mirror of
https://github.com/KhronosGroup/SPIRV-Tools
synced 2025-01-11 09:00:06 +00:00
6fac705e76
Fixes #3918.
1181 lines
46 KiB
C++
1181 lines
46 KiB
C++
// Copyright (c) 2015-2016 The Khronos Group Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "source/cfa.h"
|
|
#include "source/opcode.h"
|
|
#include "source/spirv_target_env.h"
|
|
#include "source/spirv_validator_options.h"
|
|
#include "source/val/basic_block.h"
|
|
#include "source/val/construct.h"
|
|
#include "source/val/function.h"
|
|
#include "source/val/validate.h"
|
|
#include "source/val/validation_state.h"
|
|
|
|
namespace spvtools {
|
|
namespace val {
|
|
namespace {
|
|
|
|
spv_result_t ValidatePhi(ValidationState_t& _, const Instruction* inst) {
|
|
auto block = inst->block();
|
|
size_t num_in_ops = inst->words().size() - 3;
|
|
if (num_in_ops % 2 != 0) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "OpPhi does not have an equal number of incoming values and "
|
|
"basic blocks.";
|
|
}
|
|
|
|
const Instruction* type_inst = _.FindDef(inst->type_id());
|
|
assert(type_inst);
|
|
|
|
const SpvOp type_opcode = type_inst->opcode();
|
|
if (type_opcode == SpvOpTypePointer &&
|
|
_.addressing_model() == SpvAddressingModelLogical) {
|
|
if (!_.features().variable_pointers &&
|
|
!_.features().variable_pointers_storage_buffer) {
|
|
return _.diag(SPV_ERROR_INVALID_DATA, inst)
|
|
<< "Using pointers with OpPhi requires capability "
|
|
<< "VariablePointers or VariablePointersStorageBuffer";
|
|
}
|
|
}
|
|
|
|
if (!_.options()->before_hlsl_legalization) {
|
|
if (type_opcode == SpvOpTypeSampledImage ||
|
|
(_.HasCapability(SpvCapabilityShader) &&
|
|
(type_opcode == SpvOpTypeImage || type_opcode == SpvOpTypeSampler))) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "Result type cannot be Op" << spvOpcodeString(type_opcode);
|
|
}
|
|
}
|
|
|
|
// Create a uniqued vector of predecessor ids for comparison against
|
|
// incoming values. OpBranchConditional %cond %label %label produces two
|
|
// predecessors in the CFG.
|
|
std::vector<uint32_t> pred_ids;
|
|
std::transform(block->predecessors()->begin(), block->predecessors()->end(),
|
|
std::back_inserter(pred_ids),
|
|
[](const BasicBlock* b) { return b->id(); });
|
|
std::sort(pred_ids.begin(), pred_ids.end());
|
|
pred_ids.erase(std::unique(pred_ids.begin(), pred_ids.end()), pred_ids.end());
|
|
|
|
size_t num_edges = num_in_ops / 2;
|
|
if (num_edges != pred_ids.size()) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "OpPhi's number of incoming blocks (" << num_edges
|
|
<< ") does not match block's predecessor count ("
|
|
<< block->predecessors()->size() << ").";
|
|
}
|
|
|
|
std::unordered_set<uint32_t> observed_predecessors;
|
|
|
|
for (size_t i = 3; i < inst->words().size(); ++i) {
|
|
auto inc_id = inst->word(i);
|
|
if (i % 2 == 1) {
|
|
// Incoming value type must match the phi result type.
|
|
auto inc_type_id = _.GetTypeId(inc_id);
|
|
if (inst->type_id() != inc_type_id) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "OpPhi's result type <id> " << _.getIdName(inst->type_id())
|
|
<< " does not match incoming value <id> " << _.getIdName(inc_id)
|
|
<< " type <id> " << _.getIdName(inc_type_id) << ".";
|
|
}
|
|
} else {
|
|
if (_.GetIdOpcode(inc_id) != SpvOpLabel) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "OpPhi's incoming basic block <id> " << _.getIdName(inc_id)
|
|
<< " is not an OpLabel.";
|
|
}
|
|
|
|
// Incoming basic block must be an immediate predecessor of the phi's
|
|
// block.
|
|
if (!std::binary_search(pred_ids.begin(), pred_ids.end(), inc_id)) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "OpPhi's incoming basic block <id> " << _.getIdName(inc_id)
|
|
<< " is not a predecessor of <id> " << _.getIdName(block->id())
|
|
<< ".";
|
|
}
|
|
|
|
// We must not have already seen this predecessor as one of the phi's
|
|
// operands.
|
|
if (observed_predecessors.count(inc_id) != 0) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "OpPhi references incoming basic block <id> "
|
|
<< _.getIdName(inc_id) << " multiple times.";
|
|
}
|
|
|
|
// Note the fact that we have now observed this predecessor.
|
|
observed_predecessors.insert(inc_id);
|
|
}
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t ValidateBranch(ValidationState_t& _, const Instruction* inst) {
|
|
// target operands must be OpLabel
|
|
const auto id = inst->GetOperandAs<uint32_t>(0);
|
|
const auto target = _.FindDef(id);
|
|
if (!target || SpvOpLabel != target->opcode()) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "'Target Label' operands for OpBranch must be the ID "
|
|
"of an OpLabel instruction";
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t ValidateBranchConditional(ValidationState_t& _,
|
|
const Instruction* inst) {
|
|
// num_operands is either 3 or 5 --- if 5, the last two need to be literal
|
|
// integers
|
|
const auto num_operands = inst->operands().size();
|
|
if (num_operands != 3 && num_operands != 5) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "OpBranchConditional requires either 3 or 5 parameters";
|
|
}
|
|
|
|
// grab the condition operand and check that it is a bool
|
|
const auto cond_id = inst->GetOperandAs<uint32_t>(0);
|
|
const auto cond_op = _.FindDef(cond_id);
|
|
if (!cond_op || !cond_op->type_id() ||
|
|
!_.IsBoolScalarType(cond_op->type_id())) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst) << "Condition operand for "
|
|
"OpBranchConditional must be "
|
|
"of boolean type";
|
|
}
|
|
|
|
// target operands must be OpLabel
|
|
// note that we don't need to check that the target labels are in the same
|
|
// function,
|
|
// PerformCfgChecks already checks for that
|
|
const auto true_id = inst->GetOperandAs<uint32_t>(1);
|
|
const auto true_target = _.FindDef(true_id);
|
|
if (!true_target || SpvOpLabel != true_target->opcode()) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "The 'True Label' operand for OpBranchConditional must be the "
|
|
"ID of an OpLabel instruction";
|
|
}
|
|
|
|
const auto false_id = inst->GetOperandAs<uint32_t>(2);
|
|
const auto false_target = _.FindDef(false_id);
|
|
if (!false_target || SpvOpLabel != false_target->opcode()) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "The 'False Label' operand for OpBranchConditional must be the "
|
|
"ID of an OpLabel instruction";
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t ValidateSwitch(ValidationState_t& _, const Instruction* inst) {
|
|
const auto num_operands = inst->operands().size();
|
|
// At least two operands (selector, default), any more than that are
|
|
// literal/target.
