SPIRV-Tools/source/opt/dead_branch_elim_pass.cpp
Alan Baker a771713e42 Adding an unique id to Instruction generated by IRContext
Each instruction is given an unique id that can be used for ordering
purposes. The ids are generated via the IRContext.

Major changes:
* Instructions now contain a uint32_t for unique id and a cached context
pointer
 * Most constructors have been modified to take a context as input
 * unfortunately I cannot remove the default and copy constructors, but
 developers should avoid these
* Added accessors to parents of basic block and function
* Removed the copy constructors for BasicBlock and Function and replaced
them with Clone functions
* Reworked BuildModule to return an IRContext owning the built module
 * Since all instructions require a context, the context now becomes the
basic unit for IR
* Added a constructor to context to create an owned module internally
* Replaced uses of Instruction's copy constructor with Clone whereever I
found them
* Reworked the linker functionality to perform clones into a different
context instead of moves
* Updated many tests to be consistent with the above changes
 * Still need to add new tests to cover added functionality
* Added comparison operators to Instruction
* Added an internal option to LinkerOptions to verify merged ids are
unique
* Added a test for the linker to verify merged ids are unique

* Updated MergeReturnPass to supply a context
* Updated DecorationManager to supply a context for cloned decorations

* Reworked several portions of the def use tests in anticipation of next
set of changes
2017-11-20 17:49:10 -05:00

401 lines
14 KiB
C++

// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dead_branch_elim_pass.h"
#include "cfa.h"
#include "iterator.h"
#include "ir_context.h"
namespace spvtools {
namespace opt {
namespace {
const uint32_t kBranchTargetLabIdInIdx = 0;
const uint32_t kBranchCondTrueLabIdInIdx = 1;
const uint32_t kBranchCondFalseLabIdInIdx = 2;
const uint32_t kSelectionMergeMergeBlockIdInIdx = 0;
} // anonymous namespace
bool DeadBranchElimPass::GetConstCondition(uint32_t condId, bool* condVal) {
bool condIsConst;
ir::Instruction* cInst = get_def_use_mgr()->GetDef(condId);
switch (cInst->opcode()) {
case SpvOpConstantFalse: {
*condVal = false;
condIsConst = true;
} break;
case SpvOpConstantTrue: {
*condVal = true;
condIsConst = true;
} break;
case SpvOpLogicalNot: {
bool negVal;
condIsConst =
GetConstCondition(cInst->GetSingleWordInOperand(0), &negVal);
if (condIsConst) *condVal = !negVal;
} break;
default: { condIsConst = false; } break;
}
return condIsConst;
}
bool DeadBranchElimPass::GetConstInteger(uint32_t selId, uint32_t* selVal) {
ir::Instruction* sInst = get_def_use_mgr()->GetDef(selId);
uint32_t typeId = sInst->type_id();
ir::Instruction* typeInst = get_def_use_mgr()->GetDef(typeId);
if (!typeInst || (typeInst->opcode() != SpvOpTypeInt)) return false;
// TODO(greg-lunarg): Support non-32 bit ints
if (typeInst->GetSingleWordInOperand(0) != 32) return false;
if (sInst->opcode() == SpvOpConstant) {
*selVal = sInst->GetSingleWordInOperand(0);
return true;
} else if (sInst->opcode() == SpvOpConstantNull) {
*selVal = 0;
return true;
}
return false;
}
void DeadBranchElimPass::AddBranch(uint32_t labelId, ir::BasicBlock* bp) {
