (strict) dominance checks
for (uint32_t id : {8, 9, 10, 11, 12})
check_dominance(dom_tree, fn, id, id);
check_dominance(dom_tree, fn, 12, 8);
check_dominance(dom_tree, fn, 12, 10);
check_dominance(dom_tree, fn, 12, 11);
check_dominance(dom_tree, fn, 12, 12);
check_dominance(dom_tree, fn, 11, 8);
check_dominance(dom_tree, fn, 11, 9);
check_dominance(dom_tree, fn, 11, 10);
check_dominance(dom_tree, fn, 9, 8);
EXPECT_EQ(dom_tree.ImmediateDominator(entry),
spvtest::GetBasicBlock(fn, 9));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 9)),
spvtest::GetBasicBlock(fn, 11));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 10)),
spvtest::GetBasicBlock(fn, 11));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 11)),
spvtest::GetBasicBlock(fn, 12));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 12)),
cfg.pseudo_exit_block());
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_exit_block()), nullptr);
}
}
TEST_F(PassClassTest, DominatorLoopToSelf) {
const std::string text = R"(
OpCapability Addresses
OpCapability Kernel
OpMemoryModel Physical64 OpenCL
OpEntryPoint Kernel %1 "main"
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%4 = OpTypeBool
%5 = OpTypeInt 32 0
%6 = OpConstant %5 0
%7 = OpConstantFalse %4
%8 = OpConstantTrue %4
%9 = OpConstant %5 1
%1 = OpFunction %2 None %3
%10 = OpLabel
OpBranch %11
%11 = OpLabel
OpSwitch %6 %12 1 %11
%12 = OpLabel
OpReturn
OpFunctionEnd
)";
// clang-format on
std::unique_ptr<ir::IRContext> context =
BuildModule(SPV_ENV_UNIVERSAL_1_0, nullptr, text,
SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS);
ir::Module* module = context->module();
EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n"
<< text << std::endl;
const ir::Function* fn = spvtest::GetFunction(module, 1);
const ir::BasicBlock* entry = spvtest::GetBasicBlock(fn, 10);
EXPECT_EQ(entry, fn->entry().get())
<< "The entry node is not the expected one";
// Check normal dominator tree
{
opt::DominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// Inspect the actual tree
opt::DominatorTree& tree = dom_tree.GetDomTree();
EXPECT_EQ(tree.GetRoot()->bb_, cfg.pseudo_entry_block());
EXPECT_TRUE(
dom_tree.Dominates(cfg.pseudo_entry_block()->id(), entry->id()));
// (strict) dominance checks
for (uint32_t id : {10, 11, 12}) check_dominance(dom_tree, fn, id, id);
check_dominance(dom_tree, fn, 10, 11);
check_dominance(dom_tree, fn, 10, 12);
check_dominance(dom_tree, fn, 11, 12);
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_entry_block()), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(entry), cfg.pseudo_entry_block());
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 11)),
spvtest::GetBasicBlock(fn, 10));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 12)),
spvtest::GetBasicBlock(fn, 11));
std::array<uint32_t, 3> node_order = {{10, 11, 12}};
{
// Test dominator tree iteration order.
opt::DominatorTree::iterator node_it = dom_tree.GetDomTree().begin();
opt::DominatorTree::iterator node_end = dom_tree.GetDomTree().end();
for (uint32_t id : node_order) {
EXPECT_NE(node_it, node_end);
EXPECT_EQ(node_it->id(), id);
node_it++;
}
EXPECT_EQ(node_it, node_end);
}
{
// Same as above, but with const iterators.
opt::DominatorTree::const_iterator node_it =
dom_tree.GetDomTree().cbegin();
opt::DominatorTree::const_iterator node_end =
dom_tree.GetDomTree().cend();
for (uint32_t id : node_order) {
EXPECT_NE(node_it, node_end);
EXPECT_EQ(node_it->id(), id);
node_it++;
}
EXPECT_EQ(node_it, node_end);
}
{
// Test dominator tree iteration order.
opt::DominatorTree::post_iterator node_it =
dom_tree.GetDomTree().post_begin();
opt::DominatorTree::post_iterator node_end =
dom_tree.GetDomTree().post_end();
for (uint32_t id :
ir::make_range(node_order.rbegin(), node_order.rend())) {
EXPECT_NE(node_it, node_end);
EXPECT_EQ(node_it->id(), id);
node_it++;
}
EXPECT_EQ(node_it, node_end);
}
{
// Same as above, but with const iterators.
