SPIRV-Tools/source/fuzz/fuzzer_pass_add_function_calls.cpp
Alastair Donaldson 9c4481419e
spirv-fuzz: Allow inapplicable transformations to be ignored (#4407)
spirv-fuzz features transformations that should be applicable by
construction. Assertions are used to detect when such transformations
turn out to be inapplicable. Failures of such assertions indicate bugs
in the fuzzer. However, when using the fuzzer at scale (e.g. in
ClusterFuzz) reports of these assertion failures create noise, and
cause the fuzzer to exit early. This change adds an option whereby
inapplicable transformations can be ignored. This reduces noise and
allows fuzzing to continue even when a transformation that should be
applicable but is not has been erroneously created.
2021-07-28 22:59:37 +01:00

203 lines
8.4 KiB
C++

// Copyright (c) 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/fuzzer_pass_add_function_calls.h"
#include "source/fuzz/call_graph.h"
#include "source/fuzz/fuzzer_util.h"
#include "source/fuzz/transformation_add_global_variable.h"
#include "source/fuzz/transformation_add_local_variable.h"
#include "source/fuzz/transformation_function_call.h"
namespace spvtools {
namespace fuzz {
FuzzerPassAddFunctionCalls::FuzzerPassAddFunctionCalls(
opt::IRContext* ir_context, TransformationContext* transformation_context,
FuzzerContext* fuzzer_context,
protobufs::TransformationSequence* transformations,
bool ignore_inapplicable_transformations)
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
transformations, ignore_inapplicable_transformations) {}
void FuzzerPassAddFunctionCalls::Apply() {
ForEachInstructionWithInstructionDescriptor(
[this](opt::Function* function, opt::BasicBlock* block,
opt::BasicBlock::iterator inst_it,
const protobufs::InstructionDescriptor& instruction_descriptor)
-> void {
// Check whether it is legitimate to insert a function call before the
// instruction.
if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(SpvOpFunctionCall,
inst_it)) {
return;
}
// Randomly decide whether to try inserting a function call here.
if (!GetFuzzerContext()->ChoosePercentage(
GetFuzzerContext()->GetChanceOfCallingFunction())) {
return;
}
// Compute the module's call graph - we don't cache it since it may
// change each time we apply a transformation. If this proves to be
// a bottleneck the call graph data structure could be made updatable.
CallGraph call_graph(GetIRContext());
// Gather all the non-entry point functions different from this
// function. It is important to ignore entry points as a function
// cannot be an entry point and the target of an OpFunctionCall
// instruction. We ignore this function to avoid direct recursion.
std::vector<opt::Function*> candidate_functions;
for (auto& other_function : *GetIRContext()->module()) {
if (&other_function != function &&
!fuzzerutil::FunctionIsEntryPoint(GetIRContext(),
other_function.result_id())) {
candidate_functions.push_back(&other_function);
}
}
// Choose a function to call, at random, by considering candidate
// functions until a suitable one is found.
opt::Function* chosen_function = nullptr;
while (!candidate_functions.empty()) {
opt::Function* candidate_function =
GetFuzzerContext()->RemoveAtRandomIndex(&candidate_functions);
if (!GetTransformationContext()->GetFactManager()->BlockIsDead(
block->id()) &&
!GetTransformationContext()->GetFactManager()->FunctionIsLivesafe(
candidate_function->result_id())) {
// Unless in a dead block, only livesafe functions can be invoked
continue;
}
if (call_graph.GetIndirectCallees(candidate_function->result_id())
.count(function->result_id())) {
// Calling this function could lead to indirect recursion
continue;
}
chosen_function = candidate_function;
break;
}
if (!chosen_function) {
// No suitable function was found to call. (This can happen, for
// instance, if the current function is the only function in the
// module.)
return;
}
ApplyTransformation(TransformationFunctionCall(
GetFuzzerContext()->GetFreshId(), chosen_function->result_id(),
ChooseFunctionCallArguments(*chosen_function, function, block,
inst_it),
instruction_descriptor));
});
}
std::vector<uint32_t> FuzzerPassAddFunctionCalls::ChooseFunctionCallArguments(
const opt::Function& callee, opt::Function* caller_function,
opt::BasicBlock* caller_block,
const opt::BasicBlock::iterator& caller_inst_it) {
auto available_pointers = FindAvailableInstructions(
caller_function, caller_block, caller_inst_it,
[this, caller_block](opt::IRContext* /*unused*/, opt::Instruction* inst) {
if (inst->opcode() != SpvOpVariable ||
inst->opcode() != SpvOpFunctionParameter) {
// Function parameters and variables are the only
// kinds of pointer that can be used as actual
// parameters.
return false;
}
return GetTransformationContext()->GetFactManager()->BlockIsDead(
caller_block->id()) ||
GetTransformationContext()
->GetFactManager()
->PointeeValueIsIrrelevant(inst->result_id());
});
std::unordered_map<uint32_t, std::vector<uint32_t>> type_id_to_result_id;
for (const auto* inst : available_pointers) {
type_id_to_result_id[inst->type_id()].push_back(inst->result_id());
}
std::vector<uint32_t> result;
for (const auto* param :
fuzzerutil::GetParameters(GetIRContext(), callee.result_id())) {
const auto* param_type =
GetIRContext()->get_type_mgr()->GetType(param->type_id());
assert(param_type && "Parameter has invalid type");
if (!param_type->AsPointer()) {
if (fuzzerutil::CanCreateConstant(GetIRContext(), param->type_id())) {
// We mark the constant as irrelevant so that we can replace it with a
// more interesting value later.
result.push_back(FindOrCreateZeroConstant(param->type_id(), true));
} else {
result.push_back(FindOrCreateGlobalUndef(param->type_id()));
}
continue;
}
if (type_id_to_result_id.count(param->type_id())) {
// Use an existing pointer if there are any.
const auto& candidates = type_id_to_result_id[param->type_id()];
result.push_back(candidates[GetFuzzerContext()->RandomIndex(candidates)]);
continue;
}
// Make a new variable, at function or global scope depending on the storage
// class of the pointer.
// Get a fresh id for the new variable.
uint32_t fresh_variable_id = GetFuzzerContext()->GetFreshId();
// The id of this variable is what we pass as the parameter to
// the call.
result.push_back(fresh_variable_id);
type_id_to_result_id[param->type_id()].push_back(fresh_variable_id);
// Now bring the variable into existence.
auto storage_class = param_type->AsPointer()->storage_class();
auto pointee_type_id = fuzzerutil::GetPointeeTypeIdFromPointerType(
GetIRContext(), param->type_id());
if (storage_class == SpvStorageClassFunction) {
// Add a new zero-initialized local variable to the current
// function, noting that its pointee value is irrelevant.
ApplyTransformation(TransformationAddLocalVariable(
fresh_variable_id, param->type_id(), caller_function->result_id(),
FindOrCreateZeroConstant(pointee_type_id, false), true));
} else {
assert((storage_class == SpvStorageClassPrivate ||
storage_class == SpvStorageClassWorkgroup) &&
"Only Function, Private and Workgroup storage classes are "
"supported at present.");
// Add a new global variable to the module, zero-initializing it if
// it has Private storage class, and noting that its pointee value is
// irrelevant.
ApplyTransformation(TransformationAddGlobalVariable(
fresh_variable_id, param->type_id(), storage_class,
storage_class == SpvStorageClassPrivate
? FindOrCreateZeroConstant(pointee_type_id, false)
: 0,
true));
}
}
return result;
}
} // namespace fuzz
} // namespace spvtools