|
|
|
|
// target operands must be OpLabel
|
|
for (size_t i = 2; i < num_operands; i += 2) {
|
|
// literal, id
|
|
const auto id = inst->GetOperandAs<uint32_t>(i + 1);
|
|
const auto target = _.FindDef(id);
|
|
if (!target || SpvOpLabel != target->opcode()) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "'Target Label' operands for OpSwitch must be IDs of an "
|
|
"OpLabel instruction";
|
|
}
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t ValidateReturnValue(ValidationState_t& _,
|
|
const Instruction* inst) {
|
|
const auto value_id = inst->GetOperandAs<uint32_t>(0);
|
|
const auto value = _.FindDef(value_id);
|
|
if (!value || !value->type_id()) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "OpReturnValue Value <id> '" << _.getIdName(value_id)
|
|
<< "' does not represent a value.";
|
|
}
|
|
auto value_type = _.FindDef(value->type_id());
|
|
if (!value_type || SpvOpTypeVoid == value_type->opcode()) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "OpReturnValue value's type <id> '"
|
|
<< _.getIdName(value->type_id()) << "' is missing or void.";
|
|
}
|
|
|
|
const bool uses_variable_pointer =
|
|
_.features().variable_pointers ||
|
|
_.features().variable_pointers_storage_buffer;
|
|
|
|
if (_.addressing_model() == SpvAddressingModelLogical &&
|
|
SpvOpTypePointer == value_type->opcode() && !uses_variable_pointer &&
|
|
!_.options()->relax_logical_pointer) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "OpReturnValue value's type <id> '"
|
|
<< _.getIdName(value->type_id())
|
|
<< "' is a pointer, which is invalid in the Logical addressing "
|
|
"model.";
|
|
}
|
|
|
|
const auto function = inst->function();
|
|
const auto return_type = _.FindDef(function->GetResultTypeId());
|
|
if (!return_type || return_type->id() != value_type->id()) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "OpReturnValue Value <id> '" << _.getIdName(value_id)
|
|
<< "'s type does not match OpFunction's return type.";
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t ValidateLoopMerge(ValidationState_t& _, const Instruction* inst) {
|
|
const auto merge_id = inst->GetOperandAs<uint32_t>(0);
|
|
const auto merge = _.FindDef(merge_id);
|
|
if (!merge || merge->opcode() != SpvOpLabel) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "Merge Block " << _.getIdName(merge_id) << " must be an OpLabel";
|
|
}
|
|
if (merge_id == inst->block()->id()) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "Merge Block may not be the block containing the OpLoopMerge\n";
|
|
}
|
|
|
|
const auto continue_id = inst->GetOperandAs<uint32_t>(1);
|
|
const auto continue_target = _.FindDef(continue_id);
|
|
if (!continue_target || continue_target->opcode() != SpvOpLabel) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "Continue Target " << _.getIdName(continue_id)
|
|
<< " must be an OpLabel";
|
|
}
|
|
|
|
if (merge_id == continue_id) {
|
|
return _.diag(SPV_ERROR_INVALID_ID, inst)
|
|
<< "Merge Block and Continue Target must be different ids";
|
|
}
|
|
|
|
const auto loop_control = inst->GetOperandAs<uint32_t>(2);
|
|
if ((loop_control >> SpvLoopControlUnrollShift) & 0x1 &&
|
|
(loop_control >> SpvLoopControlDontUnrollShift) & 0x1) {
|
|
return _.diag(SPV_ERROR_INVALID_DATA, inst)
|
|
<< "Unroll and DontUnroll loop controls must not both be specified";
|
|
}
|
|
if ((loop_control >> SpvLoopControlDontUnrollShift) & 0x1 &&
|
|
(loop_control >> SpvLoopControlPeelCountShift) & 0x1) {
|
|
return _.diag(SPV_ERROR_INVALID_DATA, inst) << "PeelCount and DontUnroll "
|
|
"loop controls must not "
|
|
"both be specified";
|
|
}
|
|
if ((loop_control >> SpvLoopControlDontUnrollShift) & 0x1 &&
|
|
(loop_control >> SpvLoopControlPartialCountShift) & 0x1) {
|
|
return _.diag(SPV_ERROR_INVALID_DATA, inst) << "PartialCount and "
|
|
"DontUnroll loop controls "
|
|
"must not both be specified";
|
|
}
|
|
|
|
uint32_t operand = 3;
|
|
if ((loop_control >> SpvLoopControlDependencyLengthShift) & 0x1) {
|
|
++operand;
|
|
}
|
|
if ((loop_control >> SpvLoopControlMinIterationsShift) & 0x1) {
|
|
++operand;
|
|
}
|
|
if ((loop_control >> SpvLoopControlMaxIterationsShift) & 0x1) {
|
|
++operand;
|
|
}
|
|
if ((loop_control >> SpvLoopControlIterationMultipleShift) & 0x1) {
|
|
if (inst->operands().size() < operand ||
|
|
inst->GetOperandAs<uint32_t>(operand) == 0) {
|
|
return _.diag(SPV_ERROR_INVALID_DATA, inst) << "IterationMultiple loop "
|
|
"control operand must be "
|
|
"greater than zero";
|
|
}
|
|
++operand;
|
|
}
|
|
if ((loop_control >> SpvLoopControlPeelCountShift) & 0x1) {
|
|
++operand;
|
|
}
|
|
if ((loop_control >> SpvLoopControlPartialCountShift) & 0x1) {
|
|
++operand;
|
|
}
|
|
|
|
// That the right number of operands is present is checked by the parser. The
|
|
// above code tracks operands for expanded validation checking in the future.