opt::DominatorTree::const_post_iterator node_it =
dom_tree.GetDomTree().post_cbegin();
opt::DominatorTree::const_post_iterator node_end =
dom_tree.GetDomTree().post_cend();
for (uint32_t id :
ir::make_range(node_order.rbegin(), node_order.rend())) {
EXPECT_NE(node_it, node_end);
EXPECT_EQ(node_it->id(), id);
node_it++;
}
EXPECT_EQ(node_it, node_end);
}
}
// Check post dominator tree
{
opt::PostDominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// Inspect the actual tree
opt::DominatorTree& tree = dom_tree.GetDomTree();
EXPECT_EQ(tree.GetRoot()->bb_, cfg.pseudo_exit_block());
EXPECT_TRUE(dom_tree.Dominates(cfg.pseudo_exit_block()->id(), 12));
// (strict) dominance checks
for (uint32_t id : {10, 11, 12}) check_dominance(dom_tree, fn, id, id);
check_dominance(dom_tree, fn, 12, 10);
check_dominance(dom_tree, fn, 12, 11);
check_dominance(dom_tree, fn, 12, 12);
EXPECT_EQ(dom_tree.ImmediateDominator(entry),
spvtest::GetBasicBlock(fn, 11));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 11)),
spvtest::GetBasicBlock(fn, 12));
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_exit_block()), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 12)),
cfg.pseudo_exit_block());
std::array<uint32_t, 3> node_order = {{12, 11, 10}};
{
// Test dominator tree iteration order.
opt::DominatorTree::iterator node_it = tree.begin();
opt::DominatorTree::iterator node_end = tree.end();
for (uint32_t id : node_order) {
EXPECT_NE(node_it, node_end);
EXPECT_EQ(node_it->id(), id);
node_it++;
}
EXPECT_EQ(node_it, node_end);
}
{
// Same as above, but with const iterators.
opt::DominatorTree::const_iterator node_it = tree.cbegin();
opt::DominatorTree::const_iterator node_end = tree.cend();
for (uint32_t id : node_order) {
EXPECT_NE(node_it, node_end);
EXPECT_EQ(node_it->id(), id);
node_it++;
}
EXPECT_EQ(node_it, node_end);
}
{
// Test dominator tree iteration order.
opt::DominatorTree::post_iterator node_it =
dom_tree.GetDomTree().post_begin();
opt::DominatorTree::post_iterator node_end =
dom_tree.GetDomTree().post_end();
for (uint32_t id :
ir::make_range(node_order.rbegin(), node_order.rend())) {
EXPECT_NE(node_it, node_end);
EXPECT_EQ(node_it->id(), id);
node_it++;
}
EXPECT_EQ(node_it, node_end);
}
{
// Same as above, but with const iterators.
opt::DominatorTree::const_post_iterator node_it =
dom_tree.GetDomTree().post_cbegin();
opt::DominatorTree::const_post_iterator node_end =
dom_tree.GetDomTree().post_cend();
for (uint32_t id :
ir::make_range(node_order.rbegin(), node_order.rend())) {
EXPECT_NE(node_it, node_end);
EXPECT_EQ(node_it->id(), id);
node_it++;
}
EXPECT_EQ(node_it, node_end);
}
}
}
TEST_F(PassClassTest, DominatorUnreachableInLoop) {
const std::string text = R"(
OpCapability Addresses
OpCapability Kernel
OpMemoryModel Physical64 OpenCL
OpEntryPoint Kernel %1 "main"
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%4 = OpTypeBool
%5 = OpTypeInt 32 0
%6 = OpConstant %5 0
%7 = OpConstantFalse %4
%8 = OpConstantTrue %4
%9 = OpConstant %5 1
%1 = OpFunction %2 None %3
%10 = OpLabel
OpBranch %11
%11 = OpLabel
OpSwitch %6 %12 1 %13
%12 = OpLabel
OpBranch %14
%13 = OpLabel
OpUnreachable
%14 = OpLabel
OpBranchConditional %8 %11 %15
%15 = OpLabel
OpReturn
OpFunctionEnd
)";
// clang-format on
std::unique_ptr<ir::IRContext> context =
BuildModule(SPV_ENV_UNIVERSAL_1_0, nullptr, text,
SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS);
ir::Module* module = context->module();
EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n"
<< text << std::endl;
const ir::Function* fn = spvtest::GetFunction(module, 1);
const ir::BasicBlock* entry = spvtest::GetBasicBlock(fn, 10);
EXPECT_EQ(entry, fn->entry().get())
<< "The entry node is not the expected one";
// Check normal dominator tree
{
opt::DominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// Inspect the actual tree
opt::DominatorTree& tree = dom_tree.GetDomTree();
EXPECT_EQ(tree.GetRoot()->bb_, cfg.pseudo_entry_block());
EXPECT_TRUE(
dom_tree.Dominates(cfg.pseudo_entry_block()->id(), entry->id()));
// (strict) dominance checks
for (uint32_t id : {10, 11, 12, 13, 14, 15})
check_dominance(dom_tree, fn, id, id);
