mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2024-12-31 20:21:06 +00:00
35c9518c4e
* Handle id overflow in the ssa rewriter. Remove LocalSSAElim pass at the same time. It does the same thing as the SSARewrite pass. Then even share almost all of the same code. Fixes crbug.com/997246
339 lines
11 KiB
C++
339 lines
11 KiB
C++
// Copyright (c) 2017 Google Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "source/opt/cfg.h"
|
|
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
#include "source/cfa.h"
|
|
#include "source/opt/ir_builder.h"
|
|
#include "source/opt/ir_context.h"
|
|
#include "source/opt/module.h"
|
|
|
|
namespace spvtools {
|
|
namespace opt {
|
|
namespace {
|
|
|
|
using cbb_ptr = const opt::BasicBlock*;
|
|
|
|
// Universal Limit of ResultID + 1
|
|
const int kMaxResultId = 0x400000;
|
|
|
|
} // namespace
|
|
|
|
CFG::CFG(Module* module)
|
|
: module_(module),
|
|
pseudo_entry_block_(std::unique_ptr<Instruction>(
|
|
new Instruction(module->context(), SpvOpLabel, 0, 0, {}))),
|
|
pseudo_exit_block_(std::unique_ptr<Instruction>(new Instruction(
|
|
module->context(), SpvOpLabel, 0, kMaxResultId, {}))) {
|
|
for (auto& fn : *module) {
|
|
for (auto& blk : fn) {
|
|
RegisterBlock(&blk);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CFG::AddEdges(BasicBlock* blk) {
|
|
uint32_t blk_id = blk->id();
|
|
// Force the creation of an entry, not all basic block have predecessors
|
|
// (such as the entry blocks and some unreachables).
|
|
label2preds_[blk_id];
|
|
const auto* const_blk = blk;
|
|
const_blk->ForEachSuccessorLabel(
|
|
[blk_id, this](const uint32_t succ_id) { AddEdge(blk_id, succ_id); });
|
|
}
|
|
|
|
void CFG::RemoveNonExistingEdges(uint32_t blk_id) {
|
|
std::vector<uint32_t> updated_pred_list;
|
|
for (uint32_t id : preds(blk_id)) {
|
|
const BasicBlock* pred_blk = block(id);
|
|
bool has_branch = false;
|
|
pred_blk->ForEachSuccessorLabel([&has_branch, blk_id](uint32_t succ) {
|
|
if (succ == blk_id) {
|
|
has_branch = true;
|
|
}
|
|
});
|
|
if (has_branch) updated_pred_list.push_back(id);
|
|
}
|
|
|
|
label2preds_.at(blk_id) = std::move(updated_pred_list);
|
|
}
|
|
|
|
void CFG::ComputeStructuredOrder(Function* func, BasicBlock* root,
|
|
std::list<BasicBlock*>* order) {
|
|
assert(module_->context()->get_feature_mgr()->HasCapability(
|
|
SpvCapabilityShader) &&
|
|
"This only works on structured control flow");
|
|
|
|
// Compute structured successors and do DFS.
|
|
ComputeStructuredSuccessors(func);
|
|
auto ignore_block = [](cbb_ptr) {};
|
|
auto ignore_edge = [](cbb_ptr, cbb_ptr) {};
|
|
auto get_structured_successors = [this](const BasicBlock* b) {
|
|
return &(block2structured_succs_[b]);
|
|
};
|
|
|
|
// TODO(greg-lunarg): Get rid of const_cast by making moving const
|
|
// out of the cfa.h prototypes and into the invoking code.
|
|
auto post_order = [&](cbb_ptr b) {
|
|
order->push_front(const_cast<BasicBlock*>(b));
|
|
};
|
|
CFA<BasicBlock>::DepthFirstTraversal(root, get_structured_successors,
|
|
ignore_block, post_order, ignore_edge);
|
|
}
|
|
|
|
void CFG::ForEachBlockInPostOrder(BasicBlock* bb,
|
|
const std::function<void(BasicBlock*)>& f) {
|
|
std::vector<BasicBlock*> po;
|
|
std::unordered_set<BasicBlock*> seen;
|
|
ComputePostOrderTraversal(bb, &po, &seen);
|
|
|
|
for (BasicBlock* current_bb : po) {
|
|
if (!IsPseudoExitBlock(current_bb) && !IsPseudoEntryBlock(current_bb)) {
|
|
f(current_bb);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CFG::ForEachBlockInReversePostOrder(
|
|
BasicBlock* bb, const std::function<void(BasicBlock*)>& f) {
|
|
WhileEachBlockInReversePostOrder(bb, [f](BasicBlock* b) {
|
|
f(b);
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool CFG::WhileEachBlockInReversePostOrder(
|
|
BasicBlock* bb, const std::function<bool(BasicBlock*)>& f) {
|
|
std::vector<BasicBlock*> po;
|
|
std::unordered_set<BasicBlock*> seen;
|
|
ComputePostOrderTraversal(bb, &po, &seen);
|
|
|
|
for (auto current_bb = po.rbegin(); current_bb != po.rend(); ++current_bb) {
|
|
if (!IsPseudoExitBlock(*current_bb) && !IsPseudoEntryBlock(*current_bb)) {
|
|
if (!f(*current_bb)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CFG::ComputeStructuredSuccessors(Function* func) {
|
|
block2structured_succs_.clear();
|
|
for (auto& blk : *func) {
|
|
// If no predecessors in function, make successor to pseudo entry.