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void printDominatorList(const BasicBlock& b) {
|
|
std::cout << b.id() << " is dominated by: ";
|
|
const BasicBlock* bb = &b;
|
|
while (bb->immediate_dominator() != bb) {
|
|
bb = bb->immediate_dominator();
|
|
std::cout << bb->id() << " ";
|
|
}
|
|
}
|
|
|
|
#define CFG_ASSERT(ASSERT_FUNC, TARGET) \
|
|
if (spv_result_t rcode = ASSERT_FUNC(_, TARGET)) return rcode
|
|
|
|
spv_result_t FirstBlockAssert(ValidationState_t& _, uint32_t target) {
|
|
if (_.current_function().IsFirstBlock(target)) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(_.current_function().id()))
|
|
<< "First block " << _.getIdName(target) << " of function "
|
|
<< _.getIdName(_.current_function().id()) << " is targeted by block "
|
|
<< _.getIdName(_.current_function().current_block()->id());
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t MergeBlockAssert(ValidationState_t& _, uint32_t merge_block) {
|
|
if (_.current_function().IsBlockType(merge_block, kBlockTypeMerge)) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(_.current_function().id()))
|
|
<< "Block " << _.getIdName(merge_block)
|
|
<< " is already a merge block for another header";
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
/// Update the continue construct's exit blocks once the backedge blocks are
|
|
/// identified in the CFG.
|
|
void UpdateContinueConstructExitBlocks(
|
|
Function& function,
|
|
const std::vector<std::pair<uint32_t, uint32_t>>& back_edges) {
|
|
auto& constructs = function.constructs();
|
|
// TODO(umar): Think of a faster way to do this
|
|
for (auto& edge : back_edges) {
|
|
uint32_t back_edge_block_id;
|
|
uint32_t loop_header_block_id;
|
|
std::tie(back_edge_block_id, loop_header_block_id) = edge;
|
|
auto is_this_header = [=](Construct& c) {
|
|
return c.type() == ConstructType::kLoop &&
|
|
c.entry_block()->id() == loop_header_block_id;
|
|
};
|
|
|
|
for (auto construct : constructs) {
|
|
if (is_this_header(construct)) {
|
|
Construct* continue_construct =
|
|
construct.corresponding_constructs().back();
|
|
assert(continue_construct->type() == ConstructType::kContinue);
|
|
|
|
BasicBlock* back_edge_block;
|
|
std::tie(back_edge_block, std::ignore) =
|
|
function.GetBlock(back_edge_block_id);
|
|
continue_construct->set_exit(back_edge_block);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::tuple<std::string, std::string, std::string> ConstructNames(
|
|
ConstructType type) {
|
|
std::string construct_name, header_name, exit_name;
|
|
|
|
switch (type) {
|
|
case ConstructType::kSelection:
|
|
construct_name = "selection";
|
|
header_name = "selection header";
|
|
exit_name = "merge block";
|
|
break;
|
|
case ConstructType::kLoop:
|
|
construct_name = "loop";
|
|
header_name = "loop header";
|
|
exit_name = "merge block";
|
|
break;
|
|
case ConstructType::kContinue:
|
|
construct_name = "continue";
|
|
header_name = "continue target";
|
|
exit_name = "back-edge block";
|
|
break;
|
|
case ConstructType::kCase:
|
|
construct_name = "case";
|
|
header_name = "case entry block";
|
|
exit_name = "case exit block";
|
|
break;
|
|
default:
|
|
assert(1 == 0 && "Not defined type");
|
|
}
|
|
|
|
return std::make_tuple(construct_name, header_name, exit_name);
|
|
}
|
|
|
|
/// Constructs an error message for construct validation errors
|
|
std::string ConstructErrorString(const Construct& construct,
|
|
const std::string& header_string,
|
|
const std::string& exit_string,
|
|
const std::string& dominate_text) {
|
|
std::string construct_name, header_name, exit_name;
|
|
std::tie(construct_name, header_name, exit_name) =
|
|
ConstructNames(construct.type());
|
|
|
|
// TODO(umar): Add header block for continue constructs to error message
|
|
return "The " + construct_name + " construct with the " + header_name + " " +
|
|
header_string + " " + dominate_text + " the " + exit_name + " " +
|
|
exit_string;
|
|
}
|
|
|
|
// Finds the fall through case construct of |target_block| and records it in
|
|
// |case_fall_through|. Returns SPV_ERROR_INVALID_CFG if the case construct
|
|
// headed by |target_block| branches to multiple case constructs.
|
|
spv_result_t FindCaseFallThrough(
|
|
ValidationState_t& _, BasicBlock* target_block, uint32_t* case_fall_through,
|
|
const BasicBlock* merge, const std::unordered_set<uint32_t>& case_targets,
|
|
Function* function) {
|
|
std::vector<BasicBlock*> stack;
|
|
stack.push_back(target_block);
|
|
std::unordered_set<const BasicBlock*> visited;
|
|
bool target_reachable = target_block->reachable();
|
|
int target_depth = function->GetBlockDepth(target_block);
|
|
while (!stack.empty()) {
|
|
auto block = stack.back();
|
|
stack.pop_back();
|
|
|
|
if (block == merge) continue;
|
|
|
|
if (!visited.insert(block).second) continue;
|
|
|
|
if (target_reachable && block->reachable() &&
|
|
target_block->dominates(*block)) {
|
|
// Still in the case construct.