check_dominance(dom_tree, fn, 10, 11);
check_dominance(dom_tree, fn, 10, 13);
check_dominance(dom_tree, fn, 10, 12);
check_dominance(dom_tree, fn, 10, 14);
check_dominance(dom_tree, fn, 10, 15);
check_dominance(dom_tree, fn, 11, 12);
check_dominance(dom_tree, fn, 11, 13);
check_dominance(dom_tree, fn, 11, 14);
check_dominance(dom_tree, fn, 11, 15);
check_dominance(dom_tree, fn, 12, 14);
check_dominance(dom_tree, fn, 12, 15);
check_dominance(dom_tree, fn, 14, 15);
check_no_dominance(dom_tree, fn, 13, 12);
check_no_dominance(dom_tree, fn, 13, 14);
check_no_dominance(dom_tree, fn, 13, 15);
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_entry_block()), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(entry), cfg.pseudo_entry_block());
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 11)),
spvtest::GetBasicBlock(fn, 10));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 12)),
spvtest::GetBasicBlock(fn, 11));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 13)),
spvtest::GetBasicBlock(fn, 11));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 14)),
spvtest::GetBasicBlock(fn, 12));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 15)),
spvtest::GetBasicBlock(fn, 14));
}
// Check post dominator tree.
{
opt::PostDominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// (strict) dominance checks.
for (uint32_t id : {10, 11, 12, 13, 14, 15})
check_dominance(dom_tree, fn, id, id);
check_no_dominance(dom_tree, fn, 15, 10);
check_no_dominance(dom_tree, fn, 15, 11);
check_no_dominance(dom_tree, fn, 15, 12);
check_no_dominance(dom_tree, fn, 15, 13);
check_no_dominance(dom_tree, fn, 15, 14);
check_dominance(dom_tree, fn, 14, 12);
check_no_dominance(dom_tree, fn, 13, 10);
check_no_dominance(dom_tree, fn, 13, 11);
check_no_dominance(dom_tree, fn, 13, 12);
check_no_dominance(dom_tree, fn, 13, 14);
check_no_dominance(dom_tree, fn, 13, 15);
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 10)),
spvtest::GetBasicBlock(fn, 11));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 12)),
spvtest::GetBasicBlock(fn, 14));
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_exit_block()), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 15)),
cfg.pseudo_exit_block());
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 13)),
cfg.pseudo_exit_block());
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 14)),
cfg.pseudo_exit_block());
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 11)),
cfg.pseudo_exit_block());
}
}
TEST_F(PassClassTest, DominatorInfinitLoop) {
const std::string text = R"(
OpCapability Addresses
OpCapability Kernel
OpMemoryModel Physical64 OpenCL
OpEntryPoint Kernel %1 "main"
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%4 = OpTypeBool
%5 = OpTypeInt 32 0
%6 = OpConstant %5 0
%7 = OpConstantFalse %4
%8 = OpConstantTrue %4
%9 = OpConstant %5 1
%1 = OpFunction %2 None %3
%10 = OpLabel
OpBranch %11
%11 = OpLabel
OpSwitch %6 %12 1 %13
%12 = OpLabel
OpReturn
%13 = OpLabel
OpBranch %13
OpFunctionEnd
)";
// clang-format on
std::unique_ptr<ir::IRContext> context =
BuildModule(SPV_ENV_UNIVERSAL_1_0, nullptr, text,
SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS);
ir::Module* module = context->module();
EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n"
<< text << std::endl;
const ir::Function* fn = spvtest::GetFunction(module, 1);
const ir::BasicBlock* entry = spvtest::GetBasicBlock(fn, 10);
EXPECT_EQ(entry, fn->entry().get())
<< "The entry node is not the expected one";
// Check normal dominator tree
{
opt::DominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// Inspect the actual tree
opt::DominatorTree& tree = dom_tree.GetDomTree();
EXPECT_EQ(tree.GetRoot()->bb_, cfg.pseudo_entry_block());
EXPECT_TRUE(
dom_tree.Dominates(cfg.pseudo_entry_block()->id(), entry->id()));
// (strict) dominance checks
for (uint32_t id : {10, 11, 12, 13}) check_dominance(dom_tree, fn, id, id);
check_dominance(dom_tree, fn, 10, 11);
check_dominance(dom_tree, fn, 10, 12);
check_dominance(dom_tree, fn, 10, 13);
check_dominance(dom_tree, fn, 11, 12);
check_dominance(dom_tree, fn, 11, 13);
check_no_dominance(dom_tree, fn, 13, 12);
