SPIRV-Tools/source/fuzz/transformation_outline_function.cpp
Alastair Donaldson 4fcdc58946
Add IsReachable function to IRContext (#4323)
There was a lot of code in the codebase that would get the dominator
analysis for a function and then use it to check whether a block is
reachable. In the fuzzer, a utility method had been introduced to make
this more concise, but it was not being used consistently.

This change moves the utility method to IRContext, so that it can be
used throughout the codebase, and refactors all existing checks for
block reachability to use the utility method.
2021-06-28 20:00:14 +01:00

1025 lines
42 KiB
C++

// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/transformation_outline_function.h"
#include <set>
#include "source/fuzz/fuzzer_util.h"
namespace spvtools {
namespace fuzz {
TransformationOutlineFunction::TransformationOutlineFunction(
protobufs::TransformationOutlineFunction message)
: message_(std::move(message)) {}
TransformationOutlineFunction::TransformationOutlineFunction(
uint32_t entry_block, uint32_t exit_block,
uint32_t new_function_struct_return_type_id, uint32_t new_function_type_id,
uint32_t new_function_id, uint32_t new_function_region_entry_block,
uint32_t new_caller_result_id, uint32_t new_callee_result_id,
const std::map<uint32_t, uint32_t>& input_id_to_fresh_id,
const std::map<uint32_t, uint32_t>& output_id_to_fresh_id) {
message_.set_entry_block(entry_block);
message_.set_exit_block(exit_block);
message_.set_new_function_struct_return_type_id(
new_function_struct_return_type_id);
message_.set_new_function_type_id(new_function_type_id);
message_.set_new_function_id(new_function_id);
message_.set_new_function_region_entry_block(new_function_region_entry_block);
message_.set_new_caller_result_id(new_caller_result_id);
message_.set_new_callee_result_id(new_callee_result_id);
*message_.mutable_input_id_to_fresh_id() =
fuzzerutil::MapToRepeatedUInt32Pair(input_id_to_fresh_id);
*message_.mutable_output_id_to_fresh_id() =
fuzzerutil::MapToRepeatedUInt32Pair(output_id_to_fresh_id);
}
bool TransformationOutlineFunction::IsApplicable(
opt::IRContext* ir_context,
const TransformationContext& transformation_context) const {
std::set<uint32_t> ids_used_by_this_transformation;
// The various new ids used by the transformation must be fresh and distinct.
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
message_.new_function_struct_return_type_id(), ir_context,
&ids_used_by_this_transformation)) {
return false;
}
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
message_.new_function_type_id(), ir_context,
&ids_used_by_this_transformation)) {
return false;
}
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
message_.new_function_id(), ir_context,
&ids_used_by_this_transformation)) {
return false;
}
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
message_.new_function_region_entry_block(), ir_context,
&ids_used_by_this_transformation)) {
return false;
}
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
message_.new_caller_result_id(), ir_context,
&ids_used_by_this_transformation)) {
return false;
}
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
message_.new_callee_result_id(), ir_context,
&ids_used_by_this_transformation)) {
return false;
}
for (auto& pair : message_.input_id_to_fresh_id()) {
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
pair.second(), ir_context, &ids_used_by_this_transformation)) {
return false;
}
}
for (auto& pair : message_.output_id_to_fresh_id()) {
if (!CheckIdIsFreshAndNotUsedByThisTransformation(
pair.second(), ir_context, &ids_used_by_this_transformation)) {
return false;
}
}
// The entry and exit block ids must indeed refer to blocks.
for (auto block_id : {message_.entry_block(), message_.exit_block()}) {
auto block_label = ir_context->get_def_use_mgr()->GetDef(block_id);
if (!block_label || block_label->opcode() != SpvOpLabel) {
return false;
}
}
auto entry_block = ir_context->cfg()->block(message_.entry_block());
auto exit_block = ir_context->cfg()->block(message_.exit_block());
// The entry block cannot start with OpVariable - this would mean that
// outlining would remove a variable from the function containing the region
// being outlined.
if (entry_block->begin()->opcode() == SpvOpVariable) {
return false;
}
// For simplicity, we do not allow the entry block to be a loop header.
if (entry_block->GetLoopMergeInst()) {
return false;
}
// For simplicity, we do not allow the exit block to be a merge block or
// continue target.
if (fuzzerutil::IsMergeOrContinue(ir_context, exit_block->id())) {
return false;
}
// The entry block cannot start with OpPhi. This is to keep the
// transformation logic simple. (Another transformation to split the OpPhis
// from a block could be applied to avoid this scenario.)
if (entry_block->begin()->opcode() == SpvOpPhi) {
return false;
}
// The block must be in the same function.
if (entry_block->GetParent() != exit_block->GetParent()) {
return false;
}
// The entry block must dominate the exit block.