|
|
for (auto successor : *block->successors()) {
|
|
stack.push_back(successor);
|
|
}
|
|
} else {
|
|
// Exiting the case construct to non-merge block.
|
|
if (!case_targets.count(block->id())) {
|
|
int depth = function->GetBlockDepth(block);
|
|
if ((depth < target_depth) ||
|
|
(depth == target_depth && block->is_type(kBlockTypeContinue))) {
|
|
continue;
|
|
}
|
|
|
|
return _.diag(SPV_ERROR_INVALID_CFG, target_block->label())
|
|
<< "Case construct that targets "
|
|
<< _.getIdName(target_block->id())
|
|
<< " has invalid branch to block " << _.getIdName(block->id())
|
|
<< " (not another case construct, corresponding merge, outer "
|
|
"loop merge or outer loop continue)";
|
|
}
|
|
|
|
if (*case_fall_through == 0u) {
|
|
if (target_block != block) {
|
|
*case_fall_through = block->id();
|
|
}
|
|
} else if (*case_fall_through != block->id()) {
|
|
// Case construct has at most one branch to another case construct.
|
|
return _.diag(SPV_ERROR_INVALID_CFG, target_block->label())
|
|
<< "Case construct that targets "
|
|
<< _.getIdName(target_block->id())
|
|
<< " has branches to multiple other case construct targets "
|
|
<< _.getIdName(*case_fall_through) << " and "
|
|
<< _.getIdName(block->id());
|
|
}
|
|
}
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t StructuredSwitchChecks(ValidationState_t& _, Function* function,
|
|
const Instruction* switch_inst,
|
|
const BasicBlock* header,
|
|
const BasicBlock* merge) {
|
|
std::unordered_set<uint32_t> case_targets;
|
|
for (uint32_t i = 1; i < switch_inst->operands().size(); i += 2) {
|
|
uint32_t target = switch_inst->GetOperandAs<uint32_t>(i);
|
|
if (target != merge->id()) case_targets.insert(target);
|
|
}
|
|
// Tracks how many times each case construct is targeted by another case
|
|
// construct.
|
|
std::map<uint32_t, uint32_t> num_fall_through_targeted;
|
|
uint32_t default_case_fall_through = 0u;
|
|
uint32_t default_target = switch_inst->GetOperandAs<uint32_t>(1u);
|
|
bool default_appears_multiple_times = false;
|
|
for (uint32_t i = 3; i < switch_inst->operands().size(); i += 2) {
|
|
if (default_target == switch_inst->GetOperandAs<uint32_t>(i)) {
|
|
default_appears_multiple_times = true;
|
|
break;
|
|
}
|
|
}
|
|
std::unordered_map<uint32_t, uint32_t> seen_to_fall_through;
|
|
for (uint32_t i = 1; i < switch_inst->operands().size(); i += 2) {
|
|
uint32_t target = switch_inst->GetOperandAs<uint32_t>(i);
|
|
if (target == merge->id()) continue;
|
|
|
|
uint32_t case_fall_through = 0u;
|
|
auto seen_iter = seen_to_fall_through.find(target);
|
|
if (seen_iter == seen_to_fall_through.end()) {
|
|
const auto target_block = function->GetBlock(target).first;
|
|
// OpSwitch must dominate all its case constructs.
|
|
if (header->reachable() && target_block->reachable() &&
|
|
!header->dominates(*target_block)) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, header->label())
|
|
<< "Selection header " << _.getIdName(header->id())
|
|
<< " does not dominate its case construct "
|
|
<< _.getIdName(target);
|
|
}
|
|
|
|
if (auto error = FindCaseFallThrough(_, target_block, &case_fall_through,
|
|
merge, case_targets, function)) {
|
|
return error;
|
|
}
|
|
|
|
// Track how many time the fall through case has been targeted.
|
|
if (case_fall_through != 0u) {
|
|
auto where = num_fall_through_targeted.lower_bound(case_fall_through);
|
|
if (where == num_fall_through_targeted.end() ||
|
|
where->first != case_fall_through) {
|
|
num_fall_through_targeted.insert(
|
|
where, std::make_pair(case_fall_through, 1));
|
|
} else {
|
|
where->second++;
|
|
}
|
|
}
|
|
seen_to_fall_through.insert(std::make_pair(target, case_fall_through));
|
|
} else {
|
|
case_fall_through = seen_iter->second;
|
|
}
|
|
|
|
if (case_fall_through == default_target &&
|
|
!default_appears_multiple_times) {
|
|
case_fall_through = default_case_fall_through;
|
|
}
|
|
if (case_fall_through != 0u) {
|
|
bool is_default = i == 1;
|
|
if (is_default) {
|
|
default_case_fall_through = case_fall_through;
|
|
} else {
|
|
// Allow code like:
|
|
// case x:
|
|
// case y:
|
|
// ...
|
|
// case z:
|
|
//
|
|
// Where x and y target the same block and fall through to z.
|
|
uint32_t j = i;
|
|
while ((j + 2 < switch_inst->operands().size()) &&
|
|
target == switch_inst->GetOperandAs<uint32_t>(j + 2)) {
|
|
j += 2;
|
|
}
|
|
// If Target T1 branches to Target T2, or if Target T1 branches to the
|
|
// Default target and the Default target branches to Target T2, then T1
|
|
// must immediately precede T2 in the list of OpSwitch Target operands.
|
|
if ((switch_inst->operands().size() < j + 2) ||
|
|
(case_fall_through != switch_inst->GetOperandAs<uint32_t>(j + 2))) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, switch_inst)
|
|
<< "Case construct that targets " << _.getIdName(target)
|
|
<< " has branches to the case construct that targets "
|
|
<< _.getIdName(case_fall_through)
|
|
<< ", but does not immediately precede it in the "
|
|
"OpSwitch's target list";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Each case construct must be branched to by at most one other case
|
|
// construct.