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_entry_block()), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(entry), cfg.pseudo_entry_block());
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 11)),
spvtest::GetBasicBlock(fn, 10));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 12)),
spvtest::GetBasicBlock(fn, 11));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 13)),
spvtest::GetBasicBlock(fn, 11));
}
// Check post dominator tree
{
opt::PostDominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// Inspect the actual tree
opt::DominatorTree& tree = dom_tree.GetDomTree();
EXPECT_EQ(tree.GetRoot()->bb_, cfg.pseudo_exit_block());
EXPECT_TRUE(dom_tree.Dominates(cfg.pseudo_exit_block()->id(), 12));
// (strict) dominance checks
for (uint32_t id : {10, 11, 12}) check_dominance(dom_tree, fn, id, id);
check_dominance(dom_tree, fn, 12, 11);
check_dominance(dom_tree, fn, 12, 10);
// 13 should be completely out of tree as it's unreachable from exit nodes
check_no_dominance(dom_tree, fn, 12, 13);
check_no_dominance(dom_tree, fn, 11, 13);
check_no_dominance(dom_tree, fn, 10, 13);
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_exit_block()), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 12)),
cfg.pseudo_exit_block());
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 10)),
spvtest::GetBasicBlock(fn, 11));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 11)),
spvtest::GetBasicBlock(fn, 12));
}
}
TEST_F(PassClassTest, DominatorUnreachableFromEntry) {
const std::string text = R"(
OpCapability Addresses
OpCapability Addresses
OpCapability Kernel
OpMemoryModel Physical64 OpenCL
OpEntryPoint Kernel %1 "main"
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%4 = OpTypeBool
%5 = OpTypeInt 32 0
%6 = OpConstantFalse %4
%7 = OpConstantTrue %4
%1 = OpFunction %2 None %3
%8 = OpLabel
OpBranch %9
%9 = OpLabel
OpReturn
%10 = OpLabel
OpBranch %9
OpFunctionEnd
)";
// clang-format on
std::unique_ptr<ir::IRContext> context =
BuildModule(SPV_ENV_UNIVERSAL_1_0, nullptr, text,
SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS);
ir::Module* module = context->module();
EXPECT_NE(nullptr, module) << "Assembling failed for shader:\n"
<< text << std::endl;
const ir::Function* fn = spvtest::GetFunction(module, 1);
const ir::BasicBlock* entry = spvtest::GetBasicBlock(fn, 8);
EXPECT_EQ(entry, fn->entry().get())
<< "The entry node is not the expected one";
// Check dominator tree
{
opt::DominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// Inspect the actual tree
opt::DominatorTree& tree = dom_tree.GetDomTree();
EXPECT_EQ(tree.GetRoot()->bb_, cfg.pseudo_entry_block());
EXPECT_TRUE(
dom_tree.Dominates(cfg.pseudo_entry_block()->id(), entry->id()));
// (strict) dominance checks
for (uint32_t id : {8, 9}) check_dominance(dom_tree, fn, id, id);
check_dominance(dom_tree, fn, 8, 9);
check_no_dominance(dom_tree, fn, 10, 8);
check_no_dominance(dom_tree, fn, 10, 9);
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_entry_block()), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(entry), cfg.pseudo_entry_block());
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 9)),
spvtest::GetBasicBlock(fn, 8));
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 10)),
nullptr);
}
// Check post dominator tree
{
opt::PostDominatorAnalysis dom_tree;
dom_tree.InitializeTree(fn);
const ir::CFG& cfg = *context->cfg();
// Inspect the actual tree
opt::DominatorTree& tree = dom_tree.GetDomTree();
EXPECT_EQ(tree.GetRoot()->bb_, cfg.pseudo_exit_block());
EXPECT_TRUE(dom_tree.Dominates(cfg.pseudo_exit_block()->id(), 9));
// (strict) dominance checks
for (uint32_t id : {8, 9, 10}) check_dominance(dom_tree, fn, id, id);
check_dominance(dom_tree, fn, 9, 8);
check_dominance(dom_tree, fn, 9, 10);
EXPECT_EQ(dom_tree.ImmediateDominator(entry),
spvtest::GetBasicBlock(fn, 9));
EXPECT_EQ(dom_tree.ImmediateDominator(cfg.pseudo_exit_block()), nullptr);
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 9)),
cfg.pseudo_exit_block());
EXPECT_EQ(dom_tree.ImmediateDominator(spvtest::GetBasicBlock(fn, 10)),
spvtest::GetBasicBlock(fn, 9));
}
}
} // namespace