auto dominator_analysis =
ir_context->GetDominatorAnalysis(entry_block->GetParent());
if (!dominator_analysis->Dominates(entry_block, exit_block)) {
return false;
}
// The exit block must post-dominate the entry block.
auto postdominator_analysis =
ir_context->GetPostDominatorAnalysis(entry_block->GetParent());
if (!postdominator_analysis->Dominates(exit_block, entry_block)) {
return false;
}
// Find all the blocks dominated by |message_.entry_block| and post-dominated
// by |message_.exit_block|.
auto region_set = GetRegionBlocks(
ir_context,
entry_block = ir_context->cfg()->block(message_.entry_block()),
exit_block = ir_context->cfg()->block(message_.exit_block()));
// Check whether |region_set| really is a single-entry single-exit region, and
// also check whether structured control flow constructs and their merge
// and continue constructs are either wholly in or wholly out of the region -
// e.g. avoid the situation where the region contains the head of a loop but
// not the loop's continue construct.
//
// This is achieved by going through every block in the function that contains
// the region.
for (auto& block : *entry_block->GetParent()) {
if (region_set.count(&block) != 0) {
// The block is in the region. Check that it does not have any unreachable
// predecessors. If it does, then we do not regard the region as single-
// entry-single-exit and hence do not outline it.
for (auto pred : ir_context->cfg()->preds(block.id())) {
if (!ir_context->IsReachable(*ir_context->cfg()->block(pred))) {
// The predecessor is unreachable.
return false;
}
}
}
if (&block == exit_block) {
// It is OK (and typically expected) for the exit block of the region to
// have successors outside the region.
//
// It is also OK for the exit block to head a selection construct: the
// block containing the call to the outlined function will end up heading
// this construct if outlining takes place. However, it is not OK for
// the exit block to head a loop construct.
if (block.GetLoopMergeInst()) {
return false;
}
continue;
}
if (region_set.count(&block) != 0) {
// The block is in the region and is not the region's exit block. Let's
// see whether all of the block's successors are in the region. If they
// are not, the region is not single-entry single-exit.
bool all_successors_in_region = true;
block.WhileEachSuccessorLabel([&all_successors_in_region, ir_context,
&region_set](uint32_t successor) -> bool {
if (region_set.count(ir_context->cfg()->block(successor)) == 0) {
all_successors_in_region = false;
return false;
}
return true;
});
if (!all_successors_in_region) {
return false;
}
}
if (auto merge = block.GetMergeInst()) {
// The block is a loop or selection header -- the header and its
// associated merge block had better both be in the region or both be
// outside the region.
auto merge_block =
ir_context->cfg()->block(merge->GetSingleWordOperand(0));
if (region_set.count(&block) != region_set.count(merge_block)) {
return false;
}
}
if (auto loop_merge = block.GetLoopMergeInst()) {
// Similar to the above, but for the continue target of a loop.
auto continue_target =
ir_context->cfg()->block(loop_merge->GetSingleWordOperand(1));
if (continue_target != exit_block &&
region_set.count(&block) != region_set.count(continue_target)) {
return false;
}
}
}
// For each region input id, i.e. every id defined outside the region but
// used inside the region, ...
auto input_id_to_fresh_id_map =
fuzzerutil::RepeatedUInt32PairToMap(message_.input_id_to_fresh_id());
for (auto id : GetRegionInputIds(ir_context, region_set, exit_block)) {
// There needs to be a corresponding fresh id to be used as a function
// parameter, or overflow ids need to be available.
if (input_id_to_fresh_id_map.count(id) == 0 &&
!transformation_context.GetOverflowIdSource()->HasOverflowIds()) {
return false;
}
// Furthermore, if the input id has pointer type it must be an OpVariable
// or OpFunctionParameter.
auto input_id_inst = ir_context->get_def_use_mgr()->GetDef(id);
if (ir_context->get_def_use_mgr()
->GetDef(input_id_inst->type_id())
->opcode() == SpvOpTypePointer) {
switch (input_id_inst->opcode()) {
case SpvOpFunctionParameter:
case SpvOpVariable:
// These are OK.
break;
default:
// Anything else is not OK.
return false;
}
}
}
// For each region output id -- i.e. every id defined inside the region but
// used outside the region, ...
auto output_id_to_fresh_id_map =
fuzzerutil::RepeatedUInt32PairToMap(message_.output_id_to_fresh_id());
for (auto id : GetRegionOutputIds(ir_context, region_set, exit_block)) {
if (
// ... there needs to be a corresponding fresh id that can hold the
// value for this id computed in the outlined function (or overflow ids
// must be available), and ...