|
|
for (const auto& pair : num_fall_through_targeted) {
|
|
if (pair.second > 1) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(pair.first))
|
|
<< "Multiple case constructs have branches to the case construct "
|
|
"that targets "
|
|
<< _.getIdName(pair.first);
|
|
}
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
// Validates that all CFG divergences (i.e. conditional branch or switch) are
|
|
// structured correctly. Either divergence is preceded by a merge instruction
|
|
// or the divergence introduces at most one unseen label.
|
|
spv_result_t ValidateStructuredSelections(
|
|
ValidationState_t& _, const std::vector<const BasicBlock*>& postorder) {
|
|
std::unordered_set<uint32_t> seen;
|
|
for (auto iter = postorder.rbegin(); iter != postorder.rend(); ++iter) {
|
|
const auto* block = *iter;
|
|
const auto* terminator = block->terminator();
|
|
if (!terminator) continue;
|
|
const auto index = terminator - &_.ordered_instructions()[0];
|
|
auto* merge = &_.ordered_instructions()[index - 1];
|
|
// Marks merges and continues as seen.
|
|
if (merge->opcode() == SpvOpSelectionMerge) {
|
|
seen.insert(merge->GetOperandAs<uint32_t>(0));
|
|
} else if (merge->opcode() == SpvOpLoopMerge) {
|
|
seen.insert(merge->GetOperandAs<uint32_t>(0));
|
|
seen.insert(merge->GetOperandAs<uint32_t>(1));
|
|
} else {
|
|
// Only track the pointer if it is a merge instruction.
|
|
merge = nullptr;
|
|
}
|
|
|
|
// Skip unreachable blocks.
|
|
if (!block->reachable()) continue;
|
|
|
|
if (terminator->opcode() == SpvOpBranchConditional) {
|
|
const auto true_label = terminator->GetOperandAs<uint32_t>(1);
|
|
const auto false_label = terminator->GetOperandAs<uint32_t>(2);
|
|
// Mark the upcoming blocks as seen now, but only error out if this block
|
|
// was missing a merge instruction and both labels hadn't been seen
|
|
// previously.
|
|
const bool both_unseen =
|
|
seen.insert(true_label).second && seen.insert(false_label).second;
|
|
if (!merge && both_unseen) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, terminator)
|
|
<< "Selection must be structured";
|
|
}
|
|
} else if (terminator->opcode() == SpvOpSwitch) {
|
|
uint32_t count = 0;
|
|
// Mark the targets as seen now, but only error out if this block was
|
|
// missing a merge instruction and there were multiple unseen labels.
|
|
for (uint32_t i = 1; i < terminator->operands().size(); i += 2) {
|
|
const auto target = terminator->GetOperandAs<uint32_t>(i);
|
|
if (seen.insert(target).second) {
|
|
count++;
|
|
}
|
|
}
|
|
if (!merge && count > 1) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, terminator)
|
|
<< "Selection must be structured";
|
|
}
|
|
}
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t StructuredControlFlowChecks(
|
|
ValidationState_t& _, Function* function,
|
|
const std::vector<std::pair<uint32_t, uint32_t>>& back_edges,
|
|
const std::vector<const BasicBlock*>& postorder) {
|
|
/// Check all backedges target only loop headers and have exactly one
|
|
/// back-edge branching to it
|
|
|
|
// Map a loop header to blocks with back-edges to the loop header.
|
|
std::map<uint32_t, std::unordered_set<uint32_t>> loop_latch_blocks;
|
|
for (auto back_edge : back_edges) {
|
|
uint32_t back_edge_block;
|
|
uint32_t header_block;
|
|
std::tie(back_edge_block, header_block) = back_edge;
|
|
if (!function->IsBlockType(header_block, kBlockTypeLoop)) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(back_edge_block))
|
|
<< "Back-edges (" << _.getIdName(back_edge_block) << " -> "
|
|
<< _.getIdName(header_block)
|
|
<< ") can only be formed between a block and a loop header.";
|
|
}
|
|
loop_latch_blocks[header_block].insert(back_edge_block);
|
|
}
|
|
|
|
// Check the loop headers have exactly one back-edge branching to it
|
|
for (BasicBlock* loop_header : function->ordered_blocks()) {
|
|
if (!loop_header->reachable()) continue;
|
|
if (!loop_header->is_type(kBlockTypeLoop)) continue;
|
|
auto loop_header_id = loop_header->id();
|
|
auto num_latch_blocks = loop_latch_blocks[loop_header_id].size();
|
|
if (num_latch_blocks != 1) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(loop_header_id))
|
|
<< "Loop header " << _.getIdName(loop_header_id)
|
|
<< " is targeted by " << num_latch_blocks
|
|
<< " back-edge blocks but the standard requires exactly one";
|
|
}
|
|
}
|
|
|
|
// Check construct rules
|
|
for (const Construct& construct : function->constructs()) {
|
|
auto header = construct.entry_block();
|
|
auto merge = construct.exit_block();
|
|
|
|
if (header->reachable() && !merge) {
|
|
std::string construct_name, header_name, exit_name;
|
|
std::tie(construct_name, header_name, exit_name) =
|
|
ConstructNames(construct.type());
|
|
return _.diag(SPV_ERROR_INTERNAL, _.FindDef(header->id()))
|
|
<< "Construct " + construct_name + " with " + header_name + " " +
|
|
_.getIdName(header->id()) + " does not have a " +
|
|
exit_name + ". This may be a bug in the validator.";
|
|
}
|
|
|
|
// If the exit block is reachable then it's dominated by the
|
|
// header.
|
|
if (merge && merge->reachable()) {
|
|
if (!header->dominates(*merge)) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
|
|
<< ConstructErrorString(construct, _.getIdName(header->id()),
|
|
_.getIdName(merge->id()),
|
|
"does not dominate");
|
|
}
|
|
// If it's really a merge block for a selection or loop, then it must be
|
|
// *strictly* dominated by the header.
|
|
if (construct.ExitBlockIsMergeBlock() && (header == merge)) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
|
|
<< ConstructErrorString(construct, _.getIdName(header->id()),
|
|
_.getIdName(merge->id()),
|
|
"does not strictly dominate");
|
|
}
|
|
}
|
|
// Check post-dominance for continue constructs. But dominance and
|
|
// post-dominance only make sense when the construct is reachable.