std::unique_ptr<ir::Instruction> newBranch(new ir::Instruction(
context(), SpvOpBranch, 0, 0,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {labelId}}}));
get_def_use_mgr()->AnalyzeInstDefUse(&*newBranch);
bp->AddInstruction(std::move(newBranch));
}
void DeadBranchElimPass::AddSelectionMerge(uint32_t labelId,
ir::BasicBlock* bp) {
std::unique_ptr<ir::Instruction> newMerge(new ir::Instruction(
context(), SpvOpSelectionMerge, 0, 0,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {labelId}},
{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER, {0}}}));
get_def_use_mgr()->AnalyzeInstDefUse(&*newMerge);
bp->AddInstruction(std::move(newMerge));
}
void DeadBranchElimPass::AddBranchConditional(uint32_t condId,
uint32_t trueLabId,
uint32_t falseLabId,
ir::BasicBlock* bp) {
std::unique_ptr<ir::Instruction> newBranchCond(new ir::Instruction(
context(), SpvOpBranchConditional, 0, 0,
{{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {condId}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {trueLabId}},
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {falseLabId}}}));
get_def_use_mgr()->AnalyzeInstDefUse(&*newBranchCond);
bp->AddInstruction(std::move(newBranchCond));
}
bool DeadBranchElimPass::GetSelectionBranch(ir::BasicBlock* bp,
ir::Instruction** branchInst,
ir::Instruction** mergeInst,
uint32_t* condId) {
auto ii = bp->end();
--ii;
*branchInst = &*ii;
if (ii == bp->begin()) return false;
--ii;
*mergeInst = &*ii;
if ((*mergeInst)->opcode() != SpvOpSelectionMerge) return false;
// SPIR-V says the terminator for an OpSelectionMerge must be
// either a conditional branch or a switch.
assert((*branchInst)->opcode() == SpvOpBranchConditional ||
(*branchInst)->opcode() == SpvOpSwitch);
// Both BranchConidtional and Switch have their conditional value at 0.
*condId = (*branchInst)->GetSingleWordInOperand(0);
return true;
}
bool DeadBranchElimPass::HasNonPhiNonBackedgeRef(uint32_t labelId) {
analysis::UseList* uses = get_def_use_mgr()->GetUses(labelId);
if (uses == nullptr) return false;
for (auto u : *uses) {
if (u.inst->opcode() != SpvOpPhi &&
backedges_.find(u.inst) == backedges_.end())
return true;
}
return false;
}
void DeadBranchElimPass::ComputeBackEdges(
std::list<ir::BasicBlock*>& structuredOrder) {
backedges_.clear();
std::unordered_set<uint32_t> visited;
// In structured order, edges to visited blocks are back edges
for (auto bi = structuredOrder.begin(); bi != structuredOrder.end(); ++bi) {
visited.insert((*bi)->id());
auto ii = (*bi)->end();
--ii;
switch (ii->opcode()) {
case SpvOpBranch: {
const uint32_t labId =
ii->GetSingleWordInOperand(kBranchTargetLabIdInIdx);
if (visited.find(labId) != visited.end()) backedges_.insert(&*ii);
} break;
case SpvOpBranchConditional: {
const uint32_t tLabId =
ii->GetSingleWordInOperand(kBranchCondTrueLabIdInIdx);
if (visited.find(tLabId) != visited.end()) {
backedges_.insert(&*ii);
break;
}
const uint32_t fLabId =
ii->GetSingleWordInOperand(kBranchCondFalseLabIdInIdx);
if (visited.find(fLabId) != visited.end()) backedges_.insert(&*ii);
} break;
default:
break;
}
}
}
bool DeadBranchElimPass::EliminateDeadBranches(ir::Function* func) {
// Traverse blocks in structured order
std::list<ir::BasicBlock*> structuredOrder;