(output_id_to_fresh_id_map.count(id) == 0 &&
!transformation_context.GetOverflowIdSource()->HasOverflowIds())
// ... the output id must not have pointer type (to avoid creating a
// struct with pointer members to pass data out of the outlined
// function)
|| ir_context->get_def_use_mgr()
->GetDef(fuzzerutil::GetTypeId(ir_context, id))
->opcode() == SpvOpTypePointer) {
return false;
}
}
return true;
}
void TransformationOutlineFunction::Apply(
opt::IRContext* ir_context,
TransformationContext* transformation_context) const {
// The entry block for the region before outlining.
auto original_region_entry_block =
ir_context->cfg()->block(message_.entry_block());
// The exit block for the region before outlining.
auto original_region_exit_block =
ir_context->cfg()->block(message_.exit_block());
// The single-entry single-exit region defined by |message_.entry_block| and
// |message_.exit_block|.
std::set<opt::BasicBlock*> region_blocks = GetRegionBlocks(
ir_context, original_region_entry_block, original_region_exit_block);
// Input and output ids for the region being outlined.
std::vector<uint32_t> region_input_ids =
GetRegionInputIds(ir_context, region_blocks, original_region_exit_block);
std::vector<uint32_t> region_output_ids =
GetRegionOutputIds(ir_context, region_blocks, original_region_exit_block);
// Maps from input and output ids to fresh ids.
auto input_id_to_fresh_id_map =
fuzzerutil::RepeatedUInt32PairToMap(message_.input_id_to_fresh_id());
auto output_id_to_fresh_id_map =
fuzzerutil::RepeatedUInt32PairToMap(message_.output_id_to_fresh_id());
// Use overflow ids to augment these maps at any locations where fresh ids are
// required but not provided.
for (uint32_t id : region_input_ids) {
if (input_id_to_fresh_id_map.count(id) == 0) {
input_id_to_fresh_id_map.insert(
{id,
transformation_context->GetOverflowIdSource()->GetNextOverflowId()});
}
}
for (uint32_t id : region_output_ids) {
if (output_id_to_fresh_id_map.count(id) == 0) {
output_id_to_fresh_id_map.insert(
{id,
transformation_context->GetOverflowIdSource()->GetNextOverflowId()});
}
}
UpdateModuleIdBoundForFreshIds(ir_context, input_id_to_fresh_id_map,
output_id_to_fresh_id_map);
// Construct a map that associates each output id with its type id.
std::map<uint32_t, uint32_t> output_id_to_type_id;
for (uint32_t output_id : region_output_ids) {
output_id_to_type_id[output_id] =
ir_context->get_def_use_mgr()->GetDef(output_id)->type_id();
}
// The region will be collapsed to a single block that calls a function
// containing the outlined region. This block needs to end with whatever
// the exit block of the region ended with before outlining. We thus clone
// the terminator of the region's exit block, and the merge instruction for
// the block if there is one, so that we can append them to the end of the
// collapsed block later.
std::unique_ptr<opt::Instruction> cloned_exit_block_terminator =
std::unique_ptr<opt::Instruction>(
original_region_exit_block->terminator()->Clone(ir_context));
std::unique_ptr<opt::Instruction> cloned_exit_block_merge =
original_region_exit_block->GetMergeInst()
? std::unique_ptr<opt::Instruction>(
original_region_exit_block->GetMergeInst()->Clone(ir_context))
: nullptr;
// Make a function prototype for the outlined function, which involves
// figuring out its required type.
std::unique_ptr<opt::Function> outlined_function = PrepareFunctionPrototype(
region_input_ids, region_output_ids, input_id_to_fresh_id_map, ir_context,
transformation_context);
// Adapt the region to be outlined so that its input ids are replaced with the
// ids of the outlined function's input parameters, and so that output ids
// are similarly remapped.
RemapInputAndOutputIdsInRegion(
ir_context, *original_region_exit_block, region_blocks, region_input_ids,
region_output_ids, input_id_to_fresh_id_map, output_id_to_fresh_id_map);
// Fill out the body of the outlined function according to the region that is
// being outlined.
PopulateOutlinedFunction(
*original_region_entry_block, *original_region_exit_block, region_blocks,
region_output_ids, output_id_to_type_id, output_id_to_fresh_id_map,
ir_context, outlined_function.get());
// Collapse the region that has been outlined into a function down to a single
// block that calls said function.