|
|
if (header->reachable() && construct.type() == ConstructType::kContinue) {
|
|
if (!merge->postdominates(*header)) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
|
|
<< ConstructErrorString(construct, _.getIdName(header->id()),
|
|
_.getIdName(merge->id()),
|
|
"is not post dominated by");
|
|
}
|
|
}
|
|
|
|
Construct::ConstructBlockSet construct_blocks = construct.blocks(function);
|
|
std::string construct_name, header_name, exit_name;
|
|
std::tie(construct_name, header_name, exit_name) =
|
|
ConstructNames(construct.type());
|
|
for (auto block : construct_blocks) {
|
|
// Check that all exits from the construct are via structured exits.
|
|
for (auto succ : *block->successors()) {
|
|
if (block->reachable() && !construct_blocks.count(succ) &&
|
|
!construct.IsStructuredExit(_, succ)) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "block <ID> " << _.getIdName(block->id()) << " exits the "
|
|
<< construct_name << " headed by <ID> "
|
|
<< _.getIdName(header->id())
|
|
<< ", but not via a structured exit";
|
|
}
|
|
}
|
|
if (block == header) continue;
|
|
// Check that for all non-header blocks, all predecessors are within this
|
|
// construct.
|
|
for (auto pred : *block->predecessors()) {
|
|
if (pred->reachable() && !construct_blocks.count(pred)) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(pred->id()))
|
|
<< "block <ID> " << pred->id() << " branches to the "
|
|
<< construct_name << " construct, but not to the "
|
|
<< header_name << " <ID> " << header->id();
|
|
}
|
|
}
|
|
|
|
if (block->is_type(BlockType::kBlockTypeSelection) ||
|
|
block->is_type(BlockType::kBlockTypeLoop)) {
|
|
size_t index = (block->terminator() - &_.ordered_instructions()[0]) - 1;
|
|
const auto& merge_inst = _.ordered_instructions()[index];
|
|
if (merge_inst.opcode() == SpvOpSelectionMerge ||
|
|
merge_inst.opcode() == SpvOpLoopMerge) {
|
|
uint32_t merge_id = merge_inst.GetOperandAs<uint32_t>(0);
|
|
auto merge_block = function->GetBlock(merge_id).first;
|
|
if (merge_block->reachable() &&
|
|
!construct_blocks.count(merge_block)) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "Header block " << _.getIdName(block->id())
|
|
<< " is contained in the " << construct_name
|
|
<< " construct headed by " << _.getIdName(header->id())
|
|
<< ", but its merge block " << _.getIdName(merge_id)
|
|
<< " is not";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Checks rules for case constructs.
|
|
if (construct.type() == ConstructType::kSelection &&
|
|
header->terminator()->opcode() == SpvOpSwitch) {
|
|
const auto terminator = header->terminator();
|
|
if (auto error =
|
|
StructuredSwitchChecks(_, function, terminator, header, merge)) {
|
|
return error;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto error = ValidateStructuredSelections(_, postorder)) {
|
|
return error;
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t PerformWebGPUCfgChecks(ValidationState_t& _, Function* function) {
|
|
for (auto& block : function->ordered_blocks()) {
|
|
if (block->reachable()) continue;
|
|
if (block->is_type(kBlockTypeMerge)) {
|
|
// 1. Find the referencing merge and confirm that it is reachable.
|
|
BasicBlock* merge_header = function->GetMergeHeader(block);
|
|
assert(merge_header != nullptr);
|
|
if (!merge_header->reachable()) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "For WebGPU, unreachable merge-blocks must be referenced by "
|
|
"a reachable merge instruction.";
|
|
}
|
|
|
|
// 2. Check that the only instructions are OpLabel and OpUnreachable.
|
|
auto* label_inst = block->label();
|
|
auto* terminator_inst = block->terminator();
|
|
assert(label_inst != nullptr);
|
|
assert(terminator_inst != nullptr);
|
|
|
|
if (terminator_inst->opcode() != SpvOpUnreachable) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "For WebGPU, unreachable merge-blocks must terminate with "
|
|
"OpUnreachable.";
|
|
}
|
|
|
|
auto label_idx = label_inst - &_.ordered_instructions()[0];
|
|
auto terminator_idx = terminator_inst - &_.ordered_instructions()[0];
|
|
if (label_idx + 1 != terminator_idx) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "For WebGPU, unreachable merge-blocks must only contain an "
|
|
"OpLabel and OpUnreachable instruction.";
|
|
}
|
|
|
|
// 3. Use label instruction to confirm there is no uses by branches.
|
|
for (auto use : label_inst->uses()) {
|
|
const auto* use_inst = use.first;
|
|
if (spvOpcodeIsBranch(use_inst->opcode())) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "For WebGPU, unreachable merge-blocks cannot be the target "
|
|
"of a branch.";
|
|
}
|
|
}
|
|
} else if (block->is_type(kBlockTypeContinue)) {
|
|
// 1. Find referencing loop and confirm that it is reachable.
|
|
std::vector<BasicBlock*> continue_headers =
|
|
function->GetContinueHeaders(block);
|
|
if (continue_headers.empty()) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "For WebGPU, unreachable continue-target must be referenced "
|
|
"by a loop instruction.";
|
|
}
|
|
|
|
std::vector<BasicBlock*> reachable_headers(continue_headers.size());
|
|
auto iter =
|
|
std::copy_if(continue_headers.begin(), continue_headers.end(),
|
|
reachable_headers.begin(),
|
|
[](BasicBlock* header) { return header->reachable(); });
|
|
reachable_headers.resize(std::distance(reachable_headers.begin(), iter));
|
|
|
|
if (reachable_headers.empty()) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "For WebGPU, unreachable continue-target must be referenced "
|
|
"by a reachable loop instruction.";
|
|
}
|
|
|
|
// 2. Check that the only instructions are OpLabel and OpBranch.