cfg()->ComputeStructuredOrder(func, &*func->begin(), &structuredOrder);
ComputeBackEdges(structuredOrder);
std::unordered_set<ir::BasicBlock*> elimBlocks;
bool modified = false;
for (auto bi = structuredOrder.begin(); bi != structuredOrder.end(); ++bi) {
// Skip blocks that are already in the elimination set
if (elimBlocks.find(*bi) != elimBlocks.end()) continue;
// Skip blocks that don't have conditional branch preceded
// by OpSelectionMerge
ir::Instruction* br;
ir::Instruction* mergeInst;
uint32_t condId;
if (!GetSelectionBranch(*bi, &br, &mergeInst, &condId)) continue;
// If constant condition/selector, replace conditional branch/switch
// with unconditional branch and delete merge
uint32_t liveLabId;
if (br->opcode() == SpvOpBranchConditional) {
bool condVal;
if (!GetConstCondition(condId, &condVal)) continue;
liveLabId = (condVal == true)
? br->GetSingleWordInOperand(kBranchCondTrueLabIdInIdx)
: br->GetSingleWordInOperand(kBranchCondFalseLabIdInIdx);
} else {
assert(br->opcode() == SpvOpSwitch);
// Search switch operands for selector value, set liveLabId to
// corresponding label, use default if not found
uint32_t selVal;
if (!GetConstInteger(condId, &selVal)) continue;
uint32_t icnt = 0;
uint32_t caseVal;
br->ForEachInOperand(
[&icnt, &caseVal, &selVal, &liveLabId](const uint32_t* idp) {
if (icnt == 1) {
// Start with default label
liveLabId = *idp;
} else if (icnt > 1) {
if (icnt % 2 == 0) {
caseVal = *idp;
} else {
if (caseVal == selVal) liveLabId = *idp;
}
}
++icnt;
});
}
const uint32_t mergeLabId =
mergeInst->GetSingleWordInOperand(kSelectionMergeMergeBlockIdInIdx);
AddBranch(liveLabId, *bi);
context()->KillInst(br);
context()->KillInst(mergeInst);
modified = true;
// Iterate to merge block adding dead blocks to elimination set
auto dbi = bi;
++dbi;
uint32_t dLabId = (*dbi)->id();
while (dLabId != mergeLabId) {
if (!HasNonPhiNonBackedgeRef(dLabId)) {
// Kill use/def for all instructions and mark block for elimination
KillAllInsts(*dbi);
elimBlocks.insert(*dbi);
}
++dbi;
dLabId = (*dbi)->id();
}
// If merge block is unreachable, continue eliminating blocks until
// a live block or last block is reached.
while (!HasNonPhiNonBackedgeRef(dLabId)) {
KillAllInsts(*dbi);
elimBlocks.insert(*dbi);
++dbi;
if (dbi == structuredOrder.end()) break;
dLabId = (*dbi)->id();
}
// If last block reached, look for next dead branch
if (dbi == structuredOrder.end()) continue;
// Create set of dead predecessors in preparation for phi update.
// Add the header block if the live branch is not the merge block.
std::unordered_set<ir::BasicBlock*> deadPreds(elimBlocks);
if (liveLabId != dLabId) deadPreds.insert(*bi);
// Update phi instructions in terminating block.
for (auto pii = (*dbi)->begin();; ++pii) {
// Skip NoOps, break at end of phis
SpvOp op = pii->opcode();
if (op == SpvOpNop) continue;
if (op != SpvOpPhi) break;
// Count phi's live predecessors with lcnt and remember last one
// with lidx.
uint32_t lcnt = 0;
uint32_t lidx = 0;
uint32_t icnt = 0;
pii->ForEachInId([&deadPreds, &icnt, &lcnt, &lidx, this](uint32_t* idp) {
if (icnt % 2 == 1) {
if (deadPreds.find(cfg()->block(*idp)) == deadPreds.end()) {
++lcnt;
lidx = icnt - 1;
}
}
++icnt;
});
// If just one live predecessor, replace resultid with live value id.
uint32_t replId;
if (lcnt == 1) {
replId = pii->GetSingleWordInOperand(lidx);
} else {
// Otherwise create new phi eliminating dead predecessor entries
assert(lcnt > 1);
replId = TakeNextId();
std::vector<ir::Operand> phi_in_opnds;
icnt = 0;
uint32_t lastId;
pii->ForEachInId(
[&deadPreds, &icnt, &phi_in_opnds, &lastId, this](uint32_t* idp) {
if (icnt % 2 == 1) {
if (deadPreds.find(cfg()->block(*idp)) == deadPreds.end()) {
phi_in_opnds.push_back(
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {lastId}});
phi_in_opnds.push_back(
{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {*idp}});
}
} else {
lastId = *idp;
}
++icnt;
});
std::unique_ptr<ir::Instruction> newPhi(new ir::Instruction(
context(), SpvOpPhi, pii->type_id(), replId, phi_in_opnds));
get_def_use_mgr()->AnalyzeInstDefUse(&*newPhi);
pii = pii.InsertBefore(std::move(newPhi));
++pii;
}
const uint32_t phiId = pii->result_id();
context()->KillNamesAndDecorates(phiId);
(void)context()->ReplaceAllUsesWith(phiId, replId);
context()->KillInst(&*pii);
}
}
// Erase dead blocks
for (auto ebi = func->begin(); ebi != func->end();)
if (elimBlocks.find(&*ebi) != elimBlocks.end())
ebi = ebi.Erase();
else
++ebi;
return modified;
}
void DeadBranchElimPass::Initialize(ir::IRContext* c) {
InitializeProcessing(c);
// Initialize extension whitelist
InitExtensions();
};
bool DeadBranchElimPass::AllExtensionsSupported() const {
// If any extension not in whitelist, return false
for (auto& ei : get_module()->extensions()) {
const char* extName =
reinterpret_cast<const char*>(&ei.GetInOperand(0).words[0]);
if (extensions_whitelist_.find(extName) == extensions_whitelist_.end())
return false;
}
return true;
}
Pass::Status DeadBranchElimPass::ProcessImpl() {
// Current functionality assumes structured control flow.
// TODO(greg-lunarg): Handle non-structured control-flow.
if (!get_module()->HasCapability(SpvCapabilityShader))
return Status::SuccessWithoutChange;
// Do not process if module contains OpGroupDecorate. Additional
// support required in KillNamesAndDecorates().
// TODO(greg-lunarg): Add support for OpGroupDecorate
for (auto& ai : get_module()->annotations())
if (ai.opcode() == SpvOpGroupDecorate) return Status::SuccessWithoutChange;
// Do not process if any disallowed extensions are enabled
if (!AllExtensionsSupported()) return Status::SuccessWithoutChange;
// Process all entry point functions
ProcessFunction pfn = [this](ir::Function* fp) {
return EliminateDeadBranches(fp);
};
bool modified = ProcessEntryPointCallTree(pfn, get_module());
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
DeadBranchElimPass::DeadBranchElimPass() {}
Pass::Status DeadBranchElimPass::Process(ir::IRContext* module) {
Initialize(module);
return ProcessImpl();
}
void DeadBranchElimPass::InitExtensions() {
extensions_whitelist_.clear();
extensions_whitelist_.insert({
"SPV_AMD_shader_explicit_vertex_parameter",
"SPV_AMD_shader_trinary_minmax",
"SPV_AMD_gcn_shader",
"SPV_KHR_shader_ballot",
"SPV_AMD_shader_ballot",
"SPV_AMD_gpu_shader_half_float",
"SPV_KHR_shader_draw_parameters",
"SPV_KHR_subgroup_vote",
"SPV_KHR_16bit_storage",
"SPV_KHR_device_group",
"SPV_KHR_multiview",
"SPV_NVX_multiview_per_view_attributes",
"SPV_NV_viewport_array2",
"SPV_NV_stereo_view_rendering",
"SPV_NV_sample_mask_override_coverage",
"SPV_NV_geometry_shader_passthrough",
"SPV_AMD_texture_gather_bias_lod",
"SPV_KHR_storage_buffer_storage_class",
"SPV_KHR_variable_pointers",
"SPV_AMD_gpu_shader_int16",
"SPV_KHR_post_depth_coverage",
"SPV_KHR_shader_atomic_counter_ops",
});
}
} // namespace opt
} // namespace spvtools