|
|
if (label2preds_[blk.id()].size() == 0)
|
|
block2structured_succs_[&pseudo_entry_block_].push_back(&blk);
|
|
|
|
// If header, make merge block first successor and continue block second
|
|
// successor if there is one.
|
|
uint32_t mbid = blk.MergeBlockIdIfAny();
|
|
if (mbid != 0) {
|
|
block2structured_succs_[&blk].push_back(block(mbid));
|
|
uint32_t cbid = blk.ContinueBlockIdIfAny();
|
|
if (cbid != 0) {
|
|
block2structured_succs_[&blk].push_back(block(cbid));
|
|
}
|
|
}
|
|
|
|
// Add true successors.
|
|
const auto& const_blk = blk;
|
|
const_blk.ForEachSuccessorLabel([&blk, this](const uint32_t sbid) {
|
|
block2structured_succs_[&blk].push_back(block(sbid));
|
|
});
|
|
}
|
|
}
|
|
|
|
void CFG::ComputePostOrderTraversal(BasicBlock* bb,
|
|
std::vector<BasicBlock*>* order,
|
|
std::unordered_set<BasicBlock*>* seen) {
|
|
std::vector<BasicBlock*> stack;
|
|
stack.push_back(bb);
|
|
while (!stack.empty()) {
|
|
bb = stack.back();
|
|
seen->insert(bb);
|
|
static_cast<const BasicBlock*>(bb)->WhileEachSuccessorLabel(
|
|
[&seen, &stack, this](const uint32_t sbid) {
|
|
BasicBlock* succ_bb = id2block_[sbid];
|
|
if (!seen->count(succ_bb)) {
|
|
stack.push_back(succ_bb);
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
if (stack.back() == bb) {
|
|
order->push_back(bb);
|
|
stack.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
BasicBlock* CFG::SplitLoopHeader(BasicBlock* bb) {
|
|
assert(bb->GetLoopMergeInst() && "Expecting bb to be the header of a loop.");
|
|
|
|
Function* fn = bb->GetParent();
|
|
IRContext* context = module_->context();
|
|
|
|
// Get the new header id up front. If we are out of ids, then we cannot split
|
|
// the loop.
|
|
uint32_t new_header_id = context->TakeNextId();
|
|
if (new_header_id == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Find the insertion point for the new bb.
|
|
Function::iterator header_it = std::find_if(
|
|
fn->begin(), fn->end(),
|
|
[bb](BasicBlock& block_in_func) { return &block_in_func == bb; });
|
|
assert(header_it != fn->end());
|
|
|
|
const std::vector<uint32_t>& pred = preds(bb->id());
|
|
// Find the back edge
|
|
BasicBlock* latch_block = nullptr;
|
|
Function::iterator latch_block_iter = header_it;
|
|
while (++latch_block_iter != fn->end()) {
|
|
// If blocks are in the proper order, then the only branch that appears
|
|
// after the header is the latch.
|
|
if (std::find(pred.begin(), pred.end(), latch_block_iter->id()) !=
|
|
pred.end()) {
|
|
break;
|
|
}
|
|
}
|
|
assert(latch_block_iter != fn->end() && "Could not find the latch.");
|
|
latch_block = &*latch_block_iter;
|
|
|
|
RemoveSuccessorEdges(bb);
|
|
|
|
// Create the new header bb basic bb.
|
|
// Leave the phi instructions behind.
|
|
auto iter = bb->begin();
|
|
while (iter->opcode() == SpvOpPhi) {
|
|
++iter;
|
|
}
|
|
|
|
BasicBlock* new_header = bb->SplitBasicBlock(context, new_header_id, iter);
|
|
context->AnalyzeDefUse(new_header->GetLabelInst());
|
|
|
|
// Update cfg
|
|
RegisterBlock(new_header);
|
|
|
|
// Update bb mappings.