|
|
auto* label_inst = block->label();
|
|
auto* terminator_inst = block->terminator();
|
|
assert(label_inst != nullptr);
|
|
assert(terminator_inst != nullptr);
|
|
|
|
if (terminator_inst->opcode() != SpvOpBranch) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "For WebGPU, unreachable continue-target must terminate with "
|
|
"OpBranch.";
|
|
}
|
|
|
|
auto label_idx = label_inst - &_.ordered_instructions()[0];
|
|
auto terminator_idx = terminator_inst - &_.ordered_instructions()[0];
|
|
if (label_idx + 1 != terminator_idx) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "For WebGPU, unreachable continue-target must only contain "
|
|
"an OpLabel and an OpBranch instruction.";
|
|
}
|
|
|
|
// 3. Use label instruction to confirm there is no uses by branches.
|
|
for (auto use : label_inst->uses()) {
|
|
const auto* use_inst = use.first;
|
|
if (spvOpcodeIsBranch(use_inst->opcode())) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "For WebGPU, unreachable continue-target cannot be the "
|
|
"target of a branch.";
|
|
}
|
|
}
|
|
|
|
// 4. Confirm that continue-target has a back edge to a reachable loop
|
|
// header block.
|
|
auto branch_target = terminator_inst->GetOperandAs<uint32_t>(0);
|
|
for (auto* continue_header : reachable_headers) {
|
|
if (branch_target != continue_header->id()) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "For WebGPU, unreachable continue-target must only have a "
|
|
"back edge to a single reachable loop instruction.";
|
|
}
|
|
}
|
|
} else {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
|
|
<< "For WebGPU, all blocks must be reachable, unless they are "
|
|
<< "degenerate cases of merge-block or continue-target.";
|
|
}
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t PerformCfgChecks(ValidationState_t& _) {
|
|
for (auto& function : _.functions()) {
|
|
// Check all referenced blocks are defined within a function
|
|
if (function.undefined_block_count() != 0) {
|
|
std::string undef_blocks("{");
|
|
bool first = true;
|
|
for (auto undefined_block : function.undefined_blocks()) {
|
|
undef_blocks += _.getIdName(undefined_block);
|
|
if (!first) {
|
|
undef_blocks += " ";
|
|
}
|
|
first = false;
|
|
}
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(function.id()))
|
|
<< "Block(s) " << undef_blocks << "}"
|
|
<< " are referenced but not defined in function "
|
|
<< _.getIdName(function.id());
|
|
}
|
|
|
|
// Set each block's immediate dominator and immediate postdominator,
|
|
// and find all back-edges.
|
|
//
|
|
// We want to analyze all the blocks in the function, even in degenerate
|
|
// control flow cases including unreachable blocks. So use the augmented
|
|
// CFG to ensure we cover all the blocks.
|
|
std::vector<const BasicBlock*> postorder;
|
|
std::vector<const BasicBlock*> postdom_postorder;
|
|
std::vector<std::pair<uint32_t, uint32_t>> back_edges;
|
|
auto ignore_block = [](const BasicBlock*) {};
|
|
auto ignore_edge = [](const BasicBlock*, const BasicBlock*) {};
|
|
if (!function.ordered_blocks().empty()) {
|
|
/// calculate dominators
|
|
CFA<BasicBlock>::DepthFirstTraversal(
|
|
function.first_block(), function.AugmentedCFGSuccessorsFunction(),
|
|
ignore_block, [&](const BasicBlock* b) { postorder.push_back(b); },
|
|
ignore_edge);
|
|
auto edges = CFA<BasicBlock>::CalculateDominators(
|
|
postorder, function.AugmentedCFGPredecessorsFunction());
|
|
for (auto edge : edges) {
|
|
if (edge.first != edge.second)
|
|
edge.first->SetImmediateDominator(edge.second);
|
|
}
|
|
|
|
/// calculate post dominators
|
|
CFA<BasicBlock>::DepthFirstTraversal(
|
|
function.pseudo_exit_block(),
|
|
function.AugmentedCFGPredecessorsFunction(), ignore_block,
|
|
[&](const BasicBlock* b) { postdom_postorder.push_back(b); },
|
|
ignore_edge);
|
|
auto postdom_edges = CFA<BasicBlock>::CalculateDominators(
|
|
postdom_postorder, function.AugmentedCFGSuccessorsFunction());
|
|
for (auto edge : postdom_edges) {
|
|
edge.first->SetImmediatePostDominator(edge.second);
|
|
}
|
|
/// calculate back edges.
|
|
CFA<BasicBlock>::DepthFirstTraversal(
|
|
function.pseudo_entry_block(),
|
|
function
|
|
.AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge(),
|
|
ignore_block, ignore_block,
|
|
[&](const BasicBlock* from, const BasicBlock* to) {
|
|
back_edges.emplace_back(from->id(), to->id());
|
|
});
|
|
}
|
|
UpdateContinueConstructExitBlocks(function, back_edges);
|
|
|
|
auto& blocks = function.ordered_blocks();
|
|
if (!blocks.empty()) {
|
|
// Check if the order of blocks in the binary appear before the blocks
|
|
// they dominate
|
|
for (auto block = begin(blocks) + 1; block != end(blocks); ++block) {
|
|
if (auto idom = (*block)->immediate_dominator()) {
|
|
if (idom != function.pseudo_entry_block() &&
|
|
block == std::find(begin(blocks), block, idom)) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(idom->id()))
|
|
<< "Block " << _.getIdName((*block)->id())
|
|
<< " appears in the binary before its dominator "
|
|
<< _.getIdName(idom->id());
|
|
}
|
|
}
|
|
|
|
// For WebGPU check that all unreachable blocks are degenerate cases for
|
|
// merge-block or continue-target.
|
|
if (spvIsWebGPUEnv(_.context()->target_env)) {
|
|
spv_result_t result = PerformWebGPUCfgChecks(_, &function);
|
|
if (result != SPV_SUCCESS) return result;
|
|
}
|
|
}
|
|
// If we have structed control flow, check that no block has a control
|
|
// flow nesting depth larger than the limit.
