SPIRV-Tools/source/opt/value_number_table.cpp
Steven Perron 7d01643132 Allow hoisting code in if-conversion.
When doing if-conversion, we do not currently move code out of the side
nodes.  The reason for this is that it can increase the number of
instructions that get executed because both side nods will have to be
executed now.

In this commit, we add code to move an instruction, and all of the
instructions it depends on, out of a side node and into the header of
the selection construct.  However to keep the cost down, we only do it
when the two values in the OpPhi node compute the same value.  This way
we have to move only one of the instructions and the other becomes
unused most of the time.  So no real extra cost.

Makes the value number table an alalysis in the ir context.

Added more opcodes to list of code motion safe opcodes.

Fixes #1526.
2018-05-04 12:56:29 -04:00

230 lines
7.0 KiB
C++

// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "value_number_table.h"
#include <algorithm>
#include "cfg.h"
#include "ir_context.h"
namespace spvtools {
namespace opt {
uint32_t ValueNumberTable::GetValueNumber(
spvtools::ir::Instruction* inst) const {
assert(inst->result_id() != 0 &&
"inst must have a result id to get a value number.");
// Check if this instruction already has a value.
auto result_id_to_val = id_to_value_.find(inst->result_id());
if (result_id_to_val != id_to_value_.end()) {
return result_id_to_val->second;
}
return 0;
}
uint32_t ValueNumberTable::GetValueNumber(uint32_t id) const {
return GetValueNumber(context()->get_def_use_mgr()->GetDef(id));
}
uint32_t ValueNumberTable::AssignValueNumber(ir::Instruction* inst) {
// If it already has a value return that.
uint32_t value = GetValueNumber(inst);
if (value != 0) {
return value;
}
// If the instruction has other side effects, then it must
// have its own value number.
// OpSampledImage and OpImage must remain in the same basic block in which
// they are used, because of this we will assign each one it own value number.
if (!context()->IsCombinatorInstruction(inst)) {
value = TakeNextValueNumber();
id_to_value_[inst->result_id()] = value;
return value;
}
switch (inst->opcode()) {
case SpvOpSampledImage:
case SpvOpImage:
case SpvOpVariable:
value = TakeNextValueNumber();
id_to_value_[inst->result_id()] = value;
return value;
default:
break;
}
// If it is a load from memory that can be modified, we have to assume the
// memory has been modified, so we give it a new value number.
//
// Note that this test will also handle volatile loads because they are not
// read only. However, if this is ever relaxed because we analyze stores, we
// will have to add a new case for volatile loads.
if (inst->IsLoad() && !inst->IsReadOnlyLoad()) {
value = TakeNextValueNumber();
id_to_value_[inst->result_id()] = value;
return value;
}
// When we copy an object, the value numbers should be the same.
if (inst->opcode() == SpvOpCopyObject) {
value = GetValueNumber(inst->GetSingleWordInOperand(0));
if (value != 0) {
id_to_value_[inst->result_id()] = value;
return value;
}
}
// Phi nodes are a type of copy. If all of the inputs have the same value
// number, then we can assign the result of the phi the same value number.
if (inst->opcode() == SpvOpPhi) {
value = GetValueNumber(inst->GetSingleWordInOperand(0));
if (value != 0) {
for (uint32_t op = 2; op < inst->NumInOperands(); op += 2) {
if (value != GetValueNumber(inst->GetSingleWordInOperand(op))) {
value = 0;
break;
}
}
if (value != 0) {
id_to_value_[inst->result_id()] = value;
return value;
}
}
}
// Replace all of the operands by their value number. The sign bit will be
// set to distinguish between an id and a value number.
ir::Instruction value_ins(context(), inst->opcode(), inst->type_id(),
inst->result_id(), {});
for (uint32_t o = 0; o < inst->NumInOperands(); ++o) {
const ir::Operand& op = inst->GetInOperand(o);
if (spvIsIdType(op.type)) {
uint32_t id_value = op.words[0];
auto use_id_to_val = id_to_value_.find(id_value);
if (use_id_to_val != id_to_value_.end()) {
id_value = (1 << 31) | use_id_to_val->second;
}
value_ins.AddOperand(ir::Operand(op.type, {id_value}));
} else {
value_ins.AddOperand(ir::Operand(op.type, op.words));
}
}
// TODO: Implement a normal form for opcodes that commute like integer
// addition. This will let us know that a+b is the same value as b+a.
// Otherwise, we check if this value has been computed before.
auto value_iterator = instruction_to_value_.find(value_ins);
if (value_iterator != instruction_to_value_.end()) {
value = id_to_value_[value_iterator->first.result_id()];
id_to_value_[inst->result_id()] = value;
return value;
}
// If not, assign it a new value number.
value = TakeNextValueNumber();
id_to_value_[inst->result_id()] = value;
instruction_to_value_[value_ins] = value;
return value;
}
void ValueNumberTable::BuildDominatorTreeValueNumberTable() {
// First value number the headers.
for (auto& inst : context()->annotations()) {
if (inst.result_id() != 0) {
AssignValueNumber(&inst);
}
}
for (auto& inst : context()->capabilities()) {
if (inst.result_id() != 0) {
AssignValueNumber(&inst);
}
}
for (auto& inst : context()->types_values()) {
if (inst.result_id() != 0) {
AssignValueNumber(&inst);
}
}
for (auto& inst : context()->module()->ext_inst_imports()) {
if (inst.result_id() != 0) {
AssignValueNumber(&inst);
}
}
for (ir::Function& func : *context()->module()) {
// For best results we want to traverse the code in reverse post order.
// This happens naturally because of the forward referencing rules.
for (ir::BasicBlock& block : func) {
for (ir::Instruction& inst : block) {
if (inst.result_id() != 0) {
AssignValueNumber(&inst);
}
}
}
}
}
bool ComputeSameValue::operator()(const ir::Instruction& lhs,
const ir::Instruction& rhs) const {
if (lhs.result_id() == 0 || rhs.result_id() == 0) {
return false;
}
if (lhs.opcode() != rhs.opcode()) {
return false;
}
if (lhs.type_id() != rhs.type_id()) {
return false;
}
if (lhs.NumInOperands() != rhs.NumInOperands()) {
return false;
}
for (uint32_t i = 0; i < lhs.NumInOperands(); ++i) {
if (lhs.GetInOperand(i) != rhs.GetInOperand(i)) {
return false;
}
}
return lhs.context()->get_decoration_mgr()->HaveTheSameDecorations(
lhs.result_id(), rhs.result_id());
}
std::size_t ValueTableHash::operator()(
const spvtools::ir::Instruction& inst) const {
// We hash the opcode and in-operands, not the result, because we want
// instructions that are the same except for the result to hash to the
// same value.
std::u32string h;
h.push_back(inst.opcode());
h.push_back(inst.type_id());
for (uint32_t i = 0; i < inst.NumInOperands(); ++i) {
const auto& opnd = inst.GetInOperand(i);
for (uint32_t word : opnd.words) {
h.push_back(word);
}
}
return std::hash<std::u32string>()(h);
}
} // namespace opt
} // namespace spvtools