ShrinkOriginalRegion(
ir_context, region_blocks, region_input_ids, region_output_ids,
output_id_to_type_id, outlined_function->type_id(),
std::move(cloned_exit_block_merge),
std::move(cloned_exit_block_terminator), original_region_entry_block);
// Add the outlined function to the module.
const auto* outlined_function_ptr = outlined_function.get();
ir_context->module()->AddFunction(std::move(outlined_function));
// Major surgery has been conducted on the module, so invalidate all analyses.
ir_context->InvalidateAnalysesExceptFor(
opt::IRContext::Analysis::kAnalysisNone);
// If the original function was livesafe, the new function should also be
// livesafe.
if (transformation_context->GetFactManager()->FunctionIsLivesafe(
original_region_entry_block->GetParent()->result_id())) {
transformation_context->GetFactManager()->AddFactFunctionIsLivesafe(
message_.new_function_id());
}
// Record the fact that all blocks in the outlined region are dead if the
// first block is dead.
if (transformation_context->GetFactManager()->BlockIsDead(
original_region_entry_block->id())) {
transformation_context->GetFactManager()->AddFactBlockIsDead(
outlined_function_ptr->entry()->id());
}
}
protobufs::Transformation TransformationOutlineFunction::ToMessage() const {
protobufs::Transformation result;
*result.mutable_outline_function() = message_;
return result;
}
std::vector<uint32_t> TransformationOutlineFunction::GetRegionInputIds(
opt::IRContext* ir_context, const std::set<opt::BasicBlock*>& region_set,
opt::BasicBlock* region_exit_block) {
std::vector<uint32_t> result;
auto enclosing_function = region_exit_block->GetParent();
// Consider each parameter of the function containing the region.
enclosing_function->ForEachParam(
[ir_context, &region_set, &result](opt::Instruction* function_parameter) {
// Consider every use of the parameter.
ir_context->get_def_use_mgr()->WhileEachUse(
function_parameter,
[ir_context, function_parameter, &region_set, &result](
opt::Instruction* use, uint32_t /*unused*/) {
// Get the block, if any, in which the parameter is used.
auto use_block = ir_context->get_instr_block(use);
// If the use is in a block that lies within the region, the
// parameter is an input id for the region.
if (use_block && region_set.count(use_block) != 0) {
result.push_back(function_parameter->result_id());
return false;
}
return true;
});
});
// Consider all definitions in the function that might turn out to be input
// ids.
for (auto& block : *enclosing_function) {
std::vector<opt::Instruction*> candidate_input_ids_for_block;
if (region_set.count(&block) == 0) {
// All instructions in blocks outside the region are candidate's for
// generating input ids.
for (auto& inst : block) {
candidate_input_ids_for_block.push_back(&inst);
}
} else {
// Blocks in the region cannot generate input ids.
continue;
}
// Consider each candidate input id to check whether it is used in the
// region.
for (auto& inst : candidate_input_ids_for_block) {
ir_context->get_def_use_mgr()->WhileEachUse(
inst,
[ir_context, &inst, region_exit_block, &region_set, &result](
opt::Instruction* use, uint32_t /*unused*/) -> bool {
// Find the block in which this id use occurs, recording the id as
// an input id if the block is outside the region, with some
// exceptions detailed below.
auto use_block = ir_context->get_instr_block(use);
if (!use_block) {
// There might be no containing block, e.g. if the use is in a
// decoration.
return true;
}
if (region_set.count(use_block) == 0) {
// The use is not in the region: this does not make it an input
// id.
return true;
}
if (use_block == region_exit_block && use->IsBlockTerminator()) {
// We do not regard uses in the exit block terminator as input
// ids, as this terminator does not get outlined.
return true;
}
result.push_back(inst->result_id());
return false;
});
}
}
return result;
}
std::vector<uint32_t> TransformationOutlineFunction::GetRegionOutputIds(
opt::IRContext* ir_context, const std::set<opt::BasicBlock*>& region_set,
opt::BasicBlock* region_exit_block) {
std::vector<uint32_t> result;
// Consider each block in the function containing the region.
for (auto& block : *region_exit_block->GetParent()) {
if (region_set.count(&block) == 0) {
// Skip blocks that are not in the region.
continue;
}
// Consider each use of each instruction defined in the block.
for (auto& inst : block) {
ir_context->get_def_use_mgr()->WhileEachUse(
&inst,
[&region_set, ir_context, &inst, region_exit_block, &result](
opt::Instruction* use, uint32_t /*unused*/) -> bool {
// Find the block in which this id use occurs, recording the id as
// an output id if the block is outside the region, with some
// exceptions detailed below.
auto use_block = ir_context->get_instr_block(use);
if (!use_block) {
// There might be no containing block, e.g. if the use is in a
// decoration.
return true;
}
if (region_set.count(use_block) != 0) {
// The use is in the region.
if (use_block != region_exit_block || !use->IsBlockTerminator()) {
// Furthermore, the use is not in the terminator of the region's
// exit block.