|
|
if (_.HasCapability(SpvCapabilityShader)) {
|
|
const int control_flow_nesting_depth_limit =
|
|
_.options()->universal_limits_.max_control_flow_nesting_depth;
|
|
for (auto block = begin(blocks); block != end(blocks); ++block) {
|
|
if (function.GetBlockDepth(*block) >
|
|
control_flow_nesting_depth_limit) {
|
|
return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef((*block)->id()))
|
|
<< "Maximum Control Flow nesting depth exceeded.";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Structured control flow checks are only required for shader capabilities
|
|
if (_.HasCapability(SpvCapabilityShader)) {
|
|
if (auto error =
|
|
StructuredControlFlowChecks(_, &function, back_edges, postorder))
|
|
return error;
|
|
}
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t CfgPass(ValidationState_t& _, const Instruction* inst) {
|
|
SpvOp opcode = inst->opcode();
|
|
switch (opcode) {
|
|
case SpvOpLabel:
|
|
if (auto error = _.current_function().RegisterBlock(inst->id()))
|
|
return error;
|
|
|
|
// TODO(github:1661) This should be done in the
|
|
// ValidationState::RegisterInstruction method but because of the order of
|
|
// passes the OpLabel ends up not being part of the basic block it starts.
|
|
_.current_function().current_block()->set_label(inst);
|
|
break;
|
|
case SpvOpLoopMerge: {
|
|
uint32_t merge_block = inst->GetOperandAs<uint32_t>(0);
|
|
uint32_t continue_block = inst->GetOperandAs<uint32_t>(1);
|
|
CFG_ASSERT(MergeBlockAssert, merge_block);
|
|
|
|
if (auto error = _.current_function().RegisterLoopMerge(merge_block,
|
|
continue_block))
|
|
return error;
|
|
} break;
|
|
case SpvOpSelectionMerge: {
|
|
uint32_t merge_block = inst->GetOperandAs<uint32_t>(0);
|
|
CFG_ASSERT(MergeBlockAssert, merge_block);
|
|
|
|
if (auto error = _.current_function().RegisterSelectionMerge(merge_block))
|
|
return error;
|
|
} break;
|
|
case SpvOpBranch: {
|
|
uint32_t target = inst->GetOperandAs<uint32_t>(0);
|
|
CFG_ASSERT(FirstBlockAssert, target);
|
|
|
|
_.current_function().RegisterBlockEnd({target});
|
|
} break;
|
|
case SpvOpBranchConditional: {
|
|
uint32_t tlabel = inst->GetOperandAs<uint32_t>(1);
|
|
uint32_t flabel = inst->GetOperandAs<uint32_t>(2);
|
|
CFG_ASSERT(FirstBlockAssert, tlabel);
|
|
CFG_ASSERT(FirstBlockAssert, flabel);
|
|
|
|
_.current_function().RegisterBlockEnd({tlabel, flabel});
|
|
} break;
|
|
|
|
case SpvOpSwitch: {
|
|
std::vector<uint32_t> cases;
|
|
for (size_t i = 1; i < inst->operands().size(); i += 2) {
|
|
uint32_t target = inst->GetOperandAs<uint32_t>(i);
|
|
CFG_ASSERT(FirstBlockAssert, target);
|
|
cases.push_back(target);
|
|
}
|
|
_.current_function().RegisterBlockEnd({cases});
|
|
} break;
|
|
case SpvOpReturn: {
|
|
const uint32_t return_type = _.current_function().GetResultTypeId();
|
|
const Instruction* return_type_inst = _.FindDef(return_type);
|
|
assert(return_type_inst);
|
|
if (return_type_inst->opcode() != SpvOpTypeVoid)
|
|
return _.diag(SPV_ERROR_INVALID_CFG, inst)
|
|
<< "OpReturn can only be called from a function with void "
|
|
<< "return type.";
|
|
_.current_function().RegisterBlockEnd(std::vector<uint32_t>());
|
|
break;
|
|
}
|
|
case SpvOpKill:
|
|
case SpvOpReturnValue:
|
|
case SpvOpUnreachable:
|
|
case SpvOpTerminateInvocation:
|
|
_.current_function().RegisterBlockEnd(std::vector<uint32_t>());
|
|
if (opcode == SpvOpKill) {
|
|
_.current_function().RegisterExecutionModelLimitation(
|
|
SpvExecutionModelFragment,
|
|
"OpKill requires Fragment execution model");
|
|
}
|
|
if (opcode == SpvOpTerminateInvocation) {
|
|
_.current_function().RegisterExecutionModelLimitation(
|
|
SpvExecutionModelFragment,
|
|
"OpTerminateInvocation requires Fragment execution model");
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
void ReachabilityPass(ValidationState_t& _) {
|
|
for (auto& f : _.functions()) {
|
|
std::vector<BasicBlock*> stack;
|
|
auto entry = f.first_block();
|
|
// Skip function declarations.
|
|
if (entry) stack.push_back(entry);
|
|
|
|
while (!stack.empty()) {
|
|
auto block = stack.back();
|
|
stack.pop_back();
|
|
|
|
if (block->reachable()) continue;
|
|
|
|
block->set_reachable(true);
|
|
for (auto succ : *block->successors()) {
|
|
stack.push_back(succ);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
spv_result_t ControlFlowPass(ValidationState_t& _, const Instruction* inst) {
|
|
switch (inst->opcode()) {
|
|
case SpvOpPhi:
|
|
if (auto error = ValidatePhi(_, inst)) return error;
|
|
break;
|
|
case SpvOpBranch:
|
|
if (auto error = ValidateBranch(_, inst)) return error;
|
|
break;
|
|
case SpvOpBranchConditional:
|
|
if (auto error = ValidateBranchConditional(_, inst)) return error;
|
|
break;
|
|
case SpvOpReturnValue:
|
|
if (auto error = ValidateReturnValue(_, inst)) return error;
|
|
break;
|
|
case SpvOpSwitch:
|
|
if (auto error = ValidateSwitch(_, inst)) return error;
|
|
break;
|
|
case SpvOpLoopMerge:
|
|
if (auto error = ValidateLoopMerge(_, inst)) return error;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
} // namespace val
|
|
} // namespace spvtools
|