|
|
context->set_instr_block(new_header->GetLabelInst(), new_header);
|
|
new_header->ForEachInst([new_header, context](Instruction* inst) {
|
|
context->set_instr_block(inst, new_header);
|
|
});
|
|
|
|
// Adjust the OpPhi instructions as needed.
|
|
bb->ForEachPhiInst([latch_block, bb, new_header, context](Instruction* phi) {
|
|
std::vector<uint32_t> preheader_phi_ops;
|
|
std::vector<Operand> header_phi_ops;
|
|
|
|
// Identify where the original inputs to original OpPhi belong: header or
|
|
// preheader.
|
|
for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) {
|
|
uint32_t def_id = phi->GetSingleWordInOperand(i);
|
|
uint32_t branch_id = phi->GetSingleWordInOperand(i + 1);
|
|
if (branch_id == latch_block->id()) {
|
|
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {def_id}});
|
|
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {branch_id}});
|
|
} else {
|
|
preheader_phi_ops.push_back(def_id);
|
|
preheader_phi_ops.push_back(branch_id);
|
|
}
|
|
}
|
|
|
|
// Create a phi instruction if and only if the preheader_phi_ops has more
|
|
// than one pair.
|
|
if (preheader_phi_ops.size() > 2) {
|
|
InstructionBuilder builder(
|
|
context, &*bb->begin(),
|
|
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
|
|
|
|
Instruction* new_phi = builder.AddPhi(phi->type_id(), preheader_phi_ops);
|
|
|
|
// Add the OpPhi to the header bb.
|
|
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {new_phi->result_id()}});
|
|
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {bb->id()}});
|
|
} else {
|
|
// An OpPhi with a single entry is just a copy. In this case use the same
|
|
// instruction in the new header.
|
|
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {preheader_phi_ops[0]}});
|
|
header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {bb->id()}});
|
|
}
|
|
|
|
phi->RemoveFromList();
|
|
std::unique_ptr<Instruction> phi_owner(phi);
|
|
phi->SetInOperands(std::move(header_phi_ops));
|
|
new_header->begin()->InsertBefore(std::move(phi_owner));
|
|
context->set_instr_block(phi, new_header);
|
|
context->AnalyzeUses(phi);
|
|
});
|
|
|
|
// Add a branch to the new header.
|
|
InstructionBuilder branch_builder(
|
|
context, bb,
|
|
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
|
|
bb->AddInstruction(
|
|
MakeUnique<Instruction>(context, SpvOpBranch, 0, 0,
|
|
std::initializer_list<Operand>{
|
|
{SPV_OPERAND_TYPE_ID, {new_header->id()}}}));
|
|
context->AnalyzeUses(bb->terminator());
|
|
context->set_instr_block(bb->terminator(), bb);
|
|
label2preds_[new_header->id()].push_back(bb->id());
|
|
|
|
// Update the latch to branch to the new header.
|
|
latch_block->ForEachSuccessorLabel([bb, new_header_id](uint32_t* id) {
|
|
if (*id == bb->id()) {
|
|
*id = new_header_id;
|
|
}
|
|
});
|
|
Instruction* latch_branch = latch_block->terminator();
|
|
context->AnalyzeUses(latch_branch);
|
|
label2preds_[new_header->id()].push_back(latch_block->id());
|
|
|
|
auto& block_preds = label2preds_[bb->id()];
|
|
auto latch_pos =
|
|
std::find(block_preds.begin(), block_preds.end(), latch_block->id());
|
|
assert(latch_pos != block_preds.end() && "The cfg was invalid.");
|
|
block_preds.erase(latch_pos);
|
|
|
|
// Update the loop descriptors
|
|
if (context->AreAnalysesValid(IRContext::kAnalysisLoopAnalysis)) {
|
|
LoopDescriptor* loop_desc = context->GetLoopDescriptor(bb->GetParent());
|
|
Loop* loop = (*loop_desc)[bb->id()];
|
|
|
|
loop->AddBasicBlock(new_header_id);
|
|
loop->SetHeaderBlock(new_header);
|
|
loop_desc->SetBasicBlockToLoop(new_header_id, loop);
|
|
|
|
loop->RemoveBasicBlock(bb->id());
|
|
loop->SetPreHeaderBlock(bb);
|
|
|
|
Loop* parent_loop = loop->GetParent();
|
|
if (parent_loop != nullptr) {
|
|
parent_loop->AddBasicBlock(bb->id());
|
|
loop_desc->SetBasicBlockToLoop(bb->id(), parent_loop);
|
|
} else {
|
|
loop_desc->SetBasicBlockToLoop(bb->id(), nullptr);
|
|
}
|
|
}
|
|
return new_header;
|
|
}
|
|
|
|
} // namespace opt
|
|
} // namespace spvtools
|