return true;
}
}
result.push_back(inst.result_id());
return false;
});
}
}
return result;
}
std::set<opt::BasicBlock*> TransformationOutlineFunction::GetRegionBlocks(
opt::IRContext* ir_context, opt::BasicBlock* entry_block,
opt::BasicBlock* exit_block) {
auto enclosing_function = entry_block->GetParent();
auto dominator_analysis =
ir_context->GetDominatorAnalysis(enclosing_function);
auto postdominator_analysis =
ir_context->GetPostDominatorAnalysis(enclosing_function);
std::set<opt::BasicBlock*> result;
for (auto& block : *enclosing_function) {
if (dominator_analysis->Dominates(entry_block, &block) &&
postdominator_analysis->Dominates(exit_block, &block)) {
result.insert(&block);
}
}
return result;
}
std::unique_ptr<opt::Function>
TransformationOutlineFunction::PrepareFunctionPrototype(
const std::vector<uint32_t>& region_input_ids,
const std::vector<uint32_t>& region_output_ids,
const std::map<uint32_t, uint32_t>& input_id_to_fresh_id_map,
opt::IRContext* ir_context,
TransformationContext* transformation_context) const {
uint32_t return_type_id = 0;
uint32_t function_type_id = 0;
// First, try to find an existing function type that is suitable. This is
// only possible if the region generates no output ids; if it generates output
// ids we are going to make a new struct for those, and since that struct does
// not exist there cannot already be a function type with this struct as its
// return type.
if (region_output_ids.empty()) {
std::vector<uint32_t> return_and_parameter_types;
opt::analysis::Void void_type;
return_type_id = ir_context->get_type_mgr()->GetId(&void_type);
return_and_parameter_types.push_back(return_type_id);
for (auto id : region_input_ids) {
return_and_parameter_types.push_back(
ir_context->get_def_use_mgr()->GetDef(id)->type_id());
}
function_type_id =
fuzzerutil::FindFunctionType(ir_context, return_and_parameter_types);
}
// If no existing function type was found, we need to create one.
if (function_type_id == 0) {
assert(
((return_type_id == 0) == !region_output_ids.empty()) &&
"We should only have set the return type if there are no output ids.");
// If the region generates output ids, we need to make a struct with one
// field per output id.
if (!region_output_ids.empty()) {
opt::Instruction::OperandList struct_member_types;
for (uint32_t output_id : region_output_ids) {
auto output_id_type =
ir_context->get_def_use_mgr()->GetDef(output_id)->type_id();
if (ir_context->get_def_use_mgr()->GetDef(output_id_type)->opcode() ==
SpvOpTypeVoid) {
// We cannot add a void field to a struct. We instead use OpUndef to
// handle void output ids.
continue;
}
struct_member_types.push_back({SPV_OPERAND_TYPE_ID, {output_id_type}});
}
// Add a new struct type to the module.
ir_context->module()->AddType(MakeUnique<opt::Instruction>(
ir_context, SpvOpTypeStruct, 0,
message_.new_function_struct_return_type_id(),
std::move(struct_member_types)));
// The return type for the function is the newly-created struct.
return_type_id = message_.new_function_struct_return_type_id();
}
assert(
return_type_id != 0 &&
"We should either have a void return type, or have created a struct.");
// The region's input ids dictate the parameter types to the function.
opt::Instruction::OperandList function_type_operands;
function_type_operands.push_back({SPV_OPERAND_TYPE_ID, {return_type_id}});
for (auto id : region_input_ids) {
function_type_operands.push_back(
{SPV_OPERAND_TYPE_ID,
{ir_context->get_def_use_mgr()->GetDef(id)->type_id()}});
}
// Add a new function type to the module, and record that this is the type
// id for the new function.
ir_context->module()->AddType(MakeUnique<opt::Instruction>(
ir_context, SpvOpTypeFunction, 0, message_.new_function_type_id(),
function_type_operands));
function_type_id = message_.new_function_type_id();
}
// Create a new function with |message_.new_function_id| as the function id,
// and the return type and function type prepared above.
std::unique_ptr<opt::Function> outlined_function =
MakeUnique<opt::Function>(MakeUnique<opt::Instruction>(
ir_context, SpvOpFunction, return_type_id, message_.new_function_id(),
opt::Instruction::OperandList(
{{spv_operand_type_t ::SPV_OPERAND_TYPE_LITERAL_INTEGER,
{SpvFunctionControlMaskNone}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID,
{function_type_id}}})));
// Add one parameter to the function for each input id, using the fresh ids
// provided in |input_id_to_fresh_id_map|, or overflow ids if needed.
for (auto id : region_input_ids) {
uint32_t fresh_id = input_id_to_fresh_id_map.at(id);
outlined_function->AddParameter(MakeUnique<opt::Instruction>(
ir_context, SpvOpFunctionParameter,
ir_context->get_def_use_mgr()->GetDef(id)->type_id(), fresh_id,
opt::Instruction::OperandList()));
// Analyse the use of the new parameter instruction.
outlined_function->ForEachParam(
[fresh_id, ir_context](opt::Instruction* inst) {
if (inst->result_id() == fresh_id) {
ir_context->AnalyzeDefUse(inst);
}
});
// If the input id is an irrelevant-valued variable, the same should be true
// of the corresponding parameter.
if (transformation_context->GetFactManager()->PointeeValueIsIrrelevant(
id)) {
transformation_context->GetFactManager()
->AddFactValueOfPointeeIsIrrelevant(input_id_to_fresh_id_map.at(id));
}
}
return outlined_function;
}
void TransformationOutlineFunction::UpdateModuleIdBoundForFreshIds(
opt::IRContext* ir_context,
const std::map<uint32_t, uint32_t>& input_id_to_fresh_id_map,
const std::map<uint32_t, uint32_t>& output_id_to_fresh_id_map) const {
// Enlarge the module's id bound as needed to accommodate the various fresh
// ids associated with the transformation.
fuzzerutil::UpdateModuleIdBound(
ir_context, message_.new_function_struct_return_type_id());
fuzzerutil::UpdateModuleIdBound(ir_context, message_.new_function_type_id());
fuzzerutil::UpdateModuleIdBound(ir_context, message_.new_function_id());
fuzzerutil::UpdateModuleIdBound(ir_context,
message_.new_function_region_entry_block());
fuzzerutil::UpdateModuleIdBound(ir_context, message_.new_caller_result_id());
fuzzerutil::UpdateModuleIdBound(ir_context, message_.new_callee_result_id());
for (auto& entry : input_id_to_fresh_id_map) {
fuzzerutil::UpdateModuleIdBound(ir_context, entry.second);
}
for (auto& entry : output_id_to_fresh_id_map) {
fuzzerutil::UpdateModuleIdBound(ir_context, entry.second);
}
}
void TransformationOutlineFunction::RemapInputAndOutputIdsInRegion(
opt::IRContext* ir_context,
const opt::BasicBlock& original_region_exit_block,
const std::set<opt::BasicBlock*>& region_blocks,
const std::vector<uint32_t>& region_input_ids,
const std::vector<uint32_t>& region_output_ids,
const std::map<uint32_t, uint32_t>& input_id_to_fresh_id_map,
const std::map<uint32_t, uint32_t>& output_id_to_fresh_id_map) const {
// Change all uses of input ids inside the region to the corresponding fresh
// ids that will ultimately be parameters of the outlined function.
// This is done by considering each region input id in turn.
for (uint32_t id : region_input_ids) {
// We then consider each use of the input id.
ir_context->get_def_use_mgr()->ForEachUse(
id, [ir_context, id, &input_id_to_fresh_id_map, region_blocks](
opt::Instruction* use, uint32_t operand_index) {
// Find the block in which this use of the input id occurs.
opt::BasicBlock* use_block = ir_context->get_instr_block(use);
// We want to rewrite the use id if its block occurs in the outlined
// region.
if (region_blocks.count(use_block) != 0) {
// Rewrite this use of the input id.
use->SetOperand(operand_index, {input_id_to_fresh_id_map.at(id)});
}
});
}
// Change each definition of a region output id to define the corresponding
// fresh ids that will store intermediate value for the output ids. Also
// change all uses of the output id located in the outlined region.
// This is done by considering each region output id in turn.
for (uint32_t id : region_output_ids) {
// First consider each use of the output id and update the relevant uses.
ir_context->get_def_use_mgr()->ForEachUse(
id, [ir_context, &original_region_exit_block, id,
&output_id_to_fresh_id_map,
region_blocks](opt::Instruction* use, uint32_t operand_index) {
// Find the block in which this use of the output id occurs.
auto use_block = ir_context->get_instr_block(use);
// We want to rewrite the use id if its block occurs in the outlined
// region, with one exception: the terminator of the exit block of
// the region is going to remain in the original function, so if the
// use appears in such a terminator instruction we leave it alone.
if (
// The block is in the region ...
region_blocks.count(use_block) != 0 &&
// ... and the use is not in the terminator instruction of the
// region's exit block.
!(use_block == &original_region_exit_block &&
use->IsBlockTerminator())) {
// Rewrite this use of the output id.
use->SetOperand(operand_index, {output_id_to_fresh_id_map.at(id)});
}
});
// Now change the instruction that defines the output id so that it instead
// defines the corresponding fresh id. We do this after changing all the
// uses so that the definition of the original id is still registered when
// we analyse its uses.
ir_context->get_def_use_mgr()->GetDef(id)->SetResultId(
output_id_to_fresh_id_map.at(id));
}
}
void TransformationOutlineFunction::PopulateOutlinedFunction(
const opt::BasicBlock& original_region_entry_block,
const opt::BasicBlock& original_region_exit_block,
const std::set<opt::BasicBlock*>& region_blocks,
const std::vector<uint32_t>& region_output_ids,
const std::map<uint32_t, uint32_t>& output_id_to_type_id,
const std::map<uint32_t, uint32_t>& output_id_to_fresh_id_map,
opt::IRContext* ir_context, opt::Function* outlined_function) const {
// When we create the exit block for the outlined region, we use this pointer
// to track of it so that we can manipulate it later.
opt::BasicBlock* outlined_region_exit_block = nullptr;
// The region entry block in the new function is identical to the entry block
// of the region being outlined, except that it has
// |message_.new_function_region_entry_block| as its id.
std::unique_ptr<opt::BasicBlock> outlined_region_entry_block =
MakeUnique<opt::BasicBlock>(MakeUnique<opt::Instruction>(
ir_context, SpvOpLabel, 0, message_.new_function_region_entry_block(),
opt::Instruction::OperandList()));
if (&original_region_entry_block == &original_region_exit_block) {
outlined_region_exit_block = outlined_region_entry_block.get();
}
for (auto& inst : original_region_entry_block) {
outlined_region_entry_block->AddInstruction(
std::unique_ptr<opt::Instruction>(inst.Clone(ir_context)));
}
outlined_function->AddBasicBlock(std::move(outlined_region_entry_block));
// We now go through the single-entry single-exit region defined by the entry
// and exit blocks, adding clones of all blocks to the new function.
// Consider every block in the enclosing function.
auto enclosing_function = original_region_entry_block.GetParent();
for (auto block_it = enclosing_function->begin();
block_it != enclosing_function->end();) {
// Skip the region's entry block - we already dealt with it above.
if (region_blocks.count(&*block_it) == 0 ||
&*block_it == &original_region_entry_block) {
++block_it;
continue;
}
// Clone the block so that it can be added to the new function.
auto cloned_block =
std::unique_ptr<opt::BasicBlock>(block_it->Clone(ir_context));
// If this is the region's exit block, then the cloned block is the outlined
// region's exit block.
if (&*block_it == &original_region_exit_block) {
assert(outlined_region_exit_block == nullptr &&
"We should not yet have encountered the exit block.");
outlined_region_exit_block = cloned_block.get();
}
// Redirect any OpPhi operands whose predecessors are the original region
// entry block to become the new function entry block.
cloned_block->ForEachPhiInst([this](opt::Instruction* phi_inst) {
for (uint32_t predecessor_index = 1;
predecessor_index < phi_inst->NumInOperands();
predecessor_index += 2) {
if (phi_inst->GetSingleWordInOperand(predecessor_index) ==
message_.entry_block()) {
phi_inst->SetInOperand(predecessor_index,
{message_.new_function_region_entry_block()});
}
}
});
outlined_function->AddBasicBlock(std::move(cloned_block));
block_it = block_it.Erase();
}
assert(outlined_region_exit_block != nullptr &&
"We should have encountered the region's exit block when iterating "
"through the function");
// We now need to adapt the exit block for the region - in the new function -
// so that it ends with a return.
// We first eliminate the merge instruction (if any) and the terminator for
// the cloned exit block.
for (auto inst_it = outlined_region_exit_block->begin();
inst_it != outlined_region_exit_block->end();) {
if (inst_it->opcode() == SpvOpLoopMerge ||
inst_it->opcode() == SpvOpSelectionMerge) {
inst_it = inst_it.Erase();
} else if (inst_it->IsBlockTerminator()) {
inst_it = inst_it.Erase();
} else {
++inst_it;
}
}
// We now add either OpReturn or OpReturnValue as the cloned exit block's
// terminator.
if (region_output_ids.empty()) {
// The case where there are no region output ids is simple: we just add
// OpReturn.
outlined_region_exit_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpReturn, 0, 0, opt::Instruction::OperandList()));
} else {
// In the case where there are output ids, we add an OpCompositeConstruct
// instruction to pack all the non-void output values into a struct, and
// then an OpReturnValue instruction to return this struct.
opt::Instruction::OperandList struct_member_operands;
for (uint32_t id : region_output_ids) {
if (ir_context->get_def_use_mgr()
->GetDef(output_id_to_type_id.at(id))
->opcode() != SpvOpTypeVoid) {
struct_member_operands.push_back(
{SPV_OPERAND_TYPE_ID, {output_id_to_fresh_id_map.at(id)}});
}
}
outlined_region_exit_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpCompositeConstruct,
message_.new_function_struct_return_type_id(),
message_.new_callee_result_id(), struct_member_operands));
outlined_region_exit_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpReturnValue, 0, 0,
opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_ID, {message_.new_callee_result_id()}}})));
}
outlined_function->SetFunctionEnd(MakeUnique<opt::Instruction>(
ir_context, SpvOpFunctionEnd, 0, 0, opt::Instruction::OperandList()));
}
void TransformationOutlineFunction::ShrinkOriginalRegion(
opt::IRContext* ir_context, const std::set<opt::BasicBlock*>& region_blocks,
const std::vector<uint32_t>& region_input_ids,
const std::vector<uint32_t>& region_output_ids,
const std::map<uint32_t, uint32_t>& output_id_to_type_id,
uint32_t return_type_id,
std::unique_ptr<opt::Instruction> cloned_exit_block_merge,
std::unique_ptr<opt::Instruction> cloned_exit_block_terminator,
opt::BasicBlock* original_region_entry_block) const {
// Erase all blocks from the original function that are in the outlined
// region, except for the region's entry block.
//
// In the process, identify all references to the exit block of the region,
// as merge blocks, continue targets, or OpPhi predecessors, and rewrite them
// to refer to the region entry block (the single block to which we are
// shrinking the region).
auto enclosing_function = original_region_entry_block->GetParent();
for (auto block_it = enclosing_function->begin();
block_it != enclosing_function->end();) {
if (&*block_it == original_region_entry_block) {
++block_it;
} else if (region_blocks.count(&*block_it) == 0) {
// The block is not in the region. Check whether it has the last block
// of the region as an OpPhi predecessor, and if so change the
// predecessor to be the first block of the region (i.e. the block
// containing the call to what was outlined).
assert(block_it->MergeBlockIdIfAny() != message_.exit_block() &&
"Outlined region must not end with a merge block");
assert(block_it->ContinueBlockIdIfAny() != message_.exit_block() &&
"Outlined region must not end with a continue target");
block_it->ForEachPhiInst([this](opt::Instruction* phi_inst) {
for (uint32_t predecessor_index = 1;
predecessor_index < phi_inst->NumInOperands();
predecessor_index += 2) {
if (phi_inst->GetSingleWordInOperand(predecessor_index) ==
message_.exit_block()) {
phi_inst->SetInOperand(predecessor_index, {message_.entry_block()});
}
}
});
++block_it;
} else {
// The block is in the region and is not the region's entry block: kill
// it.
block_it = block_it.Erase();
}
}
// Now erase all instructions from the region's entry block, as they have
// been outlined.
for (auto inst_it = original_region_entry_block->begin();
inst_it != original_region_entry_block->end();) {
inst_it = inst_it.Erase();
}
// Now we add a call to the outlined function to the region's entry block.
opt::Instruction::OperandList function_call_operands;
function_call_operands.push_back(
{SPV_OPERAND_TYPE_ID, {message_.new_function_id()}});
// The function parameters are the region input ids.
for (auto input_id : region_input_ids) {
function_call_operands.push_back({SPV_OPERAND_TYPE_ID, {input_id}});
}
original_region_entry_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpFunctionCall, return_type_id,
message_.new_caller_result_id(), function_call_operands));
// If there are output ids, the function call will return a struct. For each
// output id, we add an extract operation to pull the appropriate struct
// member out into an output id. The exception is for output ids with void
// type. There are no struct entries for these, so we use an OpUndef of void
// type instead.
uint32_t struct_member_index = 0;
for (uint32_t output_id : region_output_ids) {
uint32_t output_type_id = output_id_to_type_id.at(output_id);
if (ir_context->get_def_use_mgr()->GetDef(output_type_id)->opcode() ==
SpvOpTypeVoid) {
original_region_entry_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpUndef, output_type_id, output_id,
opt::Instruction::OperandList()));
// struct_member_index is not incremented since there was no struct member
// associated with this void-typed output id.
} else {
original_region_entry_block->AddInstruction(MakeUnique<opt::Instruction>(
ir_context, SpvOpCompositeExtract, output_type_id, output_id,
opt::Instruction::OperandList(
{{SPV_OPERAND_TYPE_ID, {message_.new_caller_result_id()}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {struct_member_index}}})));
struct_member_index++;
}
}
// Finally, we terminate the block with the merge instruction (if any) that
// used to belong to the region's exit block, and the terminator that used
// to belong to the region's exit block.
if (cloned_exit_block_merge != nullptr) {
original_region_entry_block->AddInstruction(
std::move(cloned_exit_block_merge));
}
original_region_entry_block->AddInstruction(
std::move(cloned_exit_block_terminator));
}
std::unordered_set<uint32_t> TransformationOutlineFunction::GetFreshIds()
const {
std::unordered_set<uint32_t> result = {
message_.new_function_struct_return_type_id(),
message_.new_function_type_id(),
message_.new_function_id(),
message_.new_function_region_entry_block(),
message_.new_caller_result_id(),
message_.new_callee_result_id()};
for (auto& pair : message_.input_id_to_fresh_id()) {
result.insert(pair.second());
}
for (auto& pair : message_.output_id_to_fresh_id()) {
result.insert(pair.second());
}
return result;
}
} // namespace fuzz
} // namespace spvtools