mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2024-11-30 06:50:06 +00:00
8d4261bc44
Some transformations (e.g. TransformationAddFunction) rely on running the validator to decide whether the transformation is applicable. A recent change allowed spirv-fuzz to take validator options, to cater for the case where a module should be considered valid under particular conditions. However, validation during the checking of transformations had no access to these validator options. This change introduced TransformationContext, which currently consists of a fact manager and a set of validator options, but could in the future have other fields corresponding to other objects that it is useful to have access to when applying transformations. Now, instead of checking and applying transformations in the context of a FactManager, a TransformationContext is used. This gives access to the fact manager as before, and also access to the validator options when they are needed.
240 lines
9.6 KiB
C++
240 lines
9.6 KiB
C++
// Copyright (c) 2020 Google LLC
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "source/fuzz/fuzzer_pass_add_equation_instructions.h"
|
|
|
|
#include <vector>
|
|
|
|
#include "source/fuzz/fuzzer_util.h"
|
|
#include "source/fuzz/transformation_equation_instruction.h"
|
|
|
|
namespace spvtools {
|
|
namespace fuzz {
|
|
|
|
FuzzerPassAddEquationInstructions::FuzzerPassAddEquationInstructions(
|
|
opt::IRContext* ir_context, TransformationContext* transformation_context,
|
|
FuzzerContext* fuzzer_context,
|
|
protobufs::TransformationSequence* transformations)
|
|
: FuzzerPass(ir_context, transformation_context, fuzzer_context,
|
|
transformations) {}
|
|
|
|
FuzzerPassAddEquationInstructions::~FuzzerPassAddEquationInstructions() =
|
|
default;
|
|
|
|
void FuzzerPassAddEquationInstructions::Apply() {
|
|
ForEachInstructionWithInstructionDescriptor(
|
|
[this](opt::Function* function, opt::BasicBlock* block,
|
|
opt::BasicBlock::iterator inst_it,
|
|
const protobufs::InstructionDescriptor& instruction_descriptor) {
|
|
if (!GetFuzzerContext()->ChoosePercentage(
|
|
GetFuzzerContext()->GetChanceOfAddingEquationInstruction())) {
|
|
return;
|
|
}
|
|
|
|
// Check that it is OK to add an equation instruction before the given
|
|
// instruction in principle - e.g. check that this does not lead to
|
|
// inserting before an OpVariable or OpPhi instruction. We use OpIAdd
|
|
// as an example opcode for this check, to be representative of *some*
|
|
// opcode that defines an equation, even though we may choose a
|
|
// different opcode below.
|
|
if (!fuzzerutil::CanInsertOpcodeBeforeInstruction(SpvOpIAdd, inst_it)) {
|
|
return;
|
|
}
|
|
|
|
// Get all available instructions with result ids and types that are not
|
|
// OpUndef.
|
|
std::vector<opt::Instruction*> available_instructions =
|
|
FindAvailableInstructions(
|
|
function, block, inst_it,
|
|
[](opt::IRContext*, opt::Instruction* instruction) -> bool {
|
|
return instruction->result_id() && instruction->type_id() &&
|
|
instruction->opcode() != SpvOpUndef;
|
|
});
|
|
|
|
// Try the opcodes for which we know how to make ids at random until
|
|
// something works.
|
|
std::vector<SpvOp> candidate_opcodes = {SpvOpIAdd, SpvOpISub,
|
|
SpvOpLogicalNot, SpvOpSNegate};
|
|
do {
|
|
auto opcode =
|
|
GetFuzzerContext()->RemoveAtRandomIndex(&candidate_opcodes);
|
|
switch (opcode) {
|
|
case SpvOpIAdd:
|
|
case SpvOpISub: {
|
|
// Instructions of integer (scalar or vector) result type are
|
|
// suitable for these opcodes.
|
|
auto integer_instructions =
|
|
GetIntegerInstructions(available_instructions);
|
|
if (!integer_instructions.empty()) {
|
|
// There is at least one such instruction, so pick one at random
|
|
// for the LHS of an equation.
|
|
auto lhs = integer_instructions.at(
|
|
GetFuzzerContext()->RandomIndex(integer_instructions));
|
|
|
|
// For the RHS, we can use any instruction with an integer
|
|
// scalar/vector result type of the same number of components
|
|
// and the same bit-width for the underlying integer type.
|
|
|
|
// Work out the element count and bit-width.
|
|
auto lhs_type =
|
|
GetIRContext()->get_type_mgr()->GetType(lhs->type_id());
|
|
uint32_t lhs_element_count;
|
|
uint32_t lhs_bit_width;
|
|
if (lhs_type->AsVector()) {
|
|
lhs_element_count = lhs_type->AsVector()->element_count();
|
|
lhs_bit_width = lhs_type->AsVector()
|
|
->element_type()
|
|
->AsInteger()
|
|
->width();
|
|
} else {
|
|
lhs_element_count = 1;
|
|
lhs_bit_width = lhs_type->AsInteger()->width();
|
|
}
|
|
|
|
// Get all the instructions that match on element count and
|
|
// bit-width.
|
|
auto candidate_rhs_instructions = RestrictToElementBitWidth(
|
|
RestrictToVectorWidth(integer_instructions,
|
|
lhs_element_count),
|
|
lhs_bit_width);
|
|
|
|
// Choose a RHS instruction at random; there is guaranteed to
|
|
// be at least one choice as the LHS will be available.
|
|
auto rhs = candidate_rhs_instructions.at(
|
|
GetFuzzerContext()->RandomIndex(
|
|
candidate_rhs_instructions));
|
|
|
|
// Add the equation instruction.
|
|
ApplyTransformation(TransformationEquationInstruction(
|
|
GetFuzzerContext()->GetFreshId(), opcode,
|
|
{lhs->result_id(), rhs->result_id()},
|
|
instruction_descriptor));
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case SpvOpLogicalNot: {
|
|
// Choose any available instruction of boolean scalar/vector
|
|
// result type and equate its negation with a fresh id.
|
|
auto boolean_instructions =
|
|
GetBooleanInstructions(available_instructions);
|
|
if (!boolean_instructions.empty()) {
|
|
ApplyTransformation(TransformationEquationInstruction(
|
|
GetFuzzerContext()->GetFreshId(), opcode,
|
|
{boolean_instructions
|
|
.at(GetFuzzerContext()->RandomIndex(
|
|
boolean_instructions))
|
|
->result_id()},
|
|
instruction_descriptor));
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case SpvOpSNegate: {
|
|
// Similar to OpLogicalNot, but for signed integer negation.
|
|
auto integer_instructions =
|
|
GetIntegerInstructions(available_instructions);
|
|
if (!integer_instructions.empty()) {
|
|
ApplyTransformation(TransformationEquationInstruction(
|
|
GetFuzzerContext()->GetFreshId(), opcode,
|
|
{integer_instructions
|
|
.at(GetFuzzerContext()->RandomIndex(
|
|
integer_instructions))
|
|
->result_id()},
|
|
instruction_descriptor));
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
assert(false && "Unexpected opcode.");
|
|
break;
|
|
}
|
|
} while (!candidate_opcodes.empty());
|
|
// Reaching here means that we did not manage to apply any
|
|
// transformation at this point of the module.
|
|
});
|
|
}
|
|
|
|
std::vector<opt::Instruction*>
|
|
FuzzerPassAddEquationInstructions::GetIntegerInstructions(
|
|
const std::vector<opt::Instruction*>& instructions) const {
|
|
std::vector<opt::Instruction*> result;
|
|
for (auto& inst : instructions) {
|
|
auto type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
|
|
if (type->AsInteger() ||
|
|
(type->AsVector() && type->AsVector()->element_type()->AsInteger())) {
|
|
result.push_back(inst);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<opt::Instruction*>
|
|
FuzzerPassAddEquationInstructions::GetBooleanInstructions(
|
|
const std::vector<opt::Instruction*>& instructions) const {
|
|
std::vector<opt::Instruction*> result;
|
|
for (auto& inst : instructions) {
|
|
auto type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
|
|
if (type->AsBool() ||
|
|
(type->AsVector() && type->AsVector()->element_type()->AsBool())) {
|
|
result.push_back(inst);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<opt::Instruction*>
|
|
FuzzerPassAddEquationInstructions::RestrictToVectorWidth(
|
|
const std::vector<opt::Instruction*>& instructions,
|
|
uint32_t vector_width) const {
|
|
std::vector<opt::Instruction*> result;
|
|
for (auto& inst : instructions) {
|
|
auto type = GetIRContext()->get_type_mgr()->GetType(inst->type_id());
|
|
// Get the vector width of |inst|, which is 1 if |inst| is a scalar and is
|
|
// otherwise derived from its vector type.
|
|
uint32_t other_vector_width =
|
|
type->AsVector() ? type->AsVector()->element_count() : 1;
|
|
// Keep |inst| if the vector widths match.
|
|
if (vector_width == other_vector_width) {
|
|
result.push_back(inst);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<opt::Instruction*>
|
|
FuzzerPassAddEquationInstructions::RestrictToElementBitWidth(
|
|
const std::vector<opt::Instruction*>& instructions,
|
|
uint32_t bit_width) const {
|
|
std::vector<opt::Instruction*> result;
|
|
for (auto& inst : instructions) {
|
|
const opt::analysis::Type* type =
|
|
GetIRContext()->get_type_mgr()->GetType(inst->type_id());
|
|
if (type->AsVector()) {
|
|
type = type->AsVector()->element_type();
|
|
}
|
|
assert(type->AsInteger() &&
|
|
"Precondition: all input instructions must "
|
|
"have integer scalar or vector type.");
|
|
if (type->AsInteger()->width() == bit_width) {
|
|
result.push_back(inst);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
} // namespace fuzz
|
|
} // namespace spvtools
|