SPIRV-Tools/source/opt/cfg.h
Victor Lomuller 0ec08c28c1 Add register liveness analysis.
For each function, the analysis determine which SSA registers are live
at the beginning of each basic block and which one are killed at
the end of the basic block.

It also includes utilities to simulate the register pressure for loop
fusion and fission.

The implementation is based on the paper "A non-iterative data-flow
algorithm for computing liveness sets in strict ssa programs" from
Boissinot et al.
2018-04-20 09:45:15 -04:00

182 lines
6.6 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPT_CFG_H_
#define LIBSPIRV_OPT_CFG_H_
#include "basic_block.h"
#include <algorithm>
#include <list>
#include <unordered_map>
#include <unordered_set>
namespace spvtools {
namespace ir {
class CFG {
public:
CFG(ir::Module* module);
// Return the module described by this CFG.
ir::Module* get_module() const { return module_; }
// Return the list of predecesors for basic block with label |blkid|.
// TODO(dnovillo): Move this to ir::BasicBlock.
const std::vector<uint32_t>& preds(uint32_t blk_id) const {
assert(label2preds_.count(blk_id));
return label2preds_.at(blk_id);
}
// Return a pointer to the basic block instance corresponding to the label
// |blk_id|.
ir::BasicBlock* block(uint32_t blk_id) const { return id2block_.at(blk_id); }
// Return the pseudo entry and exit blocks.
const ir::BasicBlock* pseudo_entry_block() const {
return &pseudo_entry_block_;
}
ir::BasicBlock* pseudo_entry_block() { return &pseudo_entry_block_; }
const ir::BasicBlock* pseudo_exit_block() const {
return &pseudo_exit_block_;
}
ir::BasicBlock* pseudo_exit_block() { return &pseudo_exit_block_; }
// Return true if |block_ptr| is the pseudo-entry block.
bool IsPseudoEntryBlock(ir::BasicBlock* block_ptr) const {
return block_ptr == &pseudo_entry_block_;
}
// Return true if |block_ptr| is the pseudo-exit block.
bool IsPseudoExitBlock(ir::BasicBlock* block_ptr) const {
return block_ptr == &pseudo_exit_block_;
}
// Compute structured block order into |order| for |func| starting at |root|.
// This order has the property that dominators come before all blocks they
// dominate and merge blocks come after all blocks that are in the control
// constructs of their header.
void ComputeStructuredOrder(ir::Function* func, ir::BasicBlock* root,
std::list<ir::BasicBlock*>* order);
// Applies |f| to the basic block in post order starting with |bb|.
// Note that basic blocks that cannot be reached from |bb| node will not be
// processed.
void ForEachBlockInPostOrder(BasicBlock* bb,
const std::function<void(BasicBlock*)>& f);
// Applies |f| to the basic block in reverse post order starting with |bb|.
// Note that basic blocks that cannot be reached from |bb| node will not be
// processed.
void ForEachBlockInReversePostOrder(
BasicBlock* bb, const std::function<void(BasicBlock*)>& f);
// Registers |blk| as a basic block in the cfg, this also updates the
// predecessor lists of each successor of |blk|.
void RegisterBlock(ir::BasicBlock* blk) {
uint32_t blk_id = blk->id();
id2block_[blk_id] = blk;
AddEdges(blk);
}
// Removes from the CFG any mapping for the basic block id |blk_id|.
void ForgetBlock(const ir::BasicBlock* blk) {
id2block_.erase(blk->id());
label2preds_.erase(blk->id());
RemoveSuccessorEdges(blk);
}
void RemoveEdge(uint32_t pred_blk_id, uint32_t succ_blk_id) {
auto pred_it = label2preds_.find(succ_blk_id);
if (pred_it == label2preds_.end()) return;
auto& preds_list = pred_it->second;
auto it = std::find(preds_list.begin(), preds_list.end(), pred_blk_id);
if (it != preds_list.end()) preds_list.erase(it);
}
// Registers |blk| to all of its successors.
void AddEdges(ir::BasicBlock* blk);
// Registers the basic block id |pred_blk_id| as being a predecessor of the
// basic block id |succ_blk_id|.
void AddEdge(uint32_t pred_blk_id, uint32_t succ_blk_id) {
label2preds_[succ_blk_id].push_back(pred_blk_id);
}
// Removes any edges that no longer exist from the predecessor mapping for
// the basic block id |blk_id|.
void RemoveNonExistingEdges(uint32_t blk_id);
// Remove all edges that leave |bb|.
void RemoveSuccessorEdges(const ir::BasicBlock* bb) {
bb->ForEachSuccessorLabel(
[bb, this](uint32_t succ_id) { RemoveEdge(bb->id(), succ_id); });
}
// Divides |block| into two basic blocks. The first block will have the same
// id as |block| and will become a preheader for the loop. The other block
// is a new block that will be the new loop header.
//
// Returns a pointer to the new loop header.
BasicBlock* SplitLoopHeader(ir::BasicBlock* bb);
std::unordered_set<BasicBlock*> FindReachableBlocks(BasicBlock* start);
private:
using cbb_ptr = const ir::BasicBlock*;
// Compute structured successors for function |func|. A block's structured
// successors are the blocks it branches to together with its declared merge
// block and continue block if it has them. When order matters, the merge
// block and continue block always appear first. This assures correct depth
// first search in the presence of early returns and kills. If the successor
// vector contain duplicates of the merge or continue blocks, they are safely
// ignored by DFS.
void ComputeStructuredSuccessors(ir::Function* func);
// Computes the post-order traversal of the cfg starting at |bb| skipping
// nodes in |seen|. The order of the traversal is appended to |order|, and
// all nodes in the traversal are added to |seen|.
void ComputePostOrderTraversal(BasicBlock* bb,
std::vector<BasicBlock*>* order,
std::unordered_set<BasicBlock*>* seen);
// Module for this CFG.
ir::Module* module_;
// Map from block to its structured successor blocks. See
// ComputeStructuredSuccessors() for definition.
std::unordered_map<const ir::BasicBlock*, std::vector<ir::BasicBlock*>>
block2structured_succs_;
// Extra block whose successors are all blocks with no predecessors
// in function.
ir::BasicBlock pseudo_entry_block_;
// Augmented CFG Exit Block.
ir::BasicBlock pseudo_exit_block_;
// Map from block's label id to its predecessor blocks ids
std::unordered_map<uint32_t, std::vector<uint32_t>> label2preds_;
// Map from block's label id to block.
std::unordered_map<uint32_t, ir::BasicBlock*> id2block_;
};
} // namespace ir
} // namespace spvtools
#endif // LIBSPIRV_OPT_